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ABSTRACT: This review presents a comprehensive technical analysis of deep learning (DL) methodologies in biomed-
ical signal processing, focusing on architectural innovations, experimental validation, and evaluation frameworks. We
systematically evaluate key deep learning architectures including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), transformer-based models, and hybrid systems across critical tasks such as arrhythmia
classification, seizure detection, and anomaly segmentation. The study dissects preprocessing techniques (e.g., wavelet
denoising, spectral normalization) and feature extraction strategies (time-frequency analysis, attention mechanisms),
demonstrating their impact on model accuracy, noise robustness, and computational efficiency. Experimental results
underscore the superiority of deep learning over traditional methods, particularly in automated feature extraction,
real-time processing, cross-modal generalization, and achieving up to a 15% increase in classification accuracy and
enhanced noise resilience across electrocardiogram (ECG), electroencephalogram (EEG), and electromyogram (EMG)
signals. Performance is rigorously benchmarked using precision, recall, F1-scores, area under the receiver operating
characteristic curve (AUC-ROC), and computational complexity metrics, providing a unified framework for comparing
model efficacy. The survey addresses persistent challenges: synthetic data generation mitigates limited training samples,
interpretability tools (e.g., Gradient-weighted Class Activation Mapping (Grad-CAM), Shapley values) resolve model
opacity, and federated learning ensures privacy-compliant deployments. Distinguished from prior reviews, this work
offers a structured taxonomy of deep learning architectures, integrates emerging paradigms like transformers and
domain-specific attention mechanisms, and evaluates preprocessing pipelines for spectral-temporal trade-offs. It
advances the field by bridging technical advancements with clinical needs, such as scalability in real-world settings (e.g.,
wearable devices) and regulatory alignment with the Health Insurance Portability and Accountability Act (HIPAA) and
General Data Protection Regulation (GDPR). By synthesizing technical rigor, ethical considerations, and actionable
guidelines for model selection, this survey establishes a holistic reference for developing robust, interpretable biomedical
artificial intelligence (AI) systems, accelerating their translation into personalized and equitable healthcare solutions.
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1 Introduction
Deep learning (DL) has become a dominant paradigm for processing biomedical signals because it can

extract ostensibly unattainable features through conventional methods [1]. In recent years, there have been
an increasing number of publications on the application of DL methods to biomedical signals, which has
allegedly led to milestone progress in diagnosis, treatment, and personalized healthcare [2–4]. Different DL
methods and techniques, such as convolutional neural networks (CNNs) and recurrent neural networks

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063643
https://www.techscience.com/doi/10.32604/cmc.2025.063643
mailto:zahra.moussavi@umanitoba.ca


3754 Comput Mater Contin. 2025;83(3)

(RNNs), have been applied to analyze numerous types of biomedical signals, such as electroencephalo-
grams (EEGs), electrocardiograms (ECGs), photoplethysmography (PPGs), electrooculography (EOGs),
and electromyography (EMG) signals [2,5,6].

The outcomes of these models are promising, but it is crucial to remember that further validation
of their ability to detect all patterns and diseases is needed. This leads to concerns about their reliability
in accurate clinical decision-making, and additional evaluations are necessary before they can be widely
adopted. However, it has been purportedly used to detect and diagnose several medical conditions, including
neuromuscular disorders [7,8], sleep disorders [9,10], epilepsy [11–13], and arrhythmias [2,14–16]. One of the
apparent benefits of DL applications in the biomedical signals field is their ability to handle big data. These
data became more accessible with the escalation of digital healthcare, and DL models can learn these data
to enhance the performance of their outcomes. Moreover, unlabeled data can be used to train DL models,
which can be advantageous in scenarios where labeled data are unavailable or costly [17].

The application of DL models for analyzing and interpreting biomedical signals has shown great
potential in the medical field. Moreover, these models can provide real-time monitoring of patients’ vital
signs and alert clinicians to potential issues. Additionally, these models can analyze large biomedical datasets
in depth, identify biomarkers, and predict disease progression, leading to earlier diagnosis and improved
treatment outcomes [18]. Thus, these models have the potential to revolutionize healthcare by enabling
more personalized and accurate treatment plans. However, further investigations are needed to validate their
effectiveness and safety in clinical practice.

Despite the high-performance results achieved by DL models, several challenges are associated with
their deployment in biomedical signal processing. The most challenging part is acquiring and preprocessing
data and maintaining their quality. Biomedical signals are often corrupted by noise, artifacts, and interfer-
ence, making it difficult to extract meaningful features [19,20]. Interpreting DL models can be challenging,
as they are frequently analyzed as black boxes, making it difficult to comprehend how a particular verdict
was reached [18].

Another formidable challenge in deploying DL to biomedical signals is the necessity for specialized
hardware and software. However, DL models require copious computational resources and training them can
be computationally exorbitant and protracted [21]. Therefore, specialized hardware is needed to perform the
training process. One of the well-known hardware components is the graphics processing unit (GPU) [22].
However, their high power consumption can contribute to climate change if not balanced with renewable
energy sources or efficiency measures.

Furthermore, specialized DL software tools are required for the design, evaluation, and execution
of models. In addition, these models depend strongly on the quality and quantity of the data used to
train them. Therefore, data augmentation techniques, such as noise addition and data balancing, enhance
the model’s robustness and diminish the possibility of overfitting. Additionally, developing precise and
efficient algorithms for data preprocessing, feature extraction, and normalization is crucial for improving
the performance of DL models [19,23].

Furthermore, integrating DL models into clinical systems and practice raises ethical and legal concerns
about patient data privacy and ownership. In such integration, ensuring that implementation in healthcare is
performed ethically and that the benefits outweigh the risks is essential [21]. However, integrating DL models
into clinical systems can change healthcare delivery by connecting clinicians with the most recent insights
into patient data. These models can analyze large amounts of biomedical data, learn to find patterns and
make previously impossible predictions via conventional machine learning (ML) techniques, enabling more
accurate diagnoses and personalized treatment plans [18,20]. In addition, the complexity of these models can
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make it difficult for healthcare professionals to interpret the results generated. Therefore, providing proper
data visualization of the outputs and training of DL models and supporting clinicians in verifying that they
can effectively use these models in practice are essential [24]. By fully or partially solving these challenges,
DL models can be integrated into clinical workflows to enhance patient outcomes and improve the overall
quality of healthcare delivery [17,25].

DL models, especially CNNs, RNNs, and GANs, have recently made substantial advancements in
analyzing biomedical signals such as ECGs, EEGs, and PPGs. For example, CNNs have achieved high
diagnostic accuracy for ECG-based arrhythmia detection, with studies such as those reporting accuracy
rates over 98% on datasets such as the MIT-BIH arrhythmia database [26–28]. Similarly, RNNs have shown
effectiveness in capturing sequential dependencies in EEG signals for seizure detection, with sensitivity
exceeding 90% in specific applications [13,29]. However, the strengths of these models are often balanced
by significant challenges, such as dependency on high-quality data and interpretability limitations. For
example, [15] noted that CNNs, despite their high accuracy, struggle with noisy data, whereas [30] reported
that the “black-box” nature of RNNs poses a barrier to clinical adoption. These studies illustrate that while DL
has transformative potential in biomedical signal analysis, these models must overcome critical limitations
to achieve real-world clinical viability.

Objectives
This paper covers various DL models and their diverse applications in biomedical signal processing,

thoroughly exploring their current successes and the multifaceted challenges they face. Emphasis is placed
on addressing the data used, choosing a suitable model for the application, interpreting the model results,
and overcoming challenges, as these are central to effective deployment in clinical settings. The paper also
examines opportunities to refine these models for more accurate and efficient predictions, explicitly focusing
on facilitating early diagnoses and enabling personalized treatments. Ultimately, this review aims to bridge
knowledge gaps by highlighting both the potential and limitations of DL in this rapidly evolving domain.

2 Methodology and Bibliometric Analysis
This paper included mainly journal papers covering general DL applications for biomedical signals.

We also included journal and conference papers on DL applications in biomedical signals, except that the
conference had no extended documents in a journal.

2.1 Search Databases
The search for relevant papers in this review encompassed the period up to the mid of 2024. Relevant

manuscripts were identified by searching the following databases and search engines:

• Scopus
• Google Scholar
• PubMed
• IEEE
• ScienceDirect
• Taylor & Francis

The selection of these databases is essential because they cover a wide range of scholarly articles to ensure
comprehensive coverage of this review. Using keywords as a primary search method helps to locate articles
that focus on and are relevant to the topic of this review. Keywords are a vital way to navigate between articles
and enhance the visibility of published articles. Fig. 1 shows a graphical representation of the keywords used
in this review.
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Figure 1: Graphical representation of the keywords covered in this review and their relevance to the scope of this paper

2.2 Inclusion Criteria
The inclusion criteria for this review were as follows:

• This article proposes the application of DL or the analysis of DL in biomedical signals.
• This article addresses one of the predefined research contributions to DL in biomedical signals.
• This article contributes to the theoretical or practical advancements in DL in biomedical signals.

2.3 Search Keywords and Queries
The selected articles were searched via the following keywords: deep learning, biomedical signals, phys-

iological signals, DL, artificial intelligence (AI), diagnosis, ECG, EEG, EMG, CNN, LSTM, and explainable
AI. The following is an example of a search query using the keywords DL AND biomedical signals OR
physiological signals AND diagnosis.

2.4 Study Selection
To maintain a focus on the most relevant research, articles that did not directly apply DL techniques

to one of the biomedical signals were excluded. Our screening methodology was structured in two stages to
ensure thorough screening of articles on DL applications in biomedical signals. In the first stage, we assessed
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the articles based on their titles and abstracts. The selected articles were searched via the keywords mentioned
in Section 2.3. In the second stage, we analyzed the full texts of the selected articles from the first stage. In
this stage, the full texts of the articles were used to ensure that they met the inclusion criteria. Fig. 2 shows
the flowchart of our screening strategy process.

Figure 2: Flowchart showing the multistage screening process for selecting relevant studies

2.5 Bibliometric Analysis
This section provides an in-depth analysis of the research landscape based on bibliometric data. The

analysis is organized into several subsections, each focusing on a different aspect of the analyzed data. The
study was performed on all included datasets after duplications were removed.
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2.5.1 Scientific Production Trends
The analysis of annual publication output reveals a robust increase in scientific production over the past

decades. This trend indicates that research interest in this field is growing rapidly, with recent years showing
a significant surge in publications. The main findings in this trend analysis are that the dataset shows an
increase from approximately 50 publications in the early 2000s to over 400 publications in 2020. A steady
growth rate underscores the expanding scope and interest in the field. Fig. 3 shows the number of publications
over the years.
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Figure 3: Graph depicting the annual publication counts over time

2.5.2 Analysis of Authors’ Research Output over Time
The analysis identifies the most productive authors and evaluates their scholarly impact. Metrics such

as publication counts and citations per publication provide insight into the contributions of key researchers.
The key findings are the productivity of various authors over time, spanning from 2018 to mid-2024. Fig. 4
shows the authors’ productivity and impact.

Figure 4: Research productivity and citation impact of authors

The analysis reveals several key observations regarding research productivity and scholarly impact.
Authors such as Wang, Zhang, Liu, and Li have demonstrated consistent research output over multiple years,
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with a noticeable peak in 2022. This indicates their sustained contribution to the field and the increasing
volume of their work. The most productive years in terms of the number of published articles appear to be
2022 and 2023, as reflected by the more prominent and darker circles in the visualization. This suggests a surge
in research activity during these years, possibly driven by advancements in the field or increased research
funding and collaboration. Notably, specific authors, such as Acharya U Rajendra, have comparatively fewer
publications but have received significant citations in particular years. This highlights the impact of selected
high-quality publications garnering considerable scholarly attention. Overall, the general trend suggests
increased research productivity and impact over time, with many authors publishing more frequently in
recent years. The findings underscore the growing interest in and expansion of research in this domain, as
evidenced by the upward trajectory in both publication count and citation impact.

2.5.3 Journal and Source Analysis
Analyzing publication sources provides valuable insight into the dissemination of research within the

field. Identifying the most relevant journals and conference proceedings helps us understand the primary
venues for publishing influential studies. Fig. 5 shows the most appropriate sources of publications. The
dataset highlights the key sources contributing to the body of knowledge in this domain. The most productive
journal is IEEE Access, with 301 publications, demonstrating its role as a leading outlet for research
dissemination. Sensors and remote sensing have published 122 and 115 articles, respectively, indicating the
strong presence of sensor-related applications in the field. Other significant sources include Biomedical
Signal Processing and Control (106 articles), Applied Sciences-Basel (91 articles), and Multimedia Tools and
Applications (80 articles), emphasizing the interdisciplinary nature of the research. Additionally, journals
such as IEEE Transactions on Geoscience and Remote Sensing (79 articles), Electronics (70 articles),
Neurocomputing (60 articles), and IEEE Journal of Biomedical and Health Informatics (48 articles) also
contributed significantly to the field. The presence of IEEE journals and high-impact computing journals
suggest that the research spans multiple domains, integrating biomedical engineering, signal processing,
artificial intelligence, and remote sensing. This distribution of publications across various sources reflects
the interdisciplinary growth of the field and underscores the importance of computational and sensor-based
methodologies in advancing research. The increasing presence of articles in high-impact journals indicates
the field’s maturation and expanding recognition in the broader scientific community.

2.5.4 Country Production Analysis
This section examines countries’ contributions in terms of research citations and publication output,

derived from analyzing two datasets: Most Cited Countries and Corresponding Author’s Countries.

• Citation Analysis

The citation dominance of countries is illustrated in the Most Cited Countries chart (scale: 0–40,000
citations). China leads with the highest citation count, occupying the full scale of the chart (≈40,000
citations). The United States (USA), India, South Korea, and Australia follow in descending order, forming
the top five most cited countries. Turkey, the United Kingdom, Pakistan, Germany, and Singapore are also
prominent, although their citation volumes are lower than those of China. This trend underscores China’s
significant influence on global research. Fig. 6 shows the citation analysis per country for the most cited
countries.
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• Publication Output Analysis

The Corresponding Author’s Countries dataset highlights the number of documents (scale: 0–2000)
contributed by countries, categorized into single-country publications (SCPs) and multiple-country pub-
lications (MCPs). China again dominates, producing approximately 2000 documents, followed by India,
the USA, South Korea, and Turkey. Countries like Iran, Italy, Saudi Arabia, and Japan appear in the
publication rankings. Nevertheless, they are absent from the top-cited list, suggesting a disparity between
publication volume and citation impact. European nations such as Germany, Spain, France, Canada, and
Brazil contribute moderately. Fig. 7 shows the publication analysis per country.

Figure 5: Most relevant sources based on the number of documents published

Figure 6: Citation analysis per country for the most cited countries
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Figure 7: Publication analysis per country

The analysis reveals a stark geographic concentration of research influence. China has emerged as
the undisputed leader in citations and publications, reflecting its strategic investments in research and
development (R&D), vast academic workforce, and integration into global networks. By contrast, established
research hubs such as the USA and Germany maintain strong citation impact despite lower publication
volumes relative to China, underscoring their ability to produce high-quality, influential work. Emerging
economies, including India, Turkey, and Pakistan, demonstrate growing contributions to global scholarship
but face challenges in translating output into citations. This disparity may stem from limited international
collaboration, underrepresentation in high-impact journals, or focusing on regionally relevant rather than
globally competitive research. Moreover, although their publications are prolific, mid-tier contributors such
as Saudi Arabia and Iran lack commensurate citation traction, signaling potential gaps in research visibility
or alignment with global priorities. Finally, the dominance of single-country publications (SCPs) across
most nations suggests a persistent reliance on domestic expertise and funding. While SCPs strengthen local
research ecosystems, the limited prevalence of multiple country publications (MCPs), particularly among
emerging economies, highlights untapped opportunities for cross-border partnerships. Such collaboration
could enhance the impact of citations, diversify research perspectives, and address global challenges more
effectively. These trends underscore the need for policies incentivizing international cooperation while
addressing systemic barriers to equitable scholarly recognition.

