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ABSTRACT: Research has been conducted to reduce resource consumption in 3D medical image segmentation for
diverse resource-constrained environments. However, decreasing the number of parameters to enhance computational
efficiency can also lead to performance degradation. Moreover, these methods face challenges in balancing global and
local features, increasing the risk of errors in multi-scale segmentation. This issue is particularly pronounced when
segmenting small and complex structures within the human body. To address this problem, we propose a multi-stage
hierarchical architecture composed of a detector and a segmentor. The detector extracts regions of interest (ROIs) in a 3D
image, while the segmentor performs segmentation in the extracted ROI. Removing unnecessary areas in the detector
allows the segmentation to be performed on a more compact input. The segmentor is designed with multiple stages,
where each stage utilizes different input sizes. It implements a stage-skipping mechanism that deactivates certain stages
using the initial input size. This approach minimizes unnecessary computations on segmenting the essential regions
to reduce computational overhead. The proposed framework preserves segmentation performance while reducing
resource consumption, enabling segmentation even in resource-constrained environments.
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1 Introduction
Accurately segmenting regions of the human body’s anatomical structures, such as organs and bones,

is essential for enhancing the accuracy of clinical diagnoses [1] and examinations [2]. However, it remains
challenging because the structures vary significantly in size and shape. Such diversity makes it difficult to
distinguish boundaries, increasing the likelihood of segmentation errors.

Deep neural networks have brought advancements to medical image segmentation, significantly
improving accuracy. U-Net [3], which integrates a symmetrical U-shaped encoder-decoder architecture
with skip connections, has become a foundational model for various segmentation models. Numerous
studies have continued to develop the U-Net structure [4–6]. Recent studies have combined U-Net with
Transformer [7] architectures to enhance global semantic information learning [8–10]. Transformer-based
models divide images into sequential patches and leverage self-attention mechanisms to capture global
features effectively. However, the model size and computational cost increase rapidly as segmentation
accuracy improves. Since 3D-based models experience the exponential increase of resource consumption, it
restricts their practical use in real-world applications [11]. These limitations become even more pronounced
in resource-constrained environments, restricting the practical applicability of the model [12,13].
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Research on lightweight medical image segmentation networks has been proposed, as medical image
analysis has extended to resource-constrained environments such as clinical diagnostics [14], telehealth [15],
and edge devices [16]. These lightweight networks reduce the cost of medical systems and enable operation
in mobile environments. It allows medical professionals to quickly and accurately analyze patients’ image
data. Additionally, they facilitate the rapid processing and analysis of medical images in the resource-
limited environments encountered in remote areas. It also enhances the efficiency of patient diagnosis and
treatment. Moreover, 3D lightweight segmentation models have been proposed to reduce computational
resource requirements [17,18]. These methods primarily enhance computational efficiency by reducing the
parameters in each network layer. However, since parameters directly influence the network’s capability,
decreasing them can lead to performance degradation [19]. Therefore, balancing computational cost and
segmentation performance is essential, as excessively simplifying the model may result in a decline in
performance. Additionally, these methods struggle to balance global and local features, increasing the risk of
errors in multi-scale segmentation [20]. This problem becomes especially prominent when segmenting small
and complex structures within the human body due to the regional imbalance between small target objects
and large backgrounds. Segmentation models typically allocate a significant portion of their parameters to
extract features from the background. Consequently, the influence of the target object on training diminishes,
leading to reduced segmentation accuracy. In conclusion, developing a framework that optimally balances
computational cost and segmentation performance is essential for ensuring the accurate segmentation of
small target objects.

We propose a multi-stage hierarchical architecture that reduces computational resource usage while
preserving segmentation accuracy. The proposed architecture comprises a detector and a segmentor. The
detector extracts the region of interest (ROI) from medical images and removes background areas. By
eliminating unnecessary regions of the input image, the segmentor operates on a more compact input,
effectively reducing computational resource consumption. The segmentor is structured as multiple hier-
archical stages where each stage handles input of a different size. As the hierarchy of stages goes lower,
the depth increases, and more detailed features are extracted from the smaller inputs. If the input size
is smaller than the threshold for a specific stage, that stage is deactivated and excluded from training
and inference. This stage-skipping approach prevents unnecessary computations on large regions when
segmenting small-sized targets. Correspondingly, it effectively reduces computational resource usage while
maintaining segmentation performance.

The main contributions of this paper are as follows.

• We introduce a region extraction module within the detector to extract ROIs from input images.
By removing unnecessary areas, this module enables the segmentor to achieve segmentation on a
compact input.

• We propose a multi-stage hierarchical architecture in the segmentor, where each stage utilizes inputs
of different sizes. This architecture optimizes computational efficiency while maintaining segmentation
performance by deactivating unnecessary stages using the ROI size.

Section 2 discusses related work on 3D medical image segmentation, including methods to reduce
computational resource usage. Section 3 describes the proposed multi-stage hierarchical segmentation
model. Section 4 provides comprehensive analyses and interpretations of our experimental results.
Finally, Section 5 summarizes our findings.
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2 Related Work
Various studies have been proposed to enhance the performance of the 3D image segmentation. Çiçek

et al. [4] proposed the 3D U-Net architecture to segment 3D medical images. This technique enables
high-density 3D image segmentation by leveraging sparsely annotated volumetric data. Milletari et al. [21]
proposed a method that captures the relationships between adjacent slices and the overall volumetric context
by using a low-resolution 3D image as input. Huang et al. [5] introduced 3D U2-Net, a 3D-based architecture
that can flexibly extend to new segmentation tasks, regardless of the organs or modality of medical images.
Its network structure uses separable and point-wise convolution to learn domain-specific correlations in 3D
space and cross-domain relationships. Zhao et al. [9] introduced CA-Net, which integrates Transformers
and V-Net [21] to capture both slice context and spatial information between slices during the segmentation
of 3D MRI images. Jiang et al. [22] proposed the SwinBTS structure, which combines Transformer,
convolutional neural network (CNN), and encoder-decoder structures to capture local and global features
in 3D segmentation tasks. Zhou et al. [10] proposed nnFormer, which utilizes a 3D transformer to segment
3D images. It improves 3D image segmentation by incorporating interleaved convolution and volume-based
self-attention mechanisms. Płotka et al. [23] proposed the Swin soft mixture Transformer architecture.
It leverages a soft mixture-of-experts structure to handle long-range dependencies, effectively capturing
diverse local and global feature representations to enhance 3D image segmentation performance. Roy
et al. [8] proposed MedNeXt, a large-kernel segmentation network inspired by Transformer architectures. It
preserves semantic richness across scales by integrating a ConvNeXt [24] 3D encoder-decoder with residual
upsampling and downsampling modules, enhancing segmentation accuracy. Zhu et al. [25] proposed the
dual-branch ultrasound image segmentation network. It comprises an enhanced branch for pre-processing
and an original branch for deep feature extraction, integrating features from both branches to enhance overall
performance. Although many 3D segmentation techniques have significantly improved accuracy, they have
dramatically increased resource consumption during training and inference.