3 From Traditional Machine Learning to Deep Learning
Machine learning (ML) has become popular in various fields, including biomedical signal processing.

Traditional ML methods, such as K-nearest neighbors [31], random forests [32], and gradient boosting [33],
have been used for classification [34], regression [35], and clustering tasks [36]. These algorithms require
a set of features to be extracted from the input data and then used to train a model. However, the feature
engineering process can be time-consuming and requires domain expertise [37,38].

On the other hand, significant attention has been given to DL and its ability to learn features from raw
data automatically [39]. DL models, such as CNNs [40], RNNs [41], and deep belief networks (DBNs) [42],
have achieved state-of-the-art performance on various tasks, including image and speech recognition,
natural language processing (NLP), and biomedical signal processing [39,43].
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However, even with the successes achieved by traditional ML methods, the dependency on manual
feature engineering has several limitations, particularly in the context of scalability and adaptability [43],
and it is also prone to human bias and error [39,43]. This slows the development cycle and limits the
model’s generalization ability to new or unforeseen data. In rapidly evolving fields such as biomedical
signal processing, where new data types and patterns frequently emerge, the rigidity of traditional feature
engineering can hinder the continuous improvement of ML models [3,44,45].

DL addresses these challenges by utilizing neural networks capable of learning directly from raw data,
thus automating the feature extraction process. For example, they excel in capturing spatial hierarchies in
image data and handling temporal dependencies in sequential data. By removing the need for manual feature
engineering, DL models can leverage large datasets to learn more abstract and complex features, leading to
improved performance and robustness [46,47].

This shift accelerates the model development process and enhances the potential for discovering
novel patterns and insights that human engineers might overlook. Consequently, the transition to DL
represents a significant advancement in the field, facilitating more efficient and accurate analysis across
diverse applications [43].

Overall, DL has revolutionized the field of AI and has shown significant promise in biomedical
applications. With ongoing advancements in this technology and methods, DL is expected to continue to
play an essential role in biomedical research and clinical practice. Fig. 8 shows the difference in data flow
between ML and deep learning.

Figure 8: Flow diagram of data from patients to the ML and DL models

3.1 Machine Learning
ML is a rapidly evolving field that has gained significant attention in recent years because of its ability to

learn patterns and make predictions automatically from data. It involves the development of algorithms that
can learn from data and improve their performance over time. ML algorithms have been applied in various
applications, including image and speech recognition, NLP, and biomedical signal processing [48].
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ML has been widely used in biomedical signal processing for classification, regression, and clustering
tasks. For example, ML algorithms have been used to classify electroencephalography (EEG) signals into
different stages of sleep, predict the development of Alzheimer’s disease via magnetic resonance imaging
(MRI) data, and detect abnormal heartbeats in electrocardiography (ECG) signals [49].

Several types of ML algorithms exist, including supervised learning [50], unsupervised learning [51],
and reinforcement learning [52]. Supervised learning involves training a model with labeled data, whereas
unsupervised learning consists in discovering patterns in unlabeled data. Reinforcement learning involves
training a model to make decisions based on a reward system [48,49].

ML algorithms have also been used in biomedical applications, including drug discovery, personalized
medicine, and clinical decision support systems. For example, ML algorithms have been used to predict drug
interactions and side effects, personalize drug dosages based on patient characteristics, and predict treatment
outcomes for various diseases [49]. Fig. 9 shows the block diagram for traditional online and offline detection
via ML for biomedical signals.

Figure 9: Block diagram of the traditional prediction system based on biomedical signals

Despite the success of ML, several challenges remain. ML algorithms can suffer from overfitting when
the utilized model is too complicated [50]. This leads to the learned parameters of the training data not being
generalized to the blind testing data. Moreover, the interpretability of complex models can be challenging,
as they usually involve too many computations and layers of abstraction [40,53].

ML has shown significant promise in biomedical signal processing and other biomedical applications.
With ongoing advancements in technology and methods, ML is expected to continue to play an essential
role in biomedical research and clinical practice [54]. Fig. 10 shows the most popular ML algorithms used
for biomedical signals.

3.2 Deep Learning
DL has demonstrated superior capabilities in handling complex and unstructured data. The following

subsections discuss the most common DL algorithms.
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Supervised ML

Naive Bayes (NB)

Decision Trees (DT)

Suppor Vector Machine (SVM)

Random Forests (RF)

K-Nearest Neighbors (KNN)

Artificial Neural Networks
(ANN) 

Unsupervised ML

K-Means Clustering

Mean Shift Clustering

Gaussian Mixtures 

Figure 10: Most popular ML algorithms used in biomedical signals

3.2.1 Convolution Neural Networks (CNNs)
CNNs are a type of DL algorithm that has become increasingly popular for image and signal processing

applications. CNNs are inspired by the structure and function of the animal visual cortex and are designed
to learn hierarchical representations of pictorial and signal data. Unlike traditional ML algorithms, CNNs
automatically know features from raw data rather than requiring manual feature extraction [14,55]. CNNs
have been applied to various signal-processing tasks, including image classification, object detection, speech
recognition, and biomedical signal processing. In the context of biomedical signal processing, CNNs have
been used for EEG analysis, ECG analysis, and MRI analysis [44].

One critical advantage of CNNs is their ability to learn how to extract deep features from data
automatically. This can be useful mainly in applications where the signals or features are not well defined
or are difficult to detect manually. CNNs are also highly scalable and can be trained on large datasets
via parallel processing techniques [1]. Several challenges are associated with training CNNs, including the
risk of overfitting and the need for large datasets. Various methods have been developed to address these
challenges, such as dropout regularization, data augmentation, and transfer learning [1,40]. In addition to
their use in signal processing tasks, CNNs have been applied to various other applications, such as NLP
and recommendation systems. DL has achieved state-of-the-art performance in many tasks [40]. DL has
emerged as a powerful tool for signal processing tasks, including biomedical signal processing. With ongoing
advancements in technology and methods, DL is expected to play an essential role in signal processing and
other applications. Fig. 11 shows the general block diagram of CNN.

3.2.2 Autoencoder and Stacked Autoencoder
Autoencoders and stacked autoencoders are powerful DL techniques for biomedical signal-processing

tasks. An autoencoder is an unsupervised learning algorithm that can learn how to efficiently represent
data via the compressed latent space to reconstruct the data [40,56]. It consists of an encoder network that
maps the input data to a lower-dimensional latent representation and a decoder network that reconstructs
the original input from the latent representation. In biomedical signals, autoencoders have been used for
denoising, dimensionality reduction, and feature extraction [57]. By training an autoencoder on a large set
of labeled or unlabeled biomedical signals, it can learn to extract meaningful features that capture essential
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data characteristics. These learned features can subsequently be used for various downstream tasks, such as
classification, anomaly detection, and signal synthesis [39].

Figure 11: General block diagram of CNN

Stacked autoencoders, or deep autoencoders or DBNs, are extensions of traditional autoencoders with
multiple layers of encoding and decoding units. Stacked autoencoders have shown significant promise in
biomedical signal analysis because of their ability to learn complex hierarchical representations. Stacked
autoencoders can capture higher-level abstractions and intricate patterns in biomedical signals by adding
more layers to the autoencoder architecture. This hierarchical representation learning enables more effective
feature extraction, improving performance in various biomedical signal processing applications, such as ECG
analysis, EEG decoding, and biomedical image analysis [56,58].

In biomedical signal processing, autoencoders and stacked autoencoders have been widely used. For
example, autoencoders have been applied in ECG analysis to denoise signals by learning the underlying noise
patterns and reconstructing clean ECG signals. Additionally, stacked autoencoders have been employed for
feature extraction in EEG decoding tasks, where hierarchical representations of brain signals that capture
discriminative information for classifying different cognitive states or detecting anomalies are known [54].
Moreover, in biomedical image analysis, autoencoders and stacked autoencoders have been utilized for tasks
such as feature extraction for disease diagnosis from medical images, image denoising, and image quality
through superresolution analysis [58]. Fig. 12 shows the general block diagram of the encoders and decoders.

3.2.3 Recurrent Neural Network (RNN)
RNNs have gained significant attention in biomedical signal processing because of their ability to

model temporal dependencies and handle sequential data effectively. RNNs are designed to process data
sequentially, making them well suited for analyzing biomedical signals, which often exhibit temporal
dynamics. RNNs have been successfully applied to various biomedical signal-processing tasks, including
ECG, EEG, and speech signal analysis [59,60].

In ECG analysis, RNNs have been used to detect arrhythmias, predict heart rates, and identify
abnormalities. By capturing the temporal dependencies in ECG waveforms, RNNs can learn patterns and
features crucial for accurately diagnosing and monitoring cardiac conditions. They have shown promising
results in detecting various arrhythmias, such as atrial fibrillation, ventricular tachycardia, and heart blocks,
contributing to improved clinical decision-making [9,13]. In EEG analysis, RNNs have been applied for
brain signal decoding, seizure detection, sleep stage classification, and brain-computer interface (BCI)
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systems. By modeling the temporal dynamics of EEG signals, RNNs can effectively extract features and
patterns that reflect different cognitive states or neurological disorders. They have demonstrated the ability
to detect and predict epileptic seizures, classify sleep stages accurately, and enable real-time control in BCI
applications [13].

Figure 12: General block diagram of the encoders and decoders

Additionally, RNNs, particularly those with LSTM and GRU components, have been employed for
Type-2 diabetes prediction via genomic and tabular data, achieving high performance and showing their
effectiveness in predicting chronic diseases from complex datasets [61].

RNNs have also been employed in speech signal analysis for voice recognition, speaker identification,
and emotion recognition applications. By considering the temporal context of speech signals, RNNs can
capture essential features related to speech dynamics and phonetic patterns [9,62]. They have signifi-
cantly improved speech recognition accuracy, enabling better speech-based applications in biomedical
contexts. Fig. 13 illustrates the distinct architectures of three critical RNN types: the standard RNN, the long
short-term memory (LSTM), and the gated recurrent unit (GRU). All three sequential data processes differ
in their internal structures and how they handle information flow within the network.

Moreover, when processing sequential biomedical signals such as ECG or EEG data, LSTM networks
maintain a cell state that runs through the entire chain of the network, allowing information to persist across
time steps. The LSTM cell contains three gates: the forget gate, which determines what data to discard from
the cell state; the input gate, which determines what new information to store; and the output gate, which
determines what information will be passed to the next step. Fig. 13B illustrates the internal architecture of an
LSTM cell, showing how these gates interact to maintain and update the cell state over time. This architecture
enables LSTMs to capture long-term dependencies in sequential data, making them particularly effective for
arrhythmia detection in ECG signals where temporal patterns are crucial for accurate classification.

The basic RNN unit consists of a single layer, usually an tanh layer, that processes the current input
with the previous hidden state. This hidden state carries information over time, making the network learn
dependencies within sequences. However, RNNs have long-term dependencies because of the vanishing
gradient problem. To solve this problem, LSTMs use a cell state and three new gates (forget, input,
and output); these gates allow LSTMs to control the information flow and effectively retain and utilize
information from past inputs. GRUs offer a simpler alternative to LSTMs, using only two gates: update and
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reset gates. These gates regulate the information flow between the previous hidden state and the current
candidate state, enabling the GRU to learn long-term dependencies. The following subsections explain
different types of RNN architectures.

Figure 13: Different types of RNNs

• Standard RNN
A basic RNN unit consists of a single layer, usually an tanh layer, that processes the current input

x t alongside the previous hidden state h t−1. The hidden state carries information over time, allowing the
network to learn dependencies within sequences [59–61]. Formally, the update equations for a simple RNN
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can be written as:

ht = σ (Wx h xt +Whh ht−1 + bh)
yt =Why ht + by

where x t is the input at time t, h t is the hidden state at time t, σ is an activation function (often ttanh or
ReLU), Wx h , Whh , Why are weight matrices, and bh , b y are bias vectors.

Despite their simplicity, standard RNNs suffer from the vanishing gradient problem when modeling
long-term dependencies. This makes it challenging to retain information over longer sequences.
• Long short-term memory (LSTM)

To mitigate the vanishing gradient problem, LSTMs introduce a cell state and gating mechanisms that
regulate the flow of information. An LSTM cell typically has three gates, forget, input, and output gates, which
allow the model to retain and utilize information from past inputs effectively [59,60]. The key equations for
an LSTM cell are as follows:

ft = σ (Wf [ht−1 , xt] + b f )
it = σ (Wi [ht−1 , xt] + bi)
C̃t = tanh (WC [ht−1 , xt] + bC)
Ct = ft ⊙Ct−1 + it ⊙ C̃t

ot = σ (Wo [ht−1 , xt] + bo)
ht = ot ⊙ tanh (Ct)

where ft , it , ot are the forget, input, and output gates, respectively; Ct is the cell state at time t; C̃t is the
candidate cell state; and ⊙ denotes elementwise multiplication.

LSTMs are particularly effective at capturing long-term dependencies in biomedical signals, such as
extended ECG waveforms or EEG recordings, by controlling how much past information to keep or forget.
• Gated Recurrent Unit (GRU)

GRUs offer a simplified alternative to LSTMs, using only two gates: update gates and reset gates. These
gates regulate the information flow between the previous hidden state and the current candidate state,
allowing GRUs to learn long-term dependencies with fewer parameters than LSTMs do [59,60]. The GRU
equations are as follows:

zt = σ (Wz [ht−1 , xt] + bz)
rt = σ (Wr [ht−1 , xt] + br)
h̃t = tanh (Wh [rt ⊙ ht−1 , xt] + bh)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

where zt is the update gate, rt is the reset gate, and h̃t is the candidate hidden state.
GRUs often achieve comparable performance to LSTMs on many tasks while being computationally

more efficient, making them suitable for real-time biomedical signal analysis and mobile health applications.

3.2.4 Generative Adversarial Network (GAN)
Generative adversarial networks (GANs) have emerged as robust frameworks for generating synthetic

data that resemble accurate biomedical signals. GANs consist of two neural networks, a generator and a
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discriminator, which are trained adversarially. The generator learns to generate synthetic biomedical signals,
whereas the discriminator learns to distinguish between accurate and generated signals. GANs have shown
promising applications in various biomedical signal-processing tasks, including data augmentation, anomaly
detection, and signal synthesis [63]. A GAN consists of three main components or processes:
• Generator

The generator in a GAN architecture serves as the synthetic data producer. It typically takes random
noise as input, often samples from a uniform or normal distribution, and transforms this noise into
structured data resembling real-world examples [63]. The architecture generally consists of layers designed
to process and refine this noise, which may include recurrent layers for capturing temporal patterns, followed
by fully connected layers that apply nonlinear activations to shape the output gradually [63]. Regularization
techniques such as dropout are commonly employed to prevent overfitting and ensure diversity in the
generated outputs. The final layers produce synthetic data, which aims to mimic the statistical properties and
characteristics of accurate biomedical signals such as ECG or EEG waveforms [28,64].
• Discriminator

The discriminator functions as the quality assessor in the GAN framework. Its architecture is designed to
analyze input data and determine their authenticity. This typically involves layers that extract relevant features
from the input, which may include recurrent or convolutional layers depending on the data type, followed by
fully connected layers with appropriate activation functions [28,64]. The final output layer usually produces
a probability score indicating whether the input is real (from the actual dataset) or synthetic (generated by
the generator). The discriminator’s role is crucial, as it provides the feedback mechanism that guides the
generator’s learning process [64,65].
• Adversarial training

The core innovation of GANs lies in their adversarial training process. During training, the generator
and discriminator engage in a continuous competition where the generator attempts to produce increasingly
realistic synthetic data. In contrast, the discriminator strives to better distinguish real from fake data. This
dynamic is formalized as a minimax game where the generator minimizes the probability of detection
while the discriminator maximizes its classification accuracy [64,65]. Through multiple iterations of this
competition, both networks improve iteratively, ultimately reaching an equilibrium where the generator can
produce data that are virtually indistinguishable from real examples, and the discriminator cannot reliably
differentiate between them [64,65]. The objective function for GANs is as follows:

min
G

max
D

V (D, G) = Ex∼pd ata(x) [log D (x)] +Ez∼pz(z) [log (1 − D (G (z)))]

where:

• G(z) represents the generator’s output given input noise z.
• where D(x)is the probability of the discriminator classifying actual data samples x correctly.
• where pd ata(x) is the actual data distribution.
• pz(z) is the prior distribution of the noise vector.