Several methods have been proposed to reduce computational resources in 3D segmentation. Xie
et al. [26] proposed convolutional neural networks with Transformer to mitigate the high computational load
and spatial complexity when handling 3D features. It introduces a deformable self-attention mechanism that
performs multi-scale and high-resolution feature maps on a limited number of key positions. Perera et al. [27]
proposed SegFormer3D, a lightweight 3D medical image segmentation model. It removes complex decoder
structures and employs an all-MLP decoder to maintain segmentation performance while reducing resource
consumption. Shaker et al. [28] introduced the UNETR++ 3D image segmentation technique, ensuring
efficiency by minimizing the parameters and the computational cost. This technique employs dual efficient
paired attention blocks to reduce the spatial complexity of attention learning to a linear complexity level.
Liao et al. [29] presented LightM-UNet, a lightweight framework integrating Mamba [30] into U-Net. Their
technique uses residual vision Mamba layers to extract deep semantic features, decreasing the computational
complexity of long-range spatial dependencies as linear. Zhu et al. [20] proposed the lightweight medical
image segmentation network to reduce computational resources in semantic segmentation. It integrates
a lightweight Transformer into the CNN architecture to optimize multi-scale feature interactions and
effectively capture semantic information. Various approaches have been proposed to reduce computational
resources during the segmentation of 3D images. However, calculating entire regions while segmenting small
and complex structures leads to the excessive and unnecessary consumption of computational resources.
Therefore, techniques should be proposed to pre-extract the ROIs and then perform segmentation only
within those regions to conserve those resources.
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3 Methodology
The overall structure of the proposed method shown in Fig. 1a comprises the detector and the seg-

mentor. The detector extracts the ROIs in the 3D image using 2D slices taken from the center of each axis.
The segmentor performs segmentation using the extracted ROIs. It is designed as multi-stage hierarchical
architecture where each stage handles differently sized input. As the stages move down the hierarchy, their
depth increases to extract finer features from smaller input. In addition, the proposed method utilizes a stage-
skipping technique that deactivates specific stages if they cannot handle the input size. The training process
of the proposed method is as follows. Initially, the detector and segmentor are trained separately, and then
the trained modules are combined into a single model. The integrated model is then trained through fine
tuning where the detector is frozen and only the segmentor is trained. It enables the segmentor to perform
more precisely using the ROI extracted by the detector.

Figure 1: (a) represents an overview of the proposed method. (b) illustrates the structure of the detector that extracts
ROIs. (c) shows the detailed structure of the downsample, upsample, and final stages in (a)

3.1 The Detector
The structure of the detector is illustrated in Fig. 1b. The detector calculates the ROI using three 2D

slices (x y, yz, xz) at each X, Y, and Z axis of the 3D medical image to reduce the computation dimension
from 3D to 2D. Subsequently, 2D bounding boxes are extracted from each slice, and the coordinates of the 3D
bounding box (ROI) are computed using the coordinates of these 2D bounding boxes. All detector modules
to extract 2D bounding boxes have the same structure. However, each module utilizes different inputs and is
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trained individually, with the network parameters remaining distinct. The detailed structure of the detector
module is presented in Fig. 2a. We modify the DETR [31] architecture to enable the extraction of pyramidal
features [32]. Before training the detector, the input image passes through a backbone network pre-trained on
general images to extract initial features. The detector includes encoder stages {E1 , ..., EM−1 , EM} to reduce
the feature size and decoder stages {D1 , ..., DM−1 , DM} to upsample the features. The maximum stage number
is M. The feature extracted from En is denoted Fn , and the upsampled feature from Dn is represented as
F′n−1 (for 1 ≤ n ≤ M, FM = F′M). Before entering the encoder, the initial feature is F0, and the final upsampled
feature after passing through all decoder stages is F′0. Each i-th encoder stage Ei progressively extracts the
features Fi using the input Fi−1 from the previous stage Ei−1. Each j-th decoder stage D j performs upsampling
to generate the feature F′j−1. The input to the D j is formed by concatenating F′j+1, which is obtained from
the previous ( j + 1)-th decoder stage D j+1, and Fj, which is directly retrieved from the j-th encoder stage
E j via a skip connection. The feature size is halved as each encoder stage progresses, while the feature size
doubles as each decoder stage progresses. The training procedures of Ei and D j are represented by Eq. (1).
Upon completing the encoder and decoder stages, the features are passed through a feed-forward network
to generate a bounding box. The initial M-th decoder stage DM incorporates a segmentation mask as input
to enhance the detector’s training.