A critical application of GANs in biomedical signals is data augmentation. GANs can generate synthetic
signals that augment the limited available data, thereby improving the performance and robustness of ML
models. By training the generator to mimic the statistical characteristics of natural signals, GANs can
generate realistic synthetic data that expand the training dataset, leading to enhanced model generalizability
and performance [28,64].
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Another application of GANs in biomedical signals is anomaly detection. GANs can be trained on
standard, healthy signals to learn their underlying distribution. The discriminator in the GAN is then used
as an anomaly detector to identify deviations from the learned normal distribution. This approach has
been successfully applied to detect anomalies in various biomedical signals, such as ECGs, electromyograms
(EMGs), and EEGs, enabling early detection of abnormalities and improving patient monitoring [64,65].

Furthermore, GANs have been used for signal synthesis in biomedical applications. For example, GANs
have been employed to generate synthetic ECG signals that mimic different cardiac conditions, allowing
researchers to study and analyze the effects of specific abnormalities without the need for large, diverse
clinical datasets [11,65,66]. Synthetic signals generated by GANs can also be used for training and testing DL
models, overcoming the challenges of limited or imbalanced datasets. Fig. 14 shows a general block diagram
of the GAN.

Figure 14: (A) Block diagram of a GAN in real-example, (B) Sample architecture for generator and discriminator
networks [67] (CC BY 4.0)

4 DL Applications in Biomedical Signals
DL has revolutionized the field of biomedical signals, offering powerful tools for analyzing and interpret-

ing complex biomedical data. DL models, such as CNNs, RNNs, and GANs, have been extensively applied in
various biomedical signal processing and interpretation tasks, including disease diagnosis, anomaly detec-
tion, signal classification, and signal synthesis [9,68]. Owing to its ability to efficiently learn representations
from complex and unstructured data, DL has remarkably succeeded in extracting meaningful patterns and
features from diverse biomedical signals. This section explores different and recent applications of DL in
biomedical signals. The following section discusses these topics in detail. Fig. 15 shows the applications of
DL in biomedical signals.
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Figure 15: DL applications for biomedical signals

4.1 Diagnostic and Disease Detection
This category uses DL algorithms to analyze biomedical signals and diagnose various medical condi-

tions. It includes applications such as ECG arrhythmia classification [2,69], EEG-based seizure detection [10],
and speech and voice analysis for diagnosing disorders.

CNNs have been used to analyze ECGs and accurately identify cardiac arrhythmias. RNNs effec-
tively decoded EEG signals to detect epileptic seizures. These models learn to capture intricate patterns
and features from signals, enabling accurate disease identification and aiding in early diagnosis and
treatment [2,5,25,28,70].

Anomaly detection is another critical area in which DL has made significant contributions. Training
DL models on standard, healthy signals, they can learn and identify deviations from the underlying
distribution [10,13,71–74]. This approach has been applied to detect anomalies in various biomedical signals,
such as detecting abnormal heart rhythms from ECGs or identifying anomalies in brain signals from EEGs.
Deep learning-based anomaly detection can enhance patient monitoring systems and enable early detection
of critical events [2,5,12,29,74–76].

Signal classification is a fundamental task in biomedical signal processing, and DL models have achieved
state-of-the-art performance in this area [40]. CNNs, such as short-time Fourier transform (STFT) and
discrete wavelet transform (DWT), have been employed to classify images from biomedical signals [77,78].
To detect specific activities or states, RNNs, such as EEGs or EMGs, have been applied to classify time
series signals. DL models can automatically learn discriminative features from signals, enabling accurate and
efficient classification [56]. Fig. 16 shows how DL uses inputs from biomedical signals as images.

4.2 Health Monitoring and Predictive Analytics
DL has shown great potential in using biomedical signals to monitor individuals’ health and predict

potential health risks continuously. These signals, including HRV, blood pressure, and glucose levels, offer
valuable insights into a person’s physiological state. DL models, such as RNNs and LSTM networks, have
been used to analyze temporal patterns in these signals and predict future health events [41,79]. For example,
an LSTM-based model effectively predicts hypoglycemic events in patients with type 1 diabetes, providing
an early warning system to prevent life-threatening situations [80].
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Figure 16: Block diagram using a CNN with image inputs from biomedical signals

In addition to health monitoring, DL has also been applied to predict disease outcomes and identify
potential risk factors based on analyses of longitudinal biomedical data. DL models can identify hidden
patterns and complex relationships between signals and patient outcomes by training on large-scale patient
data. For example, reference [41] proposed a deep learning-based framework for the early prediction of heart
failure-related hospitalization, utilizing electronic health records and physiological signals to achieve high
accuracy in forecasting adverse events.

This is a transformative application area for DL in biomedical signals. By harnessing the power of deep
neural networks, healthcare professionals can gain valuable insights from continuous health monitoring and
make informed decisions for personalized patient care, early disease detection, and risk prediction.

4.3 Biomedical Signal Processing and Enhancement
DL has shown significant potential in enhancing the quality and utility of biomedical signals, which are

often corrupted by noise and artifacts that can hinder accurate diagnosis and analysis [81,82]. Deep neural
networks have been used to denoise and enhance these signals, improving their fidelity and reliability. For
example, a deep learning-based approach using a stacked autoencoder was proposed to effectively denoise
electroencephalogram (EEG) signals, reduce artifacts, and improve the accuracy of neurological disorder
diagnosis [81]. This represents a critical application area for DL in biomedical signals, where researchers and
medical professionals can leverage the capabilities of deep neural networks to effectively denoise, enhance,
and augment these signals for improved diagnosis and analysis.

4.4 Data Integration and Multimodal Analysis
To gain comprehensive insights into biomedical signals, DL techniques have shown remarkable poten-

tial for combining and analyzing data from multiple sources and modalities. Biomedical research often
involves data from various sensors and imaging modalities, and integrating these heterogeneous data can
provide a more holistic understanding of complex physiological processes [83,84]. DL models, such as
multimodal neural networks and attention mechanisms, have been developed to effectively fuse data from
different sources. For example, a multimodal DL framework was proposed that integrated data from ECGs
and PPGs to improve the accuracy of heart rate estimation and cardiovascular disease diagnosis [85,86].
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DL has also been instrumental in multimodal analysis, combining information from various sources to
extract complementary features and facilitate better disease detection and diagnosis. A deep learning-based
multimodal analysis approach was developed to diagnose Alzheimer’s disease via structural and functional
MRI data, achieving superior performance compared with single-modal analysis [83]. This is an essential
application area for DL in biomedical signals, where researchers and clinicians can uncover valuable insights
and improve disease detection and diagnosis accuracy and efficiency by integrating data from diverse sources
and applying advanced DL techniques.

4.5 Drug Discovery and Therapeutics
This is a rapidly growing field, and DL has been used to accelerate the identification of potential drug

candidates and optimize therapeutic strategies. DL techniques have shown great promise in predicting the
binding affinity between small molecules and target proteins, which is a crucial step in the design of new
drugs [87–89]. CNNs and graph-based DL models have been applied to predict highly accurate protein–
ligand interactions. For example, DeepChem, a DL library, was developed to predict the binding affinities of
small molecules to protein targets successfully, aiding in virtual screening for potential drug candidates [89].

DL has also significantly optimized drug therapies by analyzing patient data and predicting treatment
responses. RNNs and transformer-based models have been applied to electronic health records and genomic
data to personalize drug treatment plans and anticipate adverse drug reactions. A DL model was developed
that utilized electronic health records to predict patient-specific adverse events, enabling physicians to make
informed decisions and reduce the likelihood of harmful drug reactions [90].

This area represents an application for DL in biomedical signals. By using deep neural networks
to predict protein–ligand interactions and personalize drug treatments, researchers and clinicians can
significantly expedite the drug discovery process and improve patient outcomes in therapeutics.

4.6 Real-Time Monitoring and Decision Support
DL has shown immense potential in providing continuous, real-time analysis of biomedical signals

to support clinical decision-making. DL models have been employed to process and analyze streaming
data from various sensors and devices, enabling real-time monitoring of patients’ health status and facil-
itating timely interventions [39,91,92]. For example, deep CNNs have been applied to analyze data from
wearable devices, such as smartwatches and fitness trackers, to detect and predict abnormal physiological
patterns [92,93].

DL has also provided real-time decision support for critical care settings. By analyzing streaming data
from patient monitors and electronic health records, DL models can detect early signs of deterioration and
predict adverse events, allowing medical teams to take immediate action. An attention-based DL model was
developed for real-time sepsis prediction, achieving high accuracy and sensitivity in identifying patients at
risk of septic shock [94].

This topic represents a revolutionary application area for DL in biomedical signals. By leveraging the
capabilities of deep neural networks for real-time analysis and prediction, healthcare professionals can
receive timely and accurate decision support, leading to improved patient outcomes and more effective
healthcare interventions.

4.7 Explainable AI and Interpretability
This is one of the most crucial aspects of applying DL to biomedical signals, where understanding

and interpreting model predictions is essential for gaining trust and acceptance from medical professionals.
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Owing to their complex architecture, DL models are usually considered black boxes and do not understand
how decision-making is performed. However, interpretability is vital in biomedical applications to compre-
hend the rationale behind a model’s predictions and ensure that its recommendations align with medical
expertise [95,96].

Recent research has focused on developing explainable DL models that provide insights into the
decision-making process. For example, local interpretable model-agnostic explanations (LIMEs) were
introduced to explain individual predictions of black-box models such as deep neural networks. Locally
explainable linear explanations (LELEs) generate locally interpretable explanations by approximating com-
plex model behavior around a specific instance, allowing medical practitioners to understand why a
particular decision was made [97].

Interpretability is especially crucial when deploying DL models for real-world clinical applications.
Medical professionals must trust and validate predictions to ensure patient safety and appropriate treat-
ment plans. Researchers have explored methods to make DL models more interpretable by incorporating
attention mechanisms and highlighting specific regions in the input data that influence the model’s output.
An attention-based DL model was proposed for arrhythmia detection in ECGs, allowing physicians to
understand which parts of the ECG signal were most significant in making the diagnosis [96].

Explainable AI is a crucial area of research when applying DL to biomedical signals. Developing
methods and techniques that provide transparent and interpretable insights into DL models’ decision-
making processes is essential for fostering trust, facilitating validation, and enabling the safe and effective
use of DL in real-world clinical settings.

5 Performance Metrics for DL in Biomedical Signals
Assessing the performance of DL models applied to biomedical signals is crucial for evaluating

their effectiveness and ensuring their successful application in clinical and research settings [40]. Various
performance metrics are commonly used to measure these models’ accuracy, robustness, and generalizability.
In this section, we discuss some of the most critical performance metrics and their significance in evaluating
the performance of DL models for biomedical signals [38]. These metrics are accuracy, sensitivity (recall),
specificity, the F1 score, and the area under the receiver operating characteristic curve (AUC-ROC). The
following subsection discusses these metric equations:

5.1 Accuracy (ACC)
Accuracy is one of the most fundamental performance metrics and represents the proportion of

correctly classified samples over the total number of samples in the dataset [98]. It is calculated as follows:

ACC = TP + TN
FP + FN + TP + TN

where TP (true positives) is the number of correctly classified positive samples, TN (true negatives) is
the number of correctly classified negative samples, FP (false positives) is the number of negative samples
misclassified as positive, and FN (false negatives) is the number of positive samples misclassified as
unfavorable [98].

5.2 Sensitivity (Recall) and Specificity
Sensitivity, also known as recall, measures the ability of a model to identify positive samples correctly. On

the other hand, specificity measures the ability to identify negative samples correctly [98]. They are calculated
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as follows:

Sensitiv ity = TP
FN + TP

Speci f icity = TN
FP + TN

High sensitivity is crucial in applications where the cost of false negatives is high, such as in disease
diagnosis, whereas high specificity is essential when false positives have severe consequences [98].

5.3 F1 score
The F1 score is the harmonic meaning of precision and recall (sensitivity). It provides a balanced

assessment of the model’s performance by considering false positives and negatives [98]. It is calculated as
follows:

F1 = 2 ⋅ Precision ⋅ Recal l
Precision + Recal l

Precision is the proportion of actual positive samples out of all the predicted positive samples.

5.4 Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
The ROC curve plots the actual positive rate (sensitivity) against the false positive rate (1-specificity)

at various classification thresholds. The AUC–ROC metric represents the area under the ROC curve and
quantifies the model’s ability to distinguish between positive and negative samples. AUC-ROC values closer
to 1 indicate better discriminatory power [98].

5.5 Matthews Correlation Coefficient
The Matthews correlation coefficient (MCC) is a more informative metric for evaluating classification

performance, especially in imbalanced datasets. The MCC considers all four confusion matrix components
(TP, TN, FP, FN) and produces a value between −1 and 1, where 1 indicates perfect classification, 0 represents
random predictions, and −1 signifies complete misclassification. It is calculated as follows:

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

Unlike accuracy, the MCC remains reliable even when class distributions are skewed, making it a
preferred metric for biomedical classification problems.

5.6 Balanced Accuracy
Balanced accuracy is helpful in imbalanced datasets where standard accuracy may be misleading.

It calculates the average sensitivity and specificity, ensuring that both classes contribute equally to the
performance measurement. It is defined as:

Balanced Accuracy = sensitivity + specificity
2

Balanced accuracy provides a fair assessment when the dataset has a significant class imbalance, making
it particularly valuable for biomedical applications such as disease detection.



3776 Comput Mater Contin. 2025;83(3)

5.7 Precision (Positive Predictive Value, PPV)
Precision, also known as positive predictive value (PPV), measures the proportion of correctly predicted

positive cases among all predicted positive cases. It is defined as:

Precision = TP
TP + FP

Positive results are crucial when false positives are costly, such as in cancer screening, where an incorrect
positive result can lead to unnecessary biopsies or treatments.

5.8 False Positive Rate (FPR)
The false positive rate (FPR) measures the proportion of negative samples that were incorrectly classified

as positive:

FPR = FP
FP + TN

A lower FPR is essential in high-risk applications, such as medical diagnostics, where incorrectly
classifying a healthy patient as diseased can lead to unnecessary interventions.

5.9 Cohen’s Kappa
Cohen’s kappa evaluates classification performance by considering agreement beyond what is expected

by chance. It is beneficial when working with imbalanced datasets and multiple raters. It is calculated as:

κ = Po − Pe

1 − Pe

where Po is the observed agreement (i.e., accuracy) and where Pe is the expected agreement by chance.
A kappa value 1 indicates perfect agreement, whereas 0 indicates random agreement. Cohen’s kappa is

especially useful in multiclass classification problems and when comparing multiple models.

5.10 Youden’s Index (J statistic)
Youden’s index provides a single-value measure of a diagnostic test’s performance by considering both

sensitivity and specificity:

J = Sensitiv ity + Speci f icity − 1

It ranges from −1 to 1, where 1 indicates perfect classification and 0 suggests no diagnostic ability.
Youden’s index is widely used in medical diagnostics to determine the optimal threshold for classification.

5.11 F2-Score
The F2 score is a variation of the F1 score that emphasizes recall (sensitivity) more. It is particularly

useful in scenarios where false negatives are more costly than false positives, such as critical disease detection.

F2 = (5 × Precision × Recal l)
(4 × Precision + Recal l)

A higher F2 score is desirable in healthcare applications, where detecting all potential positive cases is
more important than minimizing false positives.