Fi = Ei (Fi−1), F′j = D j (F′j+1 ⊕ Fj) (1 ≤ i ≤ M , 1 ≤ j ≤ M − 1) (1)

Figure 2: (a) represents the structure of the detector extracting a 2D bounding box from a 2D slice. The detector is
divided into the encoder (b) and the decoder (c), each comprising multiple stages (FFN = feed-forward network)
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Fig. 2b,c depicts the detailed architectures of the encoder and decoder stages. Initially, a downsampling
module is employed to reduce the feature size. It utilizes depth-wise and point-wise 3D convolution
layers [33,34], which offer a lower computational load than standard 3D convolution layers. After passing
through the downsampling module, multi-scale attention [35] is applied to generate feature maps with the
same resolution as the input. Each key and query element consists of pixels from the feature maps, where each
query pixel’s reference point is the input feature, itself. We introduce spatial positional embedding to the key
and query element, which assigns unique encoding values to different stages to determine each query pixel’s
stage location (first to M-th stage). The decoder is composed of two multi-scale attention modules. Similar
to the encoder stage, the first multi-scale attention module generates a feature map using the input from
the previous decoder stage as each query pixel’s reference point. The second multi-scale attention module
utilizes the generated feature map from the previous multi-scale attention module and the feature from the
encoder of the same stage index, which is integrated via a skip connection. The encoder’s features serve as
the value and key elements, while the feature map produced by the previous multi-scale attention module
acts as the query element. Simultaneously, spatial positional embedding, generated in the same manner as
in the encoder, is applied.

3.2 The Segmentor
The segmentor consists of downsampling stages to decrease the feature dimensions and upsampling

stages to restore the spatial resolution. N represents the maximum stage index of the segmentor. The
segmentor is a multi-stage hierarchical structure, with each stage handling input of different sizes. As the
index of each stage increases, the input size computed by each stage is halved. The segmentor employs a
stage-skipping technique, deactivating unnecessary stages using the input size to optimize computational
efficiency. When the stage index is k, the maximum size at each stage is given by 2N−k s0. The input range at
each stage is defined as Eq. (2). Here, V0 represents the initial input size of the segmentor, and s0 is a constant
that controls the size reduction as the stage index increases.

V0 ≥ 2N−k s0 (1 ≤ k ≤ N) (2)

The smallest k value that satisfies Eq. (2) is designated the threshold index r, which is used to implement
stage skipping. The r is determined using Eq. (3), a rearranged form of Eq. (2). Stages with an index lower
than k remain inactive during training and inference. Consequently, only the downsampling and upsampling
stages from k to N are utilized.

r = N − log2
V0

s0
(3)

The input of the segmentor is reshaped into a cube of size 2N−r s0 and then utilized through down-
sampling and upsampling stages to generate the segmentation result. The training process is the same
as Eq. (1), except for the range of utilized stages. A skip connection is applied between the downsampling
and upsampling stages. The final stage generates the segmentation mask from the features through the
last upsampling stages. The downsampling stage employs a depth-wise 3D convolution layer [33], which is
more efficient than traditional 3D convolution layers to reduce computational loads. Each stage employs the
refine structure to extract features and refine the intermediate data generated during upsampling. The refine
structure follows the same structure as those of [36]. The gating module connects the initial downsampling
stage and the extracted input portion, as well as the last upsampling stage and the final structure. These
modules connect using the threshold k determined in Eq. (3).
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4 Experimental Results

4.1 Experimental Setup
The images used in this experiment were labeled prostate/uterus, spleen, and liver from the abdominal

organ segmentation (AMOS) [37] dataset. Additionally, the dataset was categorized according to the
proportion of each label present in the image: small for the prostate/uterus (25%), medium for the spleen
(50%), and large for the liver (75%). The input images are normalized to [0, 1] and resized to 128 × 128 × 128.
The slices used in the detector are selected from the center of the x, y, and z axes in the 3D image. The
input images utilized in the segmentor are cropped according to the size of the ROI and are then resized to
16 × 16 × 16, 32 × 32 × 32, or 64 × 64 × 64. From the liver images, 240 were used for training, 60 for validation,
and 60 for testing. From the spleen images, 237 were used for training, 60 for validation, and 60 for testing.
From the prostate/uterus images, 194 were used for training, 49 for validation, and 48 for testing. The server
had an Intel Xeon Gold 5218 CPU and a V100Q GPU with 32 GB of VRAM.

4.2 Qualitative Analysis
The outputs from the detector are demonstrated in Fig. 3a. In all cases, the generated ROIs were

accurately positioned but were smaller than the ground truth. That leads to errors in certain areas due to
the inaccurate ROIs negatively impacting the accuracy of the proposed method combining the detector
and segmentor. Further research on loss functions and network architectures should address this issue to
minimize errors in the generated ROIs. Fig. 3b displays the outputs from the proposed network, which
exhibits reduced accuracy on concave and anisotropic structures in all cases. In an axial slice of the liver, a
defect appeared in the shape of the left lobe. The segmentation mask was generated with incorrect locations
in the coronal slice of the prostate/uterus. These errors result from misidentifying similar organs when the
ROI targets different areas. The segmentor should be refined to solve these problems by preventing the
misidentification of similar organs and incorrect segmentation results from the imprecise ROIs. Conversely,
in the sagittal slice of the spleen, unnatural shape truncation occurs. This issue is caused by a detector error
excluding the correct region occupied by ground truth. That can be resolved by improving the detector’s
accuracy. In conclusion, the detector and segmentor in the proposed method are strongly interconnected,
and enhancing the network structure of both modules is essential for achieving overall accuracy.

4.3 Quantitative Analysis
The accuracy was evaluated using the intersection over union (IoU) [38], Dice score [39], and Hausdorff

distance (HD95) [40]. GPU memory consumption (video random access memory, VRAM) and iteration
time are also measured during inference. The performance of the detector module is revealed in Table 1. The
IoU results reveal that the accuracy for the small ROI was 48.59% lower than that for the large ROI. There
was no difference in memory consumption because all cases used 2D images at 128 × 128. The outputs of
the segmentor module are shown in Table 2. The segmentor’s accuracy was evaluated using images cropped
with ground truth ROIs instead of those extracted by the detector. The Dice score from the small ROI was
13.14% lower than the large ROI. In comparison, the IoU result from the small ROI was 20.79% lower than
the large ROI. These findings demonstrate that the segmentor’s accuracy depends on the size of the ROI. The
segmentor processes 3D images, while the detector works with 2D images. This difference results in a smaller
accuracy gap between small and large ROIs in the segmentor compared to the detector. Unlike Dice or IoU
results, HD95 results were not greatly affected by the size of the ROI, which indicates that the boundary
accuracy is influenced more by shape than by size. The low VRAM reduction and the similar iteration times
when reducing the ROI size were related to the size being too small, with a maximum ROI size of 64 × 64 ×
64. Therefore, increasing the ROI size to at least 128 × 128 × 128 is better to observe a significant difference.
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Figure 3: This figure visualizes the results from the detector (a) and the proposed method (b). The blue and red boxes
in (a) represent the ground truth (GT) and generated ROI (Gen). The red boxes in (b) reveal magnified areas with
significant differences between the generated image and ground truth



Comput Mater Contin. 2025;83(3) 5437

Table 1: Detector performance. Size is the ROI’s size, classified as small (25%), medium (50%), and large (75%)

Label Size IoU ↑ VRAM (MiB) Time (s)
Prostate/uterus Small 0.4036 582 0.2193

Spleen Medium 0.6300 582 0.4450
Liver Large 0.7850 582 0.3812

Table 2: Segmentor performance

Label Size Dice ↑ IoU ↑ HD95 (mm) ↓ VRAM (MiB) Time (s)
Prostate/uterus Small 0.7780 0.6480 2.4821 456 0.0523