Comput Mater Contin. 2025;83(3) 3777

5.12 Why Are These Metrics Important?
The choice of performance metrics depends on the specific task and application of deep learning

models in biomedical signals. Accuracy is a widely used metric, but more accuracy is needed in imbalanced
datasets where the number of positive and negative samples differs significantly. Sensitivity and specificity are
essential in scenarios where the cost of false positives or false negatives is asymmetric [40,98]. The F1 score
provides a balanced view of the model’s performance and is useful when there is an uneven class distribution.
It is essential in applications such as disease diagnosis, where false positives and negatives can have serious
consequences, while the F2 score prioritizes recall, which is helpful for disease detection [36,40]. AUC-ROC
is particularly valuable in binary classification tasks, as it remains unaffected by the choice of classification
thresholds, making it more robust when dealing with imbalanced datasets [40]. The MCC and Cohen’s kappa
also provide robust classification performance measures, especially in imbalanced datasets [36,40]. Balanced
accuracy ensures that both classes contribute equally, making it more effective than regular accuracy.
Youden’s index is particularly valuable in medical diagnostics, as it helps determine the optimal decision
threshold [36,40].

5.13 Selecting the Best Metric for Your Problem
The selection of performance metrics depends heavily on the type of task and the application of DL

models to biomedical signals. Accuracy is a widely used metric, but greater accuracy is needed for imbalanced
datasets where the number of positive and negative samples differs significantly. Sensitivity and specificity
are essential in scenarios where the cost of false positives or negatives is asymmetric [40,98].

The F1 score provides a balanced view of the model’s performance and is useful when there is an uneven
class distribution. It is essential in applications such as disease diagnosis, where false positives and negatives
can have serious consequences [36,40]. AUC-ROC is particularly valuable in binary classification tasks, as
it remains unaffected by the choice of classification thresholds, making it more robust when dealing with
imbalanced datasets [40].

For imbalanced datasets, metrics such as the MCC, balanced accuracy, Cohen’s kappa, and Youden’s
index offer more reliable evaluations than regular accuracy. In medical applications where missing positive
cases are costly, the sensitivity, F2 score, and AUC-ROC are more critical than the overall accuracy [36,40].
Conversely, precision and the false positive rate (FPR) should be minimized in applications where false
positives carry high consequences. For general classification problems, the F1 score and MCC provide a
balanced assessment of model performance [40].

Selecting appropriate performance metrics for evaluating DL models in biomedical signals is crucial
for obtaining meaningful insights into their real-world applicability and performance. Researchers and
practitioners should carefully consider the specific requirements of their applications and use a combination
of metrics to comprehensively assess the model’s capabilities. By doing so, we can advance the field
of DL for biomedical signals and promote the adoption of accurate and reliable models in healthcare
and related domains [36,99]. Fig. 17 shows the importance of the performance metrics for binary and
multiclass scenarios.

6 Choosing the Perfect Type of DL for Your Data
DL has emerged as a powerful and versatile approach for analyzing biomedical signals because it can

automatically learn complex patterns and representations from raw data. However, with the proliferation
of different DL architectures and methodologies, selecting the most appropriate type of DL model for a
specific biomedical signal dataset has become crucial. This section discusses various considerations to help
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researchers and practitioners make informed decisions when choosing the perfect type of DL model for
their data.

Figure 17: Main metrics for two scenarios: (a) Binary; (b) Multiclass

6.1 Data Characteristics and Scale
The first step in choosing a suitable DL model is thoroughly understanding the data characteristics and

scaling. Biomedical signals vary widely, including EEGs for brain activity and ECGs for heart activity. Each
type of biomedical signal has a unique data format, temporal or spatial resolution, and noise level [100].

For example, CNNs are well suited for image-like data, such as spectrograms and time-frequency
representations of signals, as they effectively capture local patterns and spatial dependencies. On the other
hand, RNNs or their variants, such as LSTM networks, are adequate for sequential data such as time series or
EEG signals, where temporal dependencies and patterns play crucial roles in understanding the underlying
physiology [101].

Additionally, the number of classes in classification tasks is another essential consideration. For
multiclass or multilabel classification, models such as CNNs with global pooling layers or transformer-based
architectures can be adapted to handle multiple classes effectively.

6.2 Available Data and Annotation
The availability of annotated data plays a crucial role in choosing DL models. For supervised tasks,

having a substantial amount of labeled data is necessary for training complex models such as deep neural
networks. However, obtaining annotated biomedical signal data can be challenging and time-consuming,
especially in medical domains with limited expert annotations [102].

Transfer learning can be a practical solution if labeled data are scarce, where pretrained models are fine-
tuned on smaller datasets. Pretrained models trained on large-scale datasets such as ImageNet can capture
general patterns often useful for related tasks. Fine-tuning these models on specific biomedical signal data
can lead to faster convergence and improved performance [103].
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6.3 Model Complexity and Interpretability
The complexity of the DL model should align with the available computational resources and inter-

pretability requirements. While deep models such as transformers achieve state-of-the-art performance in
various domains, they are computationally demanding. They may require high-end GPUs or specialized
hardware for training and inference [104]. On the other hand, simpler models such as logistic regression or
decision trees may offer better interpretability but may sacrifice some predictive performance compared with
deep neural networks. For applications where interpretability is critical, researchers may opt for models that
allow easier visualization and understanding of the learned features [105].

6.4 Class Imbalance and Performance Metrics
In biomedical signal analysis, class imbalance is a common challenge, where one class may dominate

the data distribution while others have fewer samples. Accuracy alone may not be a reliable performance
metric for imbalanced biomedical signal datasets. Metrics such as sensitivity (recall), specificity, and the F1
score provide a more comprehensive evaluation of the model’s performance [106].

Specialized loss functions such as focal loss or class-weighted approaches can address class imbalance
issues and improve the model’s performance on minority classes. Moreover, data augmentation techniques
can help balance the class distribution and enhance the model’s generalizability [107].

6.5 Domain Expertise and Transfer Learning
In medical fields, researchers often have domain-specific knowledge that can guide model design,

feature selection, and data preprocessing steps. Incorporating domain expertise can lead to better-informed
choices in designing the neural network architecture or selecting relevant features for a specific medical
task [108]. Transfer learning from models pretrained on similar tasks or domains can also increase perfor-
mance, especially when labeled data are limited. Fine-tuning pretrained models on target biomedical signal
datasets can help the model leverage knowledge from large-scale datasets and improve generalizability [109].

6.6 Computational Resources
The choice of DL model also depends on the available computational resources, including GPU

capabilities, memory, and processing power. While state-of-the-art models may deliver the best perfor-
mance, they can be computationally expensive and impractical for resource-constrained environments [110].
Researchers can explore model compression techniques, such as model pruning, quantization, or knowledge
distillation, to reduce the model’s size and computational requirements without significantly compromising
performance [111].

Overall, selecting the perfect type of DL model for biomedical signal analysis requires careful consid-
eration of the data characteristics, available resources, and performance requirements. By understanding
the strengths and limitations of different models, researchers can make informed decisions to achieve
optimal results in their specific applications. Fig. 18 shows a tradeoff between the parameters of all the
abovementioned considerations.

While powerful, deep learning models often demand significant computational resources, which can
severely restrict their deployment in environments with limited hardware capabilities. In biomedical signal
analysis, such constraints are particularly relevant in settings such as mobile health devices, rural clinics with
outdated infrastructure, or wearable sensors operating with battery power [110]. These resource-constrained
environments face challenges such as insufficient GPU memory, slow processing speeds, and restricted
energy budgets, which hinder the use of large-scale models such as transformers or densely connected neural
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networks. For example, real-time applications such as ECG monitoring on edge devices require models
that balance accuracy with low latency. Yet, high-parameter models may fail to meet these requirements
even after optimization. This gap between model complexity and practical feasibility underscores the need
for lightweight architectures or adaptive frameworks that prioritize efficiency without sacrificing diagnostic
reliability [111].

Figure 18: Tradeoff between the parameters of all considerations

Moreover, the computational burden extends beyond inference, including training and data prepro-
cessing stages. Training state-of-the-art models often requires high-performance computing clusters, which
are inaccessible in many research or clinical settings [111]. Even with techniques such as transfer learning or
federated learning to mitigate data and resource limitations, the energy consumption and time costs remain
prohibitive for continuous operation in low-resource contexts. Consequently, researchers must critically
evaluate whether the performance gains of advanced models justify their resource demands or, if more
straightforward, specialized architectures such as shallow CNNs or hybrid models offer a more pragmatic
solution [110]. Addressing these challenges requires interdisciplinary collaboration to develop hardware-
aware algorithms, optimize existing frameworks for deployment, and explore emerging technologies such as
neuromorphic computing to bridge the divide between model capability and operational practicality.

7 Methods for Developing and Interpreting DL Models for Biomedical Signals
DL models can be developed via different methodologies, ranging from training models from scratch

to leveraging pretrained models through transfer learning. This section discusses several methods for
developing DL models, focusing on transfer learning as a practical approach for biomedical signal analysis.
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7.1 Scratch Training Models
One approach to developing DL models is to train them from scratch. In this method, neural network

architecture is designed, initialized with random weights, and trained on the target biomedical signal
dataset. While this approach offers complete control over the model architecture and allows for specific
customization, it may require a large amount of annotated data and extensive computational resources to
achieve competitive performance [112].

Despite their potential challenges, training models from scratch can be suitable when domain-specific
expertise suggests that existing pretrained models may not directly apply to the target biomedical signal
analysis task [113].

7.2 Transfer Learning
Transfer learning is a powerful technique that leverages knowledge from pretrained models on

large-scale datasets and adapts it to new tasks with smaller target datasets. The underlying idea is that lower-
level features learned from diverse datasets (e.g., ImageNet) generally apply to various visual recognition
tasks [112,114]. By fine-tuning the pretrained model on biomedical signal data, the model can effectively
capture relevant patterns and improve performance, even with limited labeled data [115,116].

In transfer learning, there are two main strategies:
Feature Extraction: In this approach, the pretrained model’s convolutional layers are frozen, acting as

a feature extractor. The extracted features are fed into a separate classifier for the specific biomedical signal
task. This method is effective when the lower-level features learned in the pretrained model are relevant to
the target task [40,114–116].

Fine-tuning: Fine-tuning involves using the pretrained model’s lower-level features and adapting the
higher-level layers to the target task. During fine-tuning, some or all of the layers in the pretrained model
are trainable, allowing the model to adjust its parameters based on the target biomedical signal data [115].

Transfer learning significantly reduces the need for large, annotated datasets, speeds up training, and
preserves the knowledge learned from the pretrained model.

7.3 Domain-Specific Model Pretraining
Another method for developing DL models for biomedical signals is domain-specific pretraining.

Unlike general-purpose pretraining on large-scale datasets such as ImageNet, domain-specific pretraining
focuses on training models on relevant biomedical signal data or related medical datasets [117,118].

Domain-specific pretraining can be helpful when the target biomedical signal dataset differs signifi-
cantly from generic image datasets. Training the model on more domain-relevant data can be initialized with
more task-specific information and may require less fine-tuning on the target task [118].

7.4 Transformer Networks
Transformer networks, initially conceived for NLP, have become a cornerstone of modern DL archi-

tecture [119]. Their breakthrough lies in the attention mechanism, which enables the model to focus on
crucial elements within a sequence, thereby effectively capturing long-range dependencies. This feature
has propelled transformers to the forefront of NLP tasks, including machine translation, sentiment anal-
ysis, and question answering, outperforming their predecessors and setting new benchmarks in language
understanding and generation [120]. Fig. 19 shows the architecture of the transformer.
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Figure 19: Transformer network architecture [104] (CC BY 4.0)

However, their impact has not been limited to the realm of NLP. Transformer networks have been suc-
cessfully repurposed for various other domains, including the analysis of biomedical signals. By leveraging
their ability to handle sequential data and discern intricate patterns, transformer-based models have shown
potential in tasks such as disease diagnosis, anomaly detection, and medical image analysis [119–121]. This
adaptability has paved the way for significant advancements in personalized medicine, offering promising
avenues for developing innovative diagnostic tools and more effective healthcare solutions. As researchers
continue to explore their potential in diverse fields, the integration of transformer networks is expected
to foster breakthroughs in biomedical research, ultimately leading to enhanced healthcare practices and a
deeper understanding of complex biological systems [121,122].

In the field of biomedical signals, transformer networks have shown potential. For example, a study
proposed a constrained transformer network for ECG signal processing and arrhythmia classification [123].
The model combines a CNN and a transformer network to extract temporal information from ECG
signals and can perform arrhythmia classification with acceptable accuracy [123]. The transformer network
pays more attention to the data’s temporal continuity and captures the data’s hidden deep features well1.
Another study proposed a transformer-based high-frequency oscillation (HFO) detection framework for
biomedical magnetoencephalography (MEG) one-dimensional signal data [122]. The framework included
signal segmentation, virtual sample generation, classification, and labeling. The proposed framework out-
performed the state-of-the-art HFO classifiers, increasing the classification accuracy by 7% [122]. Recently
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a transformer mixture model was used for classification of ECG signals [124]. Fig. 20 shows an example of
using transformers for biomedical signals classifications.

Figure 20: Schematic representation of the transformer model for biomedical signals classification [124] (CC BY 4.0)

7.5 Hybrid Models
Hybrid DL models combine the power of two types of DL models. These models have shown great

promise in analyzing biomedical signals because of the ability of CNNs to perform spatial feature extraction
and capture the temporal dependencies of RNNs, such as LSTM networks [125]. By integrating these models,
hybrid models can be used to process complex biomedical signals effectively [126]. One of the most popular
hybrid models is the CNN-LSTM hybrid model, which first uses CNN layers to extract features from
signals and then employs LSTM layers to analyze the sequential nature of these features, enhancing the
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model’s ability to detect patterns [127]. Such combinations improve overall performance and enable more
robust model interpretation, making hybrid models valuable tools in medical diagnostics and personalized
healthcare [125–128]. Fig. 21 shows the general block diagram of hybrid DL models using CNN-LSTM.
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Figure 21: General block diagram of the hybrid DL model using CNN-LSTM

7.6 Convolutional Block Attention Module (CBAM)
The convolutional block attention module (CBAM) is a simple yet effective attention module for feedfor-

ward CNNs. Given an intermediate feature map, CBAM sequentially infers attention maps along two separate
dimensions, channel and spatial; then, the attention maps are multiplied by the input feature map for adaptive
feature refinement [129]. Fig. 22 shows a sample block diagram of the CBAM. CBAM has shown potential
in the field of biomedical signals. For example, a study experimentally analyzed four attention mechanisms,
including CBAM and three CNN architectures, for two representative physiological signal prediction tasks:
classification for predicting hypotension and regression for predicting cardiac output (CO) [130]. The CNN
models with the spatial attention mechanism performed best in the classification problem, whereas the
channel attention mechanism achieved the lowest error in the regression problem [130]. Another study
proposed a new sEMG gesture recognition network called the multistream convolutional block attention
module-gate recurrent unit (MCBAM-GRU), which is based on sEMG signals [131]. The network is a
multistream attention network formed by embedding a GRU module based on CBAM. The experimental
results showed that the proposed method obtained excellent performance on the dataset collected in this
paper, with a recognition accuracy of 94.1%, achieving advanced performance, with an accuracy of 89.7% on
the Ninapro DB1 dataset [131].

7.7 Hierarchical Attention Networks (HANs)
Hierarchical attention networks (HANs) are a type of neural network that applies attention mechanisms

at multiple levels of the network hierarchy [132]. The attention mechanism allows the model to focus on
specific parts of the input when making predictions, which can be particularly useful when dealing with
complex data such as biomedical signals [133].

In biomedical signals, a hierarchical attention (HA) module embedded in HANet captures context
information from neighbors of multiple levels, where these neighbors are extracted from a high-order
graph [133]. The proposed HA module is robust to the input variance and can be flexibly inserted into existing
convolution neural networks [133].

Another study proposed an HA-based capsule model for biomedical document triage [134]. The
proposed model employs a hierarchical attention mechanism and capsule networks to capture valuable
features across sentences and construct a final latent feature representation for a document. Experimental
results have shown that HA mechanisms and capsule networks are helpful in biomedical document triage
tasks [134].