Spleen Medium 0.8671 0.7681 2.0162 496 0.0574
Liver Large 0.8957 0.8115 2.5020 500 0.0476

The proposed network’s performance was evaluated using the size of the ROI, as presented in Table 3.
Moreover, w/o crop indicates the segmentation of the entire 3D image without a detector, and with crop (our
method) applies the detector to generate ROIs for segmentation. Compared to the w/o crop results, the with
crop results from the small size and the large size depicted a Dice score of 43.81% lower and 6.45% lower,
respectively. Similarly, the IoU results decreased by 51.30% with the small ROI and 11.51% with the large
ROI. This result showed that the accuracy of with crop using the detector is lower compared to w/o crop due
to the limitations of the 2D-based detector structure. It identifies the ROI in a 3D image using projected
2D slices (axial, sagittal, and coronal) instead of the 3D image. This approach enhances computational
efficiency by reducing the input size, which lowers memory consumption and accelerates inference speed.
However, it results in accuracy degradation because it fails to consider inter-slice correlations and cannot
capture depth across the 3D image. Consequently, regional proposal errors appear in areas with less density
variation. This issue becomes more prominent in small regions closely connected with similar complex
structures. This accuracy degradation comes from detector inaccuracies, causing the segmentor to receive
out-of-distribution (OOD) data. Therefore, accuracy should be improved by fine tuning the newly occurring
OOD data. In addition, the proposed method requires at least twice the iteration time and more VRAM
than the segmentation of an entire 3D image without a detector. These results stem from the additional
detector module.

Table 3: Performance of the proposed framework, including detector and segmentor

Method Label Size Dice ↑ IoU ↑ HD95 (mm) ↓ VRAM (MiB) Time (s)

w/o crop
Prostate/uterus Small 0.6449 0.4998 5.0385 521 0.0659

Spleen Medium 0.8533 0.7529 3.7574 520 0.0672
Liver Large 0.9250 0.8644 4.3518 544 0.0637

With crop
Prostate/uterus Small 0.3624 0.2434 8.0503 516 0.1418

Spleen Medium 0.5840 0.4479 12.5846 664 0.1350
Liver Large 0.8653 0.7649 5.4629 684 0.1778
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4.4 Comparative Experiments
The performance comparison between the proposed framework and state-of-the-art methods is

presented in Table 4. We conducted experiments on the proposed method with SwinSMT [23], Seg-
Former3D [27], and MedNeXt [8]. According to the analysis, MedNeXt achieved the best accuracy across all
input sizes regarding the Dice, IoU, and HD95 metrics. However, MedNeXt consumes the highest VRAM
compared to other methods. SegFormer3D demonstrated the most efficient VRAM usage across all input
sizes. SwinSMT exhibited intermediate results in both accuracy and resource consumption. Although it uses
minimal VRAM, the proposed framework showed lower accuracy than other methods at all three input sizes.
In particular, the accuracy gap between small and large sizes is noticeable, and further improvements of the
small sizes in the detector module are needed to resolve this.

Table 4: The comparison of performance between the proposed framework and existing methods. The definitions are
the same as Table 3. The size column means the input size of the segmentation

Method Label Size Dice ↑ IoU ↑ HD95 (mm) ↓ VRAM (MiB) Time (s)

SwinSMT
Prostate/uterus Small 0.6408 0.5092 6.0483 2,236 0.0614

Spleen Medium 0.8984 0.8349 4.6951 3,304 0.0593
Liver Large 0.9470 0.9039 3.5766 1,966 0.0569

SegFormer3D
Prostate/uterus Small 0.5325 0.3992 5.6511 522 0.0435

Spleen Medium 0.8266 0.7166 9.2172 328 0.0351
Liver Large 0.9185 0.8511 5.1893 464 0.0441