Comput Mater Contin. 2025;83(3) 3785

Figure 22: Block diagram of CBAM [129] (CC BY 4.0)

Developing DL models for biomedical signal analysis involves carefully selecting methods and con-
sidering data availability, computational resources, and performance requirements. Transfer learning and
data augmentation are potent techniques for effectively leveraging pretrained models and improving their
generalization capabilities even with limited labeled data. Researchers can develop robust and reliable DL
models by following a systematic approach and employing suitable methodologies. Fig. 23 shows a quick
comparison between the implementation methods mentioned.

7.8 Gradient-Weighted Class Activation Mapping (GradCAM)
Grad-CAM, short for gradient-weighted class activation mapping, has become an indispensable tool

in interpretability for CNNs. In essence, it is a powerful means to demystify the decision-making processes
of complex models, enhancing their transparency and interpretability [135]. By leveraging the gradients
associated with a specific target concept and channelling them back into the last convolutional layer,
Grad-CAM excels at generating high-resolution localization maps.

These maps effectively illuminate crucial regions within an input image that contribute significantly to
the model’s classification decision, providing a clear and intuitive visualization of the model’s focus [136]. This
not only aids in understanding the model’s behavior but also fosters trust and confidence in its predictions,
which are essential for applications in fields such as medical imaging, autonomous systems, and beyond.
Grad-CAM is a pivotal tool for bridging the gap between the formidable capabilities of CNNs and the need
for transparent and interpretable AI systems [135].

In the context of biomedical signals, Grad-CAM can be particularly useful. For example, in a study that
aimed to distinguish migraines from EEG signals, researchers converted EEG signals into scalogram images
via the continuous wavelet transform method [136]. These scalogram images were then used as inputs to a
CNN DL network. Interpretable Grad-CAM images were obtained to support specialists in the diagnosis
of migraine. The study revealed a relationship between EEG recordings and migraine disease in terms of
frequency components [136].



3786 Comput Mater Contin. 2025;83(3)

Figure 23: Comparison of DL implementation methods for biomedical signals

Figure 24: Sample Grad-CAM images for ECG signal classification [137] (CC BY 4.0)

In addition, there are also advanced AI explainability tools for computer vision, including Grad-CAM,
such as PyTorch Grad-CAM. These tools can diagnose model predictions in production or while developing
models [135]. They offer a comprehensive collection of pixel attribution methods for computer vision and
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work with many standard CNNs and vision transformers. The Grad-CAM provides a valuable tool for
visualizing and understanding the decision-making processes of DL models, especially in biomedical signal
analysis [135]. Fig. 24 shows a sample Grad-CAM output image.

7.9 Integrated Gradients
Integrated gradients (IGs) have emerged as critical players in model interpretability, providing a

nuanced understanding of how a model arrives at its predictions by attributing them to specific input
features. This technique, outlined in the literature [138], offers a valuable means of visualizing the intricate
relationship between the input features and the model’s output predictions. In essence, IG is a sophisticated
variant of computing gradients, explicitly focusing on the prediction output concerning the input features. By
integrating the gradients along a straight path from a baseline to the input, IG assigns importance scores to
each feature, elucidating their contributions to the final prediction [138]. This not only aids in comprehending
the model’s decision-making process but also facilitates the identification of influential features and their
impact on the overall prediction outcome. In the landscape of model interpretation, IG stands as a powerful
tool, shedding light on the intricate interplay between input features and model predictions [139].

In the field of biomedical signals, IG has shown potential. For example, in a study that aimed to
improve the interpretability of DL models by splicing codes, enhanced integrated gradients (EIG) were
introduced [138]. EIG is a method for identifying significant features associated with a specific prediction
task. Using RNA splicing prediction as a case study, it was demonstrated that the EIG improves upon the
original integrated gradient method and produces informative features [138]. Another study proposed a
compensated IG method for a reliable explanation of electroencephalogram (EEG) signal classification [139].
This method does not require a baseline, compensating for the contributions calculated via the IG method
at an arbitrary baseline via an example of the Shapley sampling value. The study demonstrated that the
contributions obtained via the proposed compensated IG method are more reliable than those obtained via
the original IG method [139].

Advanced AI explainability tools for computer vision, including IG, such as TensorFlow IG, are also
available. These tools can make model predictions during production or when models are being developed.
They offer a comprehensive collection of pixel attribution methods for computer vision and work with
many standard CNNs and vision transformers [138,139]. The IG provides a valuable tool for visualizing and
understanding the decision-making processes of DL models, especially in biomedical signal analysis.

7.10 Shapley Values
Shapley values, which originate from cooperative game theory, have proven to be versatile and impactful

concepts within the realm of ML [140–142]. Their application extends across various domains, offering a
method to equitably distribute the “contribution” of each feature in a model’s prediction. By leveraging the
principles of fairness and cooperation, Shapley’s values provide a nuanced understanding of the individual
impact of features on a model’s output. This fair attribution of contributions is particularly valuable in
scenarios where interpretability and transparency are paramount, allowing stakeholders to grasp the nuanced
roles played by each feature in shaping the final prediction [141]. Integrating Shapley values enhances the
interpretability of ML models and contributes to building trust and understanding in the decision-making
processes of these sophisticated systems. In essence, Shapley’s values bridge cooperative game theory and
ML, providing a principled approach to feature attribution and contribution analysis [142].

In the field of biomedical signals, Shapley values have shown potential. For example, Shapley attributed
ablation with augmented learning (ShapAAL) was proposed for practical time series sensor data classifica-
tion [141]. This method demonstrates that a DL algorithm with a suitably selected subset of the seen examples
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or ablation of the unimportant examples from the given limited training dataset can consistently improve
classification performance under augmented training. In ShapAAL, the subset of training examples that
contribute positively to a supervised learning setup is derived from the notion of coalition games via Shapley
values associated with each of the given inputs’ contributions to the model prediction [141]. Another study
used Shapley values to determine the relative importance of input attributes to the result generated by a
multivariate molecular diagnostic test for an individual sample or patient [142]. Patient subgroups defined
by Shapley value profiles may motivate translational research [142]. Fig. 25 shows an example of the Shapley
values used.

Figure 25: Sample Shapley values for ECG classification for two different rhythms [143] (CC BY 4.0)

In summary, leveraging techniques such as GradCAM, Shapley values, and IG adds interpretability to
model outcomes. Researchers aiming to cultivate robust and dependable DL models are encouraged to adopt
a systematic approach, integrating appropriate methodologies tailored to the intricacies of biomedical signal
data. Fig. 26 illustrates a visual representation comparing these methodologies.

8 Computational Analysis of Different DL Models
When developing DL models for biomedical signals, computational efficiency is crucial because of the

often-limited resources available in medical research and clinical environments [144]. This section evaluates
the computational demands of various model architectures discussed in the previous sections, focusing on
training time, memory requirements, and performance trade-offs associated with each method [145,146].
Understanding these aspects is essential for selecting models that meet performance criteria while remaining
feasible for deployment in real-world healthcare settings.

The computational feasibility of each model depends on the available hardware and performance
needs of the application. Transfer learning and CBAM offer efficient solutions for scenarios with lim-
ited resources, whereas transformers and hybrid models may be preferable when computational power
is available to achieve more nuanced performance [144,147]. By assessing computational requirements
alongside model performance, researchers can optimize DL workflows to fit within available resources,
promoting the effective deployment of biomedical signal processing applications in clinical and research
environments [146,147]. Additionally, as the field progresses, emerging techniques such as model pruning,
quantization, and knowledge distillation can further help reduce the computational overhead of DL models.
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Figure 26: Comparison of methods for interpreting DL in biomedical signals

These techniques aim to simplify complex models without sacrificing performance, making them
more accessible for real-time, resource-constrained applications [145]. As such, combining these optimiza-
tion strategies with the appropriate model architecture could provide a pathway to more scalable and
deployable biomedical signal processing solutions. Table 1 compares the computational analysis results
of the different methods. By understanding these computational demands, researchers can select model
architectures that align with their operational constraints, ensuring an optimal balance between accuracy
and resource efficiency.

Table 1: Computational demand comparison of the DL models

Method type Training time Memory
requirements

Suitability for
real-time

applications
Training from scratch High High Low

Transfer learning Low to medium Medium High
Domain-Specific pretraining Medium Medium Medium

Transformer networks High Very high Low to medium
Convolutional block attention Low Low High

HAN Medium to high High Low to medium
CNN Medium High Medium

RNN/LSTM/GRU High Very high Low
Hybrid Models (e.g.,

CNN-LSTM)
Medium Medium to

High
Medium
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9 Comparison of Existing Datasets of Biomedical Signals
The availability of numerous biomedical signal datasets has supported the recent rapid growth of

DL applications in healthcare. These datasets encompass various signals, such as ECG, EEG, EMG, PPG,
and respiratory sounds. These datasets provide a foundation for developing robust models for classifying,
predicting, and detecting various health conditions. Table 2 summarizes the most widely used and publicly
accessible datasets. Moreover, these datasets provide essential resources for developing and validating DL
models in biomedical signal processing, enabling significant advances in various health and diagnostic
applications. Each dataset has unique properties, sampling rates, and sample sizes, which cater to specific
biomedical signal types and tasks.

Table 2: Comparison of DL methods for cardiac arrhythmia classification

Dataset name Signal type Description Sample size Sampling
rate

Common
applications

PhysioNet challenge
(various years) [148]

ECG, EEG,
PCG

Annual challenges on
tasks like arrhythmia

detection, seizure
prediction

Varies by year Varies Disease detection,
prediction

MIMIC-III waveform
database [149]

ECG, BP, etc. ICU-based dataset with
various biosignals for

patient monitoring

53,423 stays Varies Patient monitoring,
risk assessment

Sleep-EDF
expanded [150]

EEG, EOG,
EMG

Polysomnography
recordings for sleep stage

classification

153
recordings

100 Hz Sleep stage
classification

BCI competition
datasets [151–153]

EEG EEG datasets for BCI
research

Varies 256–512 Hz BCI research, motor
imagery

PhysioBank respiratory
sounds [148]

Respiratory
sounds

Respiratory sound
recordings for respiratory

condition diagnosis

920
recordings

4 kHz Respiratory disease
classification

PTB-XL diagnostic
ECG database [154]

ECG 12-lead ECGs for
cardiovascular disease

diagnosis

21,799 records 500 Hz Cardiovascular
disease diagnosis

CHB-MIT Scalp EEG
Database [155]

EEG Scalp EEGs for epilepsy
and seizure detection

23 patients 256 Hz Seizure detection

IEMOCAP Speech and
Emotion [156–159]

Speech Audio, visual, and
physiological signals for

emotion recognition

10 h 16 kHz Emotion detection

ICBHI 2017 challenge
dataset [160]

Respiratory
sounds

Respiratory sounds for
respiratory disease

classification

6898
recordings

4 kHz Disease
classification

TUH EEG Seizure
Corpus [161]

EEG EEG recordings for seizure
prediction

600 patients 250–500 Hz Seizure prediction

AHA ECG
database [148]

ECG Arrhythmia dataset from
the American Heart
Association (AHAA)

154 records 250 Hz Arrhythmia
detection

Capnobase [162] Capnography,
ECG, SpO2

Capnography and related
signals for respiratory

monitoring

42 subjects 200 Hz Respiratory
monitoring,
capnography

UCD sleep apnea
database [148]

ECG ECG recordings to detect
sleep apnea

35 subjects 250 Hz Sleep apnea
detection

BIDMC PPG and
respiration

dataset [162]

PPG,
respiration

Contains PPG and
respiration signals for
heart rate variability

(HRV) analysis

53 subjects 125 Hz HRV, respiration

(Continued)
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Table 2 (continued)

Dataset name Signal type Description Sample size Sampling
rate

Common
applications

NSRR [163] EEG, EOG,
EMG, ECG

Comprehensive
polysomnography for

sleep studies from
multiple cohorts

3000 subjects Varies Sleep research,
apnea detection

GlobalTIMIT
acoustic-phonetic

speech corpus [164]

Speech High-quality audio
recordings for speech
recognition research

50 speakers 16 kHz Speech recognition,
phonetic analysis

PhysioNet/CinC
Challenge 2020

(ECG) [27]

ECG 12-lead ECG recordings
for atrial fibrillation

detection

43,101
samples

Varies Atrial fibrillation
detection

FlexWear-HD [165] EMG High-density EMG
(HDEMG)

13 subjects
with 8–10

gestures each

4 kHz Gestures
recognition

MESA
polysomnography [166]

PPG, ECG,
EEG, resp,

others

Recordings from
overnight

polysomnography (sleep)
studies

Varies Varies Sleep research,
apnea detection

PPG-DaLiA [167] PPG, ECG,
resp, accel,

EDA

Recordings during
activities of daily living

Varies Varies Activity monitoring,
physiological

analysis
PPG diary [168] Dual

wavelength
PPG

PPG signal measured at
the thumb from a single
participant for 28 days

1 participant Varies PPG signal analysis

Pulse wave
database [169]

PPG, BP, blood
flow, blood vel

Simulated arterial pulse
waves at a range of

common measurement
sites for 4374 virtual

subjects aged 25–75 years,
representative of healthy

adults

4374 virtual
subjects

Varies Cardiovascular
research

Vortal [170] PPG, ECG,
resp

Signals acquired from
young and elderly healthy

subjects at rest

Varies Varies Aging research,
physiological
monitoring

WESAD [171] PPG, ECG,
resp, accel,

others

Recordings at baseline and
during amusement, stress

and meditation

Varies Varies Stress detection,
emotion recognition

Physionet CinC 2017
challenge dataset [172]

ECG Data recorded from
handheld ECG devices,

alongside reference labels
of the rhythm for each

recording

Varies Varies ECG analysis,
arrhythmia
detection

Despite the availability of numerous biomedical signal datasets, several limitations hinder their effec-
tiveness in training robust and generalizable DL models. One major limitation is the lack of diversity in many
datasets. Most datasets are collected from specific patient populations, often in controlled environments,
which limits their applicability to broader or more diverse populations. For example, datasets such as the
MIT-BIH Arrhythmia Database primarily include data from adult patients, making it difficult to generalize
findings to pediatric or geriatric populations. Additionally, many datasets are imbalanced, with certain classes
(e.g., rare diseases or specific arrhythmias) being underrepresented. This imbalance can lead to biased models
that perform well on majority classes but poorly in minority classes, which are often clinically significant.
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Another critical issue is the quality of annotations. While experts meticulously annotate some datasets, others
rely on automated or semiautomated labeling, which may introduce errors. Noise and artifacts in the signals,
especially in datasets collected in real-world settings (e.g., ICUs or wearable devices), further complicate the
training of reliable models. Finally, the size of datasets is often insufficient for training DL models, which
typically require large amounts of data to achieve optimal performance. Small datasets increase the risk of
overfitting and limit the model’s ability to generalize to new data.

To address these limitations, several strategies can be employed. First, data augmentation techniques,
such as synthetic data generation via GANs or time series transformations (e.g., scaling, shifting, or adding
noise), can help increase the size and diversity of datasets. Second, collaborative efforts among institutions
to create larger, more diverse datasets are essential. Initiatives such as federated learning can enable data
sharing while preserving patient privacy, allowing models to be trained on data from multiple sources
without transferring sensitive information. Third, improved annotation protocols, including multiple expert
annotators, should be adopted to reduce labeling errors and ensure consistency. Additionally, active learning
techniques can be used to prioritize the annotation of the most informative data points, reducing the cost
and effort of manual labeling. Finally, standardizing data collection protocols across institutions can improve
the quality and consistency of datasets, making them more suitable for training generalized models. By
addressing these limitations, the biomedical research community can develop more robust datasets that
enable the creation of accurate, reliable, and clinically useful DL models.

To further enhance the utility of biomedical signal datasets, providing detailed comparisons of the
methodologies employed for their analysis can significantly assist practitioners in selecting the most suitable
approaches for their specific tasks. For example, comparing different preprocessing techniques, such as filter-
ing and denoising methods tailored for ECG or EEG signals, can help identify optimal strategies for reducing
noise and improving signal quality. Similarly, highlighting the relative performance of feature extraction
methods, such as time-domain, frequency-domain, and time-frequency analyses, can provide insights into
their effectiveness across various signal types and applications. Additionally, summarizing the strengths
and limitations of widely used ML and DL models such as CNNs for spatial signal patterns, RNNs for
temporal sequences, or hybrid architectures combining multiple modalities can guide researchers in selecting
methods best suited for their datasets. Including benchmarks on publicly available datasets via consistent
metrics, such as accuracy, the F1 score, or the area under the curve (AUC), offers a practical reference
for evaluating and comparing approaches, fostering better decision-making and promoting innovation in
biomedical signal processing.

The issue of overfitting complex models trained on small biomedical datasets represents a significant
challenge that requires careful consideration. Complex deep learning architectures, while powerful in
their ability to model intricate patterns, are particularly susceptible to overfitting when trained on limited
data [173]. This occurs because these models have a high capacity to memorize training examples rather than
learn generalizable features, leading to excellent performance on training data but poor generalizability to
unseen cases [173]. For example, a deep neural network trained on the relatively small MIT-BIH Arrhythmia
Database might achieve near-perfect accuracy on the training set but fail to perform adequately when applied
to data from different populations or institutions [174,175]. Researchers should incorporate multiple datasets
in their experiments to demonstrate and address this issue, especially when evaluating complex models.
The model’s generalizability can be more rigorously assessed by training on one dataset and validating it
on another with different characteristics. Additionally, experiments comparing model performance across
varying dataset sizes can help identify the minimum data requirements for reliable performance and
highlight how overfitting becomes problematic [149]. Techniques such as regularization, dropout, and early
stopping should be systematically evaluated in small biomedical datasets to determine their effectiveness
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in mitigating overfitting while preserving model performance. Through these approaches, the research
community can better understand the limitations of complex models when trained on small datasets and
develop strategies to enhance their generalization capabilities in real-world clinical settings [176,177].

Several strategies can mitigate the overfitting problem in complex models trained on small biomedical
datasets. Regularization techniques such as dropout, L2 regularization, and early stopping have improved
generalization by preventing the model from becoming too specialized in the training data. For example,
studies on the Sleep-EDF expanded dataset have demonstrated that applying dropout regularization can
significantly reduce overfitting in sleep stage classification models [176]. Data augmentation methods,
including synthetic data generation via GANs, have also proven effective in expanding dataset size and
diversity. Research using PhysioNet Challenge datasets has shown that GAN-augmented data can improve
model performance on underrepresented classes [176,177]. Transfer learning represents another promising
approach, where models pretrained on larger datasets from related tasks are fine-tuned on smaller target
datasets. This approach has been successfully applied in ECG analysis, where models pretrained on the PTB-
XL dataset have improved performance when fine-tuned on smaller institutional datasets. By systematically
evaluating these techniques across multiple biomedical signal datasets, researchers can develop more robust
models that are more generalized to diverse clinical settings [176,177].

10 Handling Small and Unbalanced Data from Biomedical Signals for Deep Learning
Biomedical signal datasets often present challenges related to data size and class imbalance. In this

section, we address the issues of small and unbalanced data and discuss strategies to mitigate their impact on
DL model performance. Addressing such data constraints is crucial for achieving accurate and robust results
in biomedical signal analysis.

10.1 Data Augmentation for Small Datasets
Small biomedical signal datasets can limit the capacity of DL models to learn intricate patterns and may

lead to overfitting. Data augmentation is a crucial technique for artificially increasing the dataset size by
applying various transformations to the available data. Random rotations, translations, scaling, and flipping
can create additional samples, enhancing the generalizability of the model [178].

Because of the unique characteristics of biomedical signals, domain-specific augmentation methods
can be applied in addition to conventional data augmentation. For example, in electrocardiogram (ECG)
data, using heart rate and morphology variations can augment the dataset and simulate diverse patient
conditions [14]. Fig. 27 shows the data flow when the augmentation and nonaugmentation methods are used.

10.2 Class-Weighted Loss Functions
Class imbalance is common in biomedical signal datasets, where certain classes may have significantly

fewer samples than others. In such cases, models trained with conventional loss functions may be biased
toward the majority class, leading to poor performance in minority classes [179].

The class-weighted loss functions assign higher weights to the minority classes during training, making
the model more focused on these classes. This approach helps balance the impact of imbalanced data on the
training process, enabling the model to learn from all types effectively [107].
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Figure 27: Comparison of methods for interpreting DL in biomedical signals. Data Flow for DL between Augmentation
and Nono-augmentation

10.3 Ensemble Learning
Ensemble learning is a powerful technique that combines predictions from multiple models to enhance

overall performance. In small and imbalanced biomedical signal datasets, ensemble methods can help
improve classification accuracy and reduce the risk of overfitting [180].

Ensemble learning increases the model’s robustness and generalization capabilities by training multiple
models with different initializations or architectures and combining their outputs through majority voting
or weighted averaging [181]. Fig. 28 shows the block diagram of the ensemble model.

10.4 Transfer Learning with Pretrained Models
As discussed in the previous section, transfer learning is a practical approach when dealing with small

datasets. By leveraging knowledge from pretrained models on large-scale datasets, transfer learning allows
the model to benefit from the representations learned from diverse data [102,115]. Compared with training
models from scratch, fine-tuning pretrained models on the target biomedical signal data can yield superior
performance, especially when the dataset is small or imbalanced [102].

 

Biomedical Signals 

Model 1 

Ensemble Output

Model 2 

Model 3 

Model n 

Figure 28: Block diagram of the ensemble model
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10.5 One-Class Learning
One-class learning can be employed in scenarios where a specific class is rare or only positive samples are

available. This approach treats the problem as a binary classification task, where the objective is to distinguish
the target class from all other courses combined [182]. One-class learning techniques, such as one-class SVM
or isolation forest, are instrumental when dealing with anomalies or rare events in biomedical signal data,
where obtaining sufficient samples of the rare class may be challenging [183]. Fig. 29 shows a general block
diagram of one-class learning.

Incorporating these strategies into the DL pipeline for biomedical signal analysis can lead to more
accurate, robust, and interpretable models, even with small and unbalanced datasets. By addressing data
limitations and biases, researchers can unlock deep learning’s full potential in uncovering valuable insights
from biomedical signals.

10.6 Few-Shot Learning
Few-shot learning (FSL) is an ML technique that aims to design ML models that can adapt to new tasks,

given only a few training examples [184,185]. This is particularly useful in biomedical signals, where the data
available for each class can often be relatively limited [184]. In biomedical applications, obtaining large and
labeled datasets can be challenging because of data privacy concerns, ethical considerations, and the cost and
effort involved in data annotation [185]. Therefore, FSL becomes crucial when the model must generalize
and quickly make accurate predictions with minimal labeled examples. The ability of FSL to leverage prior
knowledge and adapt to new tasks efficiently holds great promise for advancing the capabilities of ML models
in the complex and data-limited domain of biomedical signal processing [186].

Biomedical Signals Dataset 
Feature Extractor 

Using Deep 
Learning Model 

Feature 
Representation 

One-Class 
Classifier 

Anomaly Score 

Binary Output 

Figure 29: Block diagram of one-class learning

FSL can effectively handle small and unbalanced biomedical signal data for deep learning. For example, a
previous study demonstrated the applicability of FSL for electrocardiogram (ECG) signal classification [185].
The study trained deep CNNs to recognize different heart disease classes with limited examples. Compared
with the traditional SoftMax-based classification network, the FSL network has been shown to have greater
accuracy in classifying healthy/sick patients [185].
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10.7 One-Shot Learning
One-shot learning is a concept in ML that aims to make accurate predictions given only a single example

of each new class [186,187]. This is especially relevant in biomedical signal analysis, where only one or a few
examples of a particular class may be available. Acquiring labeled data for rare medical conditions or specific
disease states can be an intricate task in biomedical research. One-shot learning addresses this challenge by
emphasizing the importance of leveraging a minimal number of examples to enable the model to discern
patterns and characteristics unique to each class [186]. The ability of one-shot learning to draw meaningful
insights from limited data is crucial in medical diagnostics, where novel and rare diseases necessitate adaptive
and efficient machine-learning approaches for accurate and timely detection. This approach holds significant
promise for enhancing the diagnostic capabilities of ML models in biomedical signal analysis [187].

For example, one study utilized one-shot learning to model complex biological systems from biomedical
data streams [177]. Despite uncertainty about the data and model, scientists and clinicians can often learn
the spatiotemporal dynamics of a complex biological system from just one or a few examples. Given limited
exposure to a concept, category, or situation, this innate human ability to make accurate inferences is
commonly called one-shot learning [187].

10.8 Zero-Shot Learning
Zero-shot learning (ZSL) is a learning paradigm that recognizes unseen classes during test time; that is, it

classifies objects of classes that have not been observed during training [188–190]. This approach is beneficial
in biomedical signal analysis, where there are often many potential classes (e.g., types of diseases), but only
a few may have sufficient training examples. New diseases and medical conditions continually emerge in the
expansive biomedical research landscape, making it challenging to anticipate and gather adequate labeled
data for each potential class [189,190]. ZSL addresses this challenge by enabling ML models to generalize their
knowledge to classes not part of the training dataset. This capability is crucial for the timely identification
and classification of novel diseases or conditions, allowing the model to be extrapolated from its existing
knowledge to make informed predictions in a real-world biomedical context where the spectrum of diseases
varies and evolves [188].

For example, a study proposed a ZSL framework, signal recognition and reconstruction convolutional
neural network (SR2CNN), for signal recognition [190]. The key idea behind the SR2CNN is to learn
the representation of the semantic feature space of the signal such that semantic features have more
tremendous minimal interclass distances than maximal intraclass distances [190]. The proposed SR2CNN
can discriminate signals even if no training data are available for some signal classes. Fig. 30 shows a
performance comparison between the few-shot, one-shot, and zero-shot methods.

11 Toward Big Data Solutions in Biomedical Signal Analysis
The performance of DL algorithms is enhanced when large amounts of data are used, and DL can

learn efficiently from more extensive data [44]. Like other fields, biomedical signal big data present a unique
opportunity to unlock the full potential of these powerful algorithms. Big data generally refers to massive,
complex, growing datasets that include biomedical signals such as EEGs, ECGs, and EMGs [191]. Fig. 31
shows how the size of biomedical signal data increases over time and the primary application of big data in
DL applications in biomedical signals.
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Figure 30: Performance comparison between the few, one, and zero-shot methods

Using big data to train DL models for biomedical signals has different advantages, such as the following:

1. Generalizability: Large biomedical signal datasets enhance the performance of DL models by training
them on different patterns and variations in the signal. This leads to more robust predictions of the
models by allowing the DL models to generalize the weights to unseen data in real-world scenarios [45]

2. Discovering new and profound features: DL finds and extracts deep patterns within data. With big data,
each pattern has enough samples, allowing DL to find distinct features to identify these patterns. This
reduces the dependence on manual feature extraction and the time for feature engineering [192].

3. Detecting Rare Events: Biomedical signals can have rare or abrupt anomalies similar to other signals.
Using big data increases the opportunity to detect and learn these infrequent events. Therefore, DL
models trained on big data have become helpful in identifying these rare events, leading to enhanced
diagnoses [191,192].

However, although there are many benefits to using big data in DL for biomedical signals, different
challenges still exist. Fig. 32 summarizes these challenges.

The significant challenges associated with the use of big data for DL in biomedical signals can be
summarized as follows:

1. Data Preprocessing and Management: The massive volume of big data requires the development of
robust preprocessing algorithms. These algorithms should be able to deal with noise and reduce noise.
Additionally, these algorithms should include data normalization and segmentation techniques to
reduce the amount of data. Finally, integrating these algorithms with efficient data storage and retrieval
systems is essential for effectively managing the data [191,193].
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Figure 31: Changes in the size of biomedical signal big data over time and the major applications of big data in DL for
biomedical signals

Figure 32: Significant big data challenges in DL for biomedical signals

2. Computational Resources: Using big data to train DL models requires significant computational
resources. Since this training will utilize high-performance computing clusters or cloud-based plat-
forms, these platforms have become essential for handling processing requirements [191].

3. Data Privacy and Security: Sharing and distributing medical data, including signals, is very sensitive.
Therefore, developing and implementing robust anonymization techniques and secure storage solutions
is paramount [193].

Using big data to train DL models offers powerful tools for accessing biomedical signals. Big data
can detect different patterns, anomalies, and information. Therefore, researchers can develop more robust
models for disease diagnosis, monitoring, and personalized healthcare solutions. Relying on deep learning
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models on large-scale annotated datasets presents significant challenges in the biomedical domain [191,193].
Acquiring high-quality biomedical signal data requires specialized equipment, controlled environments, and
often longitudinal studies that span months or years. This data collection process is financially expensive and
resource intensive, requiring coordination among healthcare providers, research institutions, and patients.
Furthermore, the ethical considerations surrounding patient privacy and informed consent add complexity
that can slow data acquisition efforts [191].

Annotation of biomedical signals represents another substantial bottleneck. Accurate labeling of ECG,
EEG, or EMG signals typically requires expertise from medical professionals, who can identify subtle patterns
indicative of pathological conditions [191,192]. This manual annotation process is time-consuming and
limited by the availability of qualified specialists. For example, annotating rare cardiac arrhythmias in ECG
data may require cardiologists to review hours of recordings to identify fleeting anomalies. The cost of such
expert annotation can become prohibitive when scaling to big data dimensions, creating a tension between
the need for comprehensive training data and practical limitations in dataset creation [191,192].

To mitigate these annotation challenges, researchers are exploring several innovative approaches. Semi-
supervised learning techniques leverage labeled and unlabeled data, allowing models to learn from the
underlying data distribution while requiring fewer annotated examples. Synthetic data generation via GANs
offers another promising avenue, creating realistic biomedical signals that can supplement real datasets
while avoiding privacy concerns [192]. Collaborative annotation frameworks that distribute labeling tasks
across multiple experts or institutions can help accelerate annotation while maintaining quality standards.
While not eliminating the need for annotated data, these approaches can significantly reduce the annotation
burden and make large-scale biomedical signal analysis more feasible in resource-constrained research
environments [192].

12 Conformal Predictions for DL Models
Conformal prediction (CP) provides a rigorous statistical framework to quantify uncertainty in deep

learning (DL) models by producing calibrated prediction sets with guaranteed coverage probabilities [194].
Unlike traditional methods focusing on point estimates, CP ensures reliability under minimal assump-
tions, making it critical for high-stakes domains such as healthcare, autonomous systems, and financial
forecasting [194,195]. By constructing prediction sets rather than single-point estimates, CP guarantees a
user-defined coverage probability (e.g., 95%) under the assumption of exchangeability (i.e., the calibration
and test data are drawn from the same distribution). This approach is particularly valuable in biomedical
applications such as arrhythmia classification, seizure detection, and anomaly segmentation, where model
reliability is paramount for clinical decision making [196,197]. Consider a training dataset

D = {(xi , yi)}n
i=1

and a deep learning model fθ parameterized by θ. CP operates by defining a nonconformity measure S(x , y)
that quantifies how “atypical” a new observation is relative to the calibration data [196,198].

12.1 Nonconformity Scores
The nonconformity score is the core component of CP, measuring how unusual a data point is relative

to the calibration set. For classification tasks, a common choice for the nonconformity score is based on the
predictive probability [197]:
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12.1.1 Probability-Based Score
S (xi , yi) = 1 − Pθ (yi ∣xi) ,where Pθ(yi ∣ xi) does the model assign the probability to the actual class.

12.1.2 Margin-Based Score

S (xi , yi) = 1 − [Pθ (yi ∣ xi) − Pθ (yrunner-up ∣ xi)]

which accounts for the difference between the actual class probability and the next highest class probability.

12.1.3 Negative Log-Likelihood

S (xi , yi) = − log Pθ (yi ∣ xi)

which emphasizes the calibration of low-probability predictions.
For regression tasks, the typical choices are as follows [198]:

12.1.4 Absolute Error

S (xi , yi) =∣ yi − fθ (xi) ∣

which measures the absolute difference between the actual value and the model’s prediction [185].