MedNeXt
Prostate/uterus Small 0.7692 0.6604 3.1244 3,917 0.1287

Spleen Medium 0.9369 0.8927 3.6070 3,917 0.1060
Liver Large 0.9617 0.9296 2.3248 3,917 0.1091

Our
Prostate/uterus Small 0.3624 0.2434 8.0503 516 0.1418

Spleen Medium 0.5840 0.4479 12.5846 664 0.1350
Liver Large 0.8653 0.7649 5.4629 684 0.1778

4.5 Resource Consumption
The floating point operations per second (FLOPs) and the number of parameters of the modules

in the proposed method are presented in Table 5. The segmentor module with the smaller ROI achieves
85.42% lower FLOPs and 10.32% fewer parameters than the larger ROI. This result demonstrates that
dynamically adjusting the network using the size of the proposed regions leads to a substantial improvement
in computational efficiency. However, the FLOPs and parameter count of the detector module are 4878.81%
and 1841.80% higher than those of the segmentor module. When compared to the existing methods, the
segmentor module demonstrated a significant computational cost reduction in FLOPs compared to existing
methods, although the number of parameters was higher than those. Meanwhile, the resource consumption
of the detector module was similar to or higher than existing methods. The FLOPs of the detector reached
114.49% of SegFormer3D, and the parameters were as high as 3221.57% compared to MedNeXt. These results
indicate that the improvements in the segmentor module have a relatively limited impact on the overall
efficiency of the entire framework. Additionally, it is observed that the resource consumption in the detector
module is significant. Therefore, extending the downsampling approach to reduce the feature size or other
optimization techniques are necessary.
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Table 5: Comparison of FLOPs and the number of parameters between the proposed framework and existing methods

Method Label Size FLOPs (M) Parameters (M)
SwinSMT – – 50,834.0672 4.7281

SegFormer3D – – 11,763.7448 4.4918
MedNeXt – – 196,382.0272 5.9805

Ours (Detector) – – 13,468.3649 192.6659

Ours (Segmentor)
Prostate/uterus Small 40.1449 9.3809

Spleen Medium 153.9072 10.3211
Liver Large 276.0581 10.4607

4.6 Changing Parameter
The results of experiments using different learning rates and batch sizes for the proposed method are

shown in Tables 6 and 7, respectively. Table 6 presents that the results with small and large ROIs get the
highest Dice and IoU scores at a learning rate of 1.5 × 10−3. In the case of the medium ROIs, the highest scores
were obtained at a learning rate of 2.0 × 10−3. However, the impact of the learning rates on the proposed
method’s overall framework was insignificant. According to Table 7, the best accuracy in terms of Dice, IoU,
and HD95 metrics was observed in a batch size of 32 for both small and large ROIs and a batch size of 16 for
medium ROIs. The variation in optimal batch sizes is due to the segmentation module dynamically adjusting
its structure according to the input size. Increasing the batch size led to higher memory usage regarding
VRAM consumption. However, the variation in VRAM usage was more prominent depending on the ROI
size rather than the batch size. Regarding the iteration time, no significant trends were observed for batch size,
suggesting that iteration time is relatively unaffected by variations in batch size. In summary, the differences
in accuracy, VRAM usage, and iteration time across learning rates and batch sizes are relatively minor.
Therefore, increasing the batch size to 64 is an effective strategy to reduce the total runtime for training.