12.1.5 Absolute Quantile-Based Scores

S (xi , yi) =max (yi − f upper
θ (xi) , f lower

θ (xi) − yi)

where f upper
θ and f lower

θ are quantile regression models that estimate upper and lower prediction
bounds, respectively.

12.2 Calibration and Quantile Thresholding
After computing the nonconformity scores {si}m

i=1 on C, the quantile threshold qα for a desired
miscoverage level α is determined as [196]:

qα = Quantile1−α {s1 , s2, . . . , sm}

This threshold ensures that, under the assumption of exchangeability, the new observation falls within
the prediction set with a probability of at least 1 − α [198].

12.3 Constructing Prediction Sets
For a new test x∗, the conformal prediction sets are constructed as follows:

12.3.1 Classification

Γ (x∗) = {y ∈ Y ∣ S (x∗, y) ≤ qα}
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While CP guarantees coverage, prediction sets may include many classes. Techniques such as top-k
conformal prediction or label-conditional thresholds can reduce ambiguity. For example, a prediction set
containing multiple possible diagnoses can be presented to clinicians with associated probabilities in medical
imaging classification.

12.3.2 Regression
The prediction interval is given by:

ŷ∗ ∈ [ fθ (x∗) − qα , fθ (x∗) + qα]

One-sided intervals or prediction bands can be constructed for time series forecasting. In healthcare
applications such as glucose level prediction, these intervals help patients understand possible future values
and make informed decisions.

12.4 Integration with DL Architectures
CP can be integrated with deep learning architectures, including CNNs, RNNs, transformer models,

and hybrid systems. Notable points include:
• Efficient Computation

Deep models inherently output probabilities or continuous predictions, facilitating direct nonconfor-
mity score computation. However, mechanisms such as dropout and batch normalization may impact these
scores and the resulting prediction sets [196–198].
• Mondrian Conformal Prediction

For multiclass problems, partitioning the feature space into subgroups (a Mondrian approach) can allow
for class-conditional conformal prediction, which addresses heterogeneous uncertainty across classes [197].
• Adaptive Conformal Prediction

In dynamic applications such as real-time monitoring with wearable biosignal devices, adaptive CP
methods adjust prediction sets based on incoming data to address nonstationary distributions [198].

12.5 Challenges and Limitations
While CP provides strong theoretical guarantees, several challenges remain:

1. Exchangeability assumption: CP relies on data exchangeability. Recalibration is needed in nonstation-
ary settings (e.g., concept drift in ECG monitoring during different patient activities).

2. Prediction set size: Large prediction sets may hinder clinical usability. Research into compact yet
reliable sets remain an open problem.

3. Computational overhead: While minimal during inference, calibration requires a held-out dataset,
which may limit its use in low-data regimes. Techniques such as split conformal prediction or jackknife+
can mitigate this.

4. Multitask settings: Extending CP to multitask or multilabel scenarios requires careful design of
nonconformity scores that account for label correlations.

12.6 Recent Advances
Recent research has extended CP to new domains:

• Generative models: Conformalized GANs for reliable sample generation
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• Reinforcement learning: CP for uncertainty-aware decision-making in autonomous systems
• Federated learning: CP frameworks that maintain privacy while providing coverage guarantees across

distributed datasets

These advances demonstrate the growing relevance of CP in ensuring reliable and trustworthy AI
systems across diverse applications.

13 Challenges
DL techniques have significantly advanced the processing of biomedical signals; these techniques

have shown great potential for extracting meaningful insights from large-scale datasets and improving the
accuracy of diagnostic and prognostic models. However, several challenges are associated with applying DL
to biomedical signals, as discussed below [106,199].

13.1 Data Acquisition and Quality
One of the primary challenges of DL for biomedical signals is acquiring high-quality data. A large

amount of labeled data is crucial for training DL models. However, in many cases, obtaining such data is
difficult because of the invasive nature of some medical procedures and the high cost of acquiring high-
quality signals. Additionally, biomedical signals are susceptible to various artifacts, including noise, baseline
drift, and motion artifacts, which affect their quality [35,106].

13.2 Preprocessing
Preprocessing is a crucial step in preparing biomedical signals for deep learning. Preprocessing

techniques such as filtering, normalization, and artifact removal are necessary to remove unwanted noise
and artifacts that affect model performance. However, determining the most appropriate method for
preprocessing data can be challenging, and selecting inappropriate methods can lead to poor model
performance [200].

13.3 Model Interpretability and Explainability
Interpretability and interpretability are essential in medical applications, as clinicians must understand

and trust the models’ decisions. However, DL models are often considered “black boxes,” and understanding
how they make decisions can be challenging. Therefore, developing methods to interpret and explain model
findings is crucial for adopting DL in clinical practice [201].

13.4 Integration with the Clinical Workflow
Integrating DL models into the clinical workflow can be challenging owing to several factors, including

regulatory compliance, data privacy concerns, and the need for models to be user friendly and accessible
to clinicians. Additionally, models must be developed and validated in diverse populations to ensure
generalizability [202].

13.5 Limited Sample Size and Generalizability
However, DL models require large amounts of data. However, obtaining large datasets may be chal-

lenging in some medical applications, such as rare diseases. Additionally, DL models may need to be more
balanced with training data, leading to poor generalizability to new datasets. Therefore, developing methods
to train DL models effectively on small datasets and improve their generalizability is essential [35,40].
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13.6 Hardware and Computational Requirements
However, DL models require significant computational resources for practical training, and deploying

them on standard hardware is challenging. Specialized hardware, such as graphical processing units (GPUs),
may be necessary for preparing DL models. However, not all institutions have access to such resources,
making it challenging to develop and deploy DL models in clinical practice [35,203].

13.7 Limited Expertise
DL techniques require specialized data science, computer science, and mathematics expertise. However,

not all medical institutions may have access to such expertise, making it challenging to develop and deploy
DL models effectively [106,202].

13.8 Computational Time and Cost
However, DL models can be computationally expensive and require considerable time and resources

for training and deployment. Additionally, developing and maintaining DL models can be costly, making it
challenging for small medical institutions to adopt these techniques [35,36,106,199].

13.9 Regulatory Compliance
Regulatory compliance is a significant challenge in DL applications for biomedical signals. The biomed-

ical research and healthcare field is subject to stringent regulatory requirements to ensure patient safety,
data privacy, and ethical standards. DL models applied to biomedical signals, such as electrocardiograms,
electroencephalograms, or medical imaging data, must adhere to these regulations. Compliance entails
navigating complex frameworks such as the Health Insurance Portability and Accountability Act (HIPAA),
the General Data Protection Regulation (GDPR), and the Food and Drug Administration (FDA) guidelines.
Meeting these standards necessitates meticulous attention to data handling, consent management, secure
storage, and rigorous validation of DL models. Striking a balance between innovation and regulatory
compliance is crucial to fostering the adoption of DL techniques and maximizing their potential in improving
healthcare outcomes while upholding the necessary safeguards [35,39,40,56].

13.10 Multimodal Data Fusion
One of the primary challenges in multimodal data fusion for biomedical signal analysis is the complexity

of data integration. Biomedical signals often come from various sources, such as ECGs, EEGs, and medical
imaging, each with different data formats, scales, and structures. Integrating this diverse information to
provide comprehensive insights requires careful data preprocessing and alignment.

Another critical challenge is selecting the appropriate fusion strategy, whether late or early. Late
fusion involves training separate DL models for each modality and combining their outputs later through
techniques such as averaging or voting. However, early fusion combines modalities at the input level, allowing
the model to learn joint representations. The choice of fusion strategy greatly influences the model’s ability
to capture and leverage the relationships between different modalities, making it crucial to select the most
suitable approach for a specific biomedical signal analysis task.

13.11 Model Uncertainty and Confidence Estimation
Estimating model uncertainty and confidence in DL models for biomedical signal analysis presents

several challenges. Bayesian neural networks (BNNs) quantify uncertainty in predictions by incorporating
probability distributions over the model’s weights. However, implementing BNNs introduces computational
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overhead because of the need for multiple samples during inference, which can significantly impact training
time and resource requirements.

Moreover, interpreting uncertainty estimates can be challenging in medical decision-making scenarios.
Understanding the model’s confidence level in its predictions is crucial for ensuring patient safety and
building trust in AI systems. Proper communication and visualization of uncertainty measures are essential
to convey the model’s reliability effectively.

13.12 Adversarial Attacks and Defenses
The DL models used in biomedical signal analysis are susceptible to adversarial attacks, where impercep-

tible perturbations to the input can lead to incorrect predictions. However, generating sufficient adversarial
examples for biomedical signal data poses a significant challenge, especially when dealing with limited
patient-specific data due to privacy concerns and ethical considerations.

Additionally, adversarial attacks designed for one model might transfer to others, highlighting the
importance of building robust defenses that can withstand attacks across various architectures. While
effective in enhancing model robustness, adversarial training requires careful tuning and might only partially
eliminate the adversarial vulnerability.

13.13 Handling Long Sequences and Temporal Dependencies
Biomedical signals, such as time series data and EEG signals, often exhibit long sequences and

temporal dependencies. Incorporating attention mechanisms, memory networks, or transformers to handle
these long-term dependencies introduces increased model complexity. Fine-tuning and hyperparameter
optimization are crucial for achieving optimal performance while minimizing computational costs.

Data preprocessing is another challenge when dealing with long sequences. Segmentation and padding
are commonly used but may introduce artifacts or affect model performance. Maintaining the right balance
between sequence handling and data preprocessing is essential to ensure accurate and efficient analysis of
extended biomedical signal data.

13.14 Ethical Considerations
However, DL models may raise ethical concerns about data privacy, bias, and fairness. Developing

methods to address these concerns is crucial to ensure that DL is used responsibly in clinical practice [35,40].
Many examples have appeared because ethics are not considered when applying DL models in the medical
field. Moreover, DL models designed to identify high-risk patients for specific diseases can be biased if
trained on skewed data. For example 2019, researchers analyzed a healthcare system algorithm to identify
patients at high risk for costly hospital readmissions [204]. The model was found to be biased against black
patients, potentially leading to unequal allocation of resources and potentially delaying necessary care. This
demonstrates how societal biases in healthcare data can be amplified by AI models, leading to discriminatory
practices in patient care.

Moreover, DL models often rely on big data, such as sensitive patient data, medical records, and genetic
information. If no proper safeguards are implemented, data breaches can occur, compromising patient
privacy and potentially causing significant harm. For example, in 2017, the NHS in the UK faced criticism
about sharing patient data with DeepMind (a Google subsidiary) without adequate patient consent [205].
This incident raises concerns about the potential for data breaches and unauthorized access to sensitive
medical information when DL models are used in clinical settings.
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13.15 AI Regulations and Acts
The increasing awareness of ethical concerns surrounding DL in clinical settings has led to the

development of AI regulations and acts in various regions to establish ethical frameworks for responsible
development and use. Many countries have started establishing rules to guide the development and deploy-
ment of AI in medical sectors. The USA and the European Union are the two most important AI regulations.
In the USA, to recognize the potential risks associated with AI, the National Institute of Standards and
Technology (NIST) is actively developing guidelines for trustworthy AI. These guidelines focus on ensuring
fairness, accountability, and transparency throughout the AI development lifecycle [206]. The European
Union has taken a more comprehensive approach with the GDPR, which sets strict data privacy regulations
for AI development and deployment [207]. This regulation aims to protect individuals’ data rights and ensure
responsible data handling practices within the AI field.

Overall, these regulations highlight a growing commitment to harnessing the potential of DL in
healthcare while mitigating the associated ethical risks. By prioritizing patient well-being, fairness, and
data security, these frameworks pave the way for the responsible and ethical application of DL models in
clinical settings.

13.16 Model Deployment and Ethical Considerations
Model deployment in the medical domain requires careful consideration of ethical aspects and patient

safety. It must also adhere to regulatory standards and undergo rigorous quality assurance procedures. Every
time an AI system is deployed, steps and measures are necessary to ensure the safety and efficacy of DL
models in clinical settings [35,40].

13.17 Critical Analysis of Challenges
Data dependency and generalizability remain core challenges across DL applications in biomedical

signals. Many studies highlight that DL models, particularly CNNs and GANs, depend heavily on large,
clean datasets for high performance. In practice, obtaining such data is difficult because of privacy laws, data
variability, and resource constraints. For example, a study by [208] reported that GANs trained on clean, stan-
dardized ECG datasets struggled with generalizability when tested on noisy, real-world data, demonstrating
an accuracy drop of over 15% [208]. Additionally, models trained on homogeneous demographic datasets
can exhibit bias, limiting their applicability across diverse patient populations [13,64] reported that an EEG
seizure detection model trained on adult data performed significantly worse when applied to pediatric EEG
data, highlighting the urgent need for more representative datasets. These limitations indicate that without
addressing data dependency and diversity, the potential of DL in biomedical signals may be unrealized in
practical clinical applications.

13.18 Overfitting in Small Datasets
When trained on small biomedical datasets, complex deep learning models face significant overfitting

challenges. These models, particularly deep CNNs and RNNs, require substantial data to be generalized
effectively. When trained on limited samples, they may memorize noise or idiosyncrasies in the training
data rather than learning robust features. For example, studies using the MIT-BIH Arrhythmia Database
have shown that complex neural networks can achieve near-perfect training accuracy but perform poorly
on external validation sets from different institutions or populations [174]. Similarly, research on sleep stage
classification via the Sleep-EDF expanded dataset demonstrated that models trained on small subsets of data
exhibited more than 20% accuracy decreases when tested on independent cohorts [174]. Several strategies
have been employed to address overfitting, including data augmentation with GANs [175], regularization
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techniques [149], and transfer learning [177]. Despite these approaches, overfitting remains a critical concern
that limits the translation of DL models from research settings to clinical practice.

13.19 Impact of Data Privacy, Security, and Ethical Concerns on Clinical Workflow Integration
Integrating DL into clinical workflows offers significant potential to improve healthcare outcomes, but

data privacy, security, and ethical concerns pose substantial challenges. These issues can delay adoption,
increase costs, and create resistance among clinicians, ultimately hindering the effective deployment of AI
technologies in healthcare settings. Data privacy is a significant barrier, as patients may hesitate to share
sensitive health data due to privacy risks, limiting the availability of high-quality datasets for training AI
models [35,106]. Strict regulations such as the HIPAA and GDPR further complicate integration by requiring
robust data protection measures, which can be resource intensive and time consuming [35,40]. Security risks,
such as cyberattacks and data breaches, also threaten the adoption of AI systems, particularly for smaller
institutions lacking advanced cybersecurity resources [35,203].

Ethical concerns, including bias and lack of transparency, further impede integration. Models trained
on biased datasets can produce discriminatory outcomes, exacerbating healthcare disparities [204]. Many
DL models’ “black-box” nature makes it difficult for clinicians to trust or understand their decisions, leading
to resistance in adopting these technologies [209]. Additionally, fragmented implementation due to a lack of
standardized protocols can limit the scalability and generalizability of AI systems [202]. A combination of
technological, policy, and educational strategies is essential to address these challenges. Federated learning
and differential privacy can protect data while enabling collaborative model training [210,211]. Explainable
AI (XAI) techniques can improve transparency and build trust among clinicians [209]. Policy measures,
such as ethical AI guidelines and regulatory sandboxes, can ensure compliance and foster innovation [207].
Training programs for healthcare professionals and patient education can also promote responsible AI
adoption [108,202].

In conclusion, addressing data privacy, security, and ethical concerns is critical for integrating DL into
clinical workflows. By leveraging technological advancements, implementing robust policies, and fostering
collaboration, healthcare institutions can overcome these barriers and harness AI’s full potential to improve
patient care.

14 Data Privacy Solutions
AI has been instrumental in proposing data-driven solutions to address data privacy concerns. Sig-

nificant development in this regard has been the field of fair representation learning evolution over the
last decade [34,212,213]. This field focuses on three main areas: 1) mitigating bias in AI models to ensure
fair treatment across different demographic groups; 2) enhancing interpretability to make AI decision-
making processes more transparent and understandable; and 3) developing techniques that allow learning
representations from data while preserving privacy, particularly in sensitive domains such as healthcare or
finance [214,215]. By advancing fair representation learning, AI researchers and practitioners aim to foster
ethical and equitable AI systems that respect individual privacy, minimize biases, and empower users to trust
and comprehend the decisions made by intelligent algorithms [34,213]. This multidimensional approach
contributes to the responsible deployment of AI technologies in various sectors, promoting inclusivity and
ethical considerations in developing and applying intelligent systems [212]. Below are different solutions
discussed. These solutions pave the way for more ethical and fair AI systems, ensuring that all can enjoy the
benefits of AI without compromising individual privacy and fairness.
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14.1 Fair Machine Learning
Fair machine learning eliminates algorithmic bias in automated decision-making based on ML mod-

els [34,212]. The goal is to ensure that decisions made by these models are not unfairly biased toward or
against protected subgroups in the population. To achieve fairness, researchers often employ techniques
such as adversarial training, reweighting of samples, or adjusting decision boundaries to account for
demographic imbalances [216–218]. Moreover, interpretable models contribute to the fairness agenda by
allowing stakeholders to understand the factors influencing predictions, enabling the identification and
rectification of biased patterns. This approach aligns with the broader movement toward responsible and
ethical AI development, emphasizing the importance of addressing biases that may perpetuate societal
inequalities [217,218]. In addition to addressing bias, fair representation learning plays a pivotal role in
constructing AI models sensitive to privacy concerns. As AI systems increasingly leverage massive amounts
of data, particularly in sensitive domains such as healthcare, preserving the privacy of individuals becomes
paramount [216,218]. Techniques such as federated learning, differential privacy, and secure multiparty com-
putation enable the extraction of meaningful insights from distributed data sources without compromising
the confidentiality of individual records. By incorporating fair representation learning into the development
pipeline, AI practitioners aim to balance the need for accurate and practical models and the imperative
to safeguard individual privacy, fostering a more responsible and trustworthy landscape for deploying AI
technologies [216].

14.2 Fair Representation Learning
In fair representation learning, the aim is to learn latent representations that are informative for a

particular task while removing all sensitive factors (e.g., gender or race) contained in the input data [214].
This approach helps in producing fair classifiers via data preprocessing [214]. By disentangling task-relevant
information from sensitive attributes, fair representation learning contributes to developing models that
can make accurate predictions without reinforcing or perpetuating biases associated with these sensitive
characteristics [215,219]. This separation allows for creating models prioritizing fairness, ensuring that
decisions are based on factors directly relevant to the task rather than inadvertently incorporating and
perpetuating societal prejudices [220,221]. As such, fair representation learning has become a cornerstone in
the quest for more equitable and unbiased AI systems.

14.3 Dataset Bias Unlearning
Dataset bias unlearning, or machine unlearning, is an emerging field that selectively erases learned

data from ML models [213]. This process is crucial in cases where learning models are associated with bias,
which could result from biased datasets or human mistakes1. Unlearning approaches are used to reduce
and eliminate these biases [213]. The significance of dataset bias unlearning lies in its capacity to rectify
and adapt models when confronted with evolving and dynamic datasets [222]. As models are exposed to
new information, selectively unlearning biased patterns become instrumental in maintaining model fairness
and accuracy. This adaptability is especially vital in real-world applications where data distributions may
change over time, ensuring that ML systems remain robust, unbiased, and aligned with ethical considerations
throughout their operational life cycles [213,222].

14.4 Federated Learning
Federated learning provides a new and promising technique for developing and training DL models

for biomedical signals while preserving medical data privacy [210]. Unlike traditional DL model training,
federated learning decentralizes the training process; the trained model’s coefficients and parameters
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are transferred to the central server, keeping medical data on institution servers or individual devices
available [211]. Fig. 33 shows the flowchart of federated learning in a hospital environment.

Figure 33: Federated learning for the hospital environment

In general, federated learning consists of 5 main steps [210,211,223]:

• Model Distribution: The central server receives the model’s parameters from each local server located
at each hospital and then distributes the global DL model parameters backward to local servers at
the hospitals.

• Local Training: This step includes training a local DL model at each hospital server based on the hospital’s
local biomedical signal data (e.g., EEG, ECG). This ensures that the model parameters are only uploaded
to the central server, not the patient data and biomedical signals.

• Model Update: The updated local DL model parameters are uploaded to the central server.
• Global Model Aggregation: The central server aggregates the parameters based on the uploaded

parameters from all hospital servers. This effectively combines the knowledge gained by each local DL
method into one super DL model.

• Improved Global Model: The aggregated model parameters are used to update the global model and are
distributed for another round of local training.

Overall, these steps are executed iteratively, allowing the global model to be generalized to all hospital
data without compromising patient privacy and by only sharing the knowledge gained by each local
model [223]. Additionally, this technique allows the training of robust DL models and enables institu-
tions to gain combined knowledge from diverse datasets. However, federated learning has several issues,
such as frequent communication between servers to upload and broadcast data, which can be resource
intensive; additionally, the data distributions may vary significantly across institutions, affecting model
performance [223].
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15 Software Toolkit for Deep Learning
DL has become a key technology in AI and ML, in which sophisticated models are created to process

large amounts of data. To facilitate the development and implementation of these models, various software
tools have been developed to make DL accessible to researchers, developers, and data scientists [99,224].
Among the most popular algorithms are MATLAB [36], TensorFlow [224], PyTorch [225], Keras [99],
Caffe [226], and Apache MXNet [227]. Each of these frameworks offers a range of features and functionalities
that make it easier to develop and implement sophisticated DL models.

In addition to these frameworks, other software tools have gained prominence in the DL community.
One such tool is MATLAB, which provides various tools and functions for developing and implementing
DL models. MATLAB offers a range of DL functions, including neural networks, CNNs, and RNNs, as well
as a range of visualization tools for exploring and analyzing DL models [36].

Another critical player in the DL community is Google Brain. Google Brain is an AI research project at
Google that aims to develop advanced ML algorithms and technologies. Various tools and frameworks for
deep learning, including TensorFlow, one of the world’s most popular DL frameworks, have been developed.
Google Brain has also been involved in developing other software tools and technologies for deep learning,
such as Keras and TensorFlow.js, which enable DL models to run in the browser [99,224].

Overall, the availability of software tools has played a crucial role in advancing deep learning. Ten-
sorFlow, PyTorch, Keras, Caffe, and Apache MXNet are among today’s most popular DL frameworks.
Additionally, MATLAB and Google Brain are essential players in the DL community, offering a range of tools
and frameworks for developing and implementing DL models. As DL continues to evolve, we expect more
advanced software tools to be developed to meet the growing demand for DL models. Fig. 34 shows the main
tools for DL model development and design for biomedical signals.

Deep
Learning 

MATLAB

Tensorflow

PyTorch

Keras

Caffe

Apache
MXNet 

Figure 34: Main tools for developing DL models for biomedical signals

16 Real-World Case Studies: Applications of DL in Biomedical Signal Analysis
In this section, we present real-world case studies that demonstrate the successful application of DL

in biomedical signal analysis. These case studies highlight the significant contributions of DL techniques in
different medical domains and their potential for improving healthcare outcomes. The studies are categorized
based on the algorithm used in the paper.
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16.1 CNN
CNNs are popular in biomedical signal analysis, mainly when signals are represented as images (e.g.,

spectrograms). CNNs detect spatial features and patterns, making them effective in arrhythmia detection
and respiratory sound classification. The robustness of CNNs to noise allows them to focus on relevant
patterns, increasing model accuracy even in real-time scenarios. However, CNNs struggle with capturing
temporal dependencies, a limitation for sequential data such as ECG and EEG signals. The applications of
CNNs in biomedical signals range from arrhythmia classification to EEG artifact removal. Table 3 shows the
list of applications.

Table 3: List of CNN applications

Application area Description of study Performance
Cardiac arrhythmia
classification [228]

Used CNN for identifying
arrhythmias in ECG data

Accuracy: 87.22%, Sensitivity:
87.81%, Specificity: 86.98%

Respiratory sound
classification [229]

Employed CNN to classify
respiratory sounds

Accuracy: 95.56%, Sensitivity:
93.29%

Blood pressure
estimation [230]

Estimated blood pressure using
PPG signals and CNN

Systolic MAE: 3.52 mmHg,
Diastolic MAE: 2.20 mmHg

EEG artifact
removal [231]

Used CNN for EEG eye artifact
removal

MAE: 8.05, RMSE: 2.935

Coronary artery
diseases detection [232]

Use Parallel CNN models for
detection of coronary artery

diseases

Accuracy: 98.49%, Sensitivity:
98.57%, Specificity:98.57% and

F1-score: 98.89%
Assessing pediatric

sleep apnea
severity [233]

Residual CNN for assessing
pediatric sleep apnea severity

through SpO2 signals

Accuracy: 75.95%

16.2 RNN, LSTM, and GRU
RNNs and their variant LSTM networks are well suited for analyzing sequential biomedical data such

as ECG and EEG, where time dependence is crucial. RNNs capture temporal patterns, effectively detecting
cardiac arrhythmia and muscle fatigue. While LSTMs overcome some of the limitations of traditional RNNs
by preserving long-term dependencies, they are computationally intensive and may be overfitting with
limited data. These models have demonstrated high accuracy across applications, especially in arrhythmia
detection. Table 4 shows the list of applications.

Table 4: List of RNN, LSTM, and GRU applications

Application area Description of study Performance
Cardiac arrhythmia
classification [30]

Used RNN for arrhythmia
detection in ECG data

Accuracy: 99.39%, Sensitivity:
99.40%, Specificity: 99.40%

Muscle fatigue
detection [234]

Real-time fatigue detection with
RNN on sEMG signals

Accuracy: 95.18%, Sensitivity:
94.08%, Specificity: 96.38%

Blood pressure
estimation [235]

Predicted blood pressure with
LSTM using PPG signals

Systolic MAE: 2.03 mmHg,
Diastolic MAE: 1.18 mmHg

(Continued)
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Table 4 (continued)

Application area Description of study Performance
EMG signal

classification [8]
Used RNN for analyzing temporal

dependencies in EMG data
Sensitivity: >98%, Specificity:

>98%
Human activity
analysis [236]

Use LSTM based model for human
activity analysis using wearable

sensory data

Accuracy: >96%, Sensitivity:
>96%, Precision: >96%

Type-2 diabetes
prediction [61]

Used RNN with LSTM and GRU
for predicting type-2 diabetes from

genomic and tabular data

Accuracy: 81.0%, Sensitivity:
81.5%, Specificity: 79.3%,

F1-Score: 85.6%, MCC: 0.568

16.3 Hybrid Models (CNN-RNN, CNN-LSTM, CNN-SVM)
Hybrid models that combine CNNs with RNNs or LSTMs capture spatial and temporal features in

biomedical signals, making them suitable for complex signals requiring multidimensional analysis. The
CNN layers extract spatial patterns, whereas the RNN/LSTM layers handle temporal dependencies, enabling
robust classification in respiratory sound and EMG analysis tasks. Although computationally intensive and
more prone to overfitting, these models are decisive for applications that need pattern recognition and
temporal understanding. Combining a CNN with a support vector machine (SVM) allows for effective
feature extraction with a CNN followed by robust classification with an SVM, which is beneficial for high-
dimensional data. The CNN-SVM approach is helpful in applications with limited labeled data, as SVM
helps maximize the decision boundary. However, this combination is computationally intensive, particularly
for large datasets. The CNN-SVM is helpful in applications such as muscle fat detection, providing strong
classification performance even with small datasets. Table 5 shows the list of applications.

Table 5: List of hybrid model applications

Application area Description of study Performance
Respiratory sound
classification [237]

Used CNN-LSTM for classifying
respiratory sounds

Accuracy: 76.39%, Sensitivity:
52.78%, Specificity: 84.26%

EMG signal
classification [238]

Applied CNN-LSTM for capturing
muscle activity patterns in EMG

data

F1-Score: 95.8%

Respiratory diseases
diagnosis [239]

CNN-LSTM model for unbiased
detection of respiratory diseases

Accuracy: 89.6%

Cardiac arrhythmia
detection on 12-lead

ECG [240]

Hybrid model for Cardiac
arrhythmia detection using 12-lead

ECG

Accuracy: 99.41%, Precision:
99.15%, Specificity: 99.68%,

F1-Score: 99.21%
Muscle fatigue
detection [241]

CNN-SVM applied for muscle
fatigue detection in sEMG signal

Accuracy: 86.69%

Pulmonary diseases
detection [242]

CNN-SVM pulmonary diseases
detection using lung sound signals

Accuracy: 89.47%
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16.4 Empirical Analysis of the Methodologies
16.4.1 CNNs

CNNs are essential architectures for processing biomedical signals. This analysis evaluates their perfor-
mance across various applications via research papers applying CNN models to domains. Table 6 Empirical
analysis of the CNN models.

Table 6: Empirical analysis of the CNN models

Application Model
type

Accuracy/Metric Dataset
description

Key findings

Lung sound
classification

CNN 93.26%
(ensemble)

RALE lung
sounds

program

CNN outperforms
handcrafted feature-based

methods
Eye blink

artifact removal
CNN MAE of

3.52–2.20
mmHg

MIMIC III
database

CNN-based method
significantly outperforms

ICA and regression
methods

Blood pressure
estimation

CNN +
Transfer
Learning

MAE of 3.52
mmHg (SBP),
2.20 mmHg

(DBP)

MIMIC III
database

Transfer learning with
CNN achieves
state-of-the-art

performance
Patient-specific

ECG
classification

1-D CNN 98.9% (VEB),
96.4% (SVEB)

MIT-BIH
arrhythmia

database

1-D CNN achieves superior
classification performance

Coronary
artery disease

detection

CNN +
Autoen-

coder

98.49% Self-collected
ECG and PCG

signals

Multimodal approach with
CNN and autoencoder
significantly improves

detection

CNNs have emerged as powerful tools in biomedical signal analysis, demonstrating exceptional perfor-
mance across various healthcare applications. This analysis evaluates the effectiveness of CNNs in different
biomedical signal processing tasks based on recent research findings. In lung sound classification, CNNs
outperform traditional feature-based methods, achieving an accuracy of 93.26% through automatic feature
extraction from raw audio signals. This superior performance suggests that CNNs are particularly well suited
for analyzing the complex patterns in lung sound recordings, where traditional handcrafted features may fail
to capture the full range of diagnostic information.

For eye blink artifact removal from EEG signals, CNN-based methods show substantial improvements
over conventional techniques such as independent component analysis (ICA) and regression. The CNN
approach achieves a mean absolute error (MAE) of 3.52 mmHg for systolic blood pressure (SBP) and
2.20 mmHg for diastolic blood pressure (DBP), demonstrating its effectiveness in learning the complex
relationships between artifacts and clean signals. A CNN-based transfer learning approach has achieved
state-of-the-art performance in blood pressure estimation from photoplethysmography (PPG) signals. This
method requires only 50 data samples per person to train accurate personalized models, addressing the
challenge of limited patient-specific data while maintaining high accuracy.
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For patient-specific ECG classification, one-dimensional CNN architectures have demonstrated excep-
tional performance. Studies have shown that a simple 1-D CNN can achieve 98.9% accuracy for ventricular
ectopic beats and 96.4% for supraventricular ectopic beats on the MIT-BIH arrhythmia database. This
performance highlights the effectiveness of CNNs in capturing the temporal patterns and morphological
features present in ECG signals. A multimodal CNN approach that combines ECGs, PCGs, and their
coupling signals achieves 98.49% coronary artery disease detection accuracy. This architecture demonstrates
how combining different data modalities through advanced neural network architectures can significantly
enhance diagnostic performance.

These findings demonstrate that CNNs consistently outperform other architectures in biomedical signal
analysis because they automatically extract meaningful features from raw data. The effectiveness of these
methods in capturing spatial and temporal patterns makes them particularly suitable for complex