Table 6: Performance comparison of the proposed framework with different learning rates across the ROI size. The
definitions are the same as Table 3

Label Size LR (10−3
) Dice ↑ IoU ↑ HD95 (mm) ↓

Prostate/uterus Small
1.0 0.3712 0.2498 8.1172
1.5 0.3722 0.2509 8.0701
2.0 0.3675 0.2481 8.0940

Spleen Medium
1.0 0.6303 0.4923 11.4706
1.5 0.6379 0.4979 11.4963
2.0 0.6551 0.5159 11.1091

Liver Large
1.0 0.8669 0.7667 4.9432
1.5 0.8704 0.7723 4.9499
2.0 0.8639 0.7619 5.0818



5440 Comput Mater Contin. 2025;83(3)

Table 7: Performance comparison of the proposed framework with different batch sizes across the ROI size. The
definitions are the same as Table 3. VRAM usage is measured during training, and the time column means per iteration
time

Label Size Batch Dice ↑ IoU ↑ HD95 (mm) ↓ VRAM (MiB) Time (s)

Prostate/uterus Small
64 0.3569 0.2389 8.2773 2,991 0.0762
32 0.3722 0.2509 8.0701 2,846 0.0656
16 0.3613 0.2445 8.2547 2,836 0.0727

Spleen Medium
64 0.6366 0.4950 11.4970 4,765 0.0734
32 0.6379 0.4979 11.4963 3,663 0.0723
16 0.6626 0.5241 10.8471 3,439 0.0714

Liver Large
64 0.8637 0.7621 5.2241 13,926 0.0786
32 0.8704 0.7723 4.9499 8,696 0.0746
16 0.8626 0.7602 4.9568 6,083 0.0746

4.7 Applying Pre-Processing
The experimental results for the proposed detector module with different pre-processing methods are

presented in Table 8. The experiment was conducted using two types of projections: average and standard
deviation projection. CLAHE (Contrast Limited Adaptive Histogram Equalization), Laplacian filter, Sobel
filter, and Gaussian filter were applied after projection [41,42]. The projection process converts a 3D image
into a 2D image by calculating the average or standard deviation of slices along each axis. Applying CLAHE
achieved the highest IoU when using the average as the projection criterion. When the standard deviation
was used as the projection criterion, the Gaussian filter yielded the highest IoU. However, in both cases, the
accuracy was lower than when no pre-processing was applied. This result shows that applying projection
does not directly improve the detector’s accuracy. During average projection, converting a 3D image into a
2D image causes image blurring, making it difficult to distinguish structures with similar intensities as the
background, such as muscles and skin. During the standard deviation projection, high-density regions, such
as bones, become overly emphasized, hindering the distinction of the outlines of the target object. It is better
to use a projection for several sub-regions than a projection for the whole region to solve these problems.
Utilizing multiple projected inputs using sub-regions can reduce interference from the background so the
detector can recognize the target object more clearly.

Table 8: Performance comparison of the detector when using variable pre-processing

Projection criteria Pre-processing IoU ↑

Average

CLAHE 0.3674
Laplacian filter 0.3443

Sobel filter 0.3364
Gaussian filter 0.3384

Standard deviation

CLAHE 0.3534
Laplacian filter 0.3580

Sobel filter 0.3489
Gaussian filter 0.3827

Our (Average) – 0.4030
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5 Conclusion
This study proposes a multi-stage hierarchical architecture for 3D segmentation that can reduce

computational costs while maintaining segmentation accuracy. The proposed structure consists of a detector
and a segmentor. The detector extracts the ROIs, and the segmentor processes the input according to
the size of the ROI. The stage-skipping mechanism saves computing resources by reducing unnecessary
computations while maintaining fine segmentation accuracy. The proposed method can minimize the costs
of medical equipment and systems in 3D medical image segmentation while ensuring efficient processing
even in resource-constrained environments. It helps minimize environmental constraints in the diagnostic
process and facilitates medical services. We plan to enhance network efficiency and accuracy by integrating
features extracted from the detector and segmentor. Additionally, we will validate the proposed method on
multiple datasets to ensure its robustness. Since the proposed approach is applicable across various imaging
modalities (e.g., computed tomography, ultrasound), we also aim to refine the network architecture for
modality-specific optimizations, further improving the segmentation performance for each modality.
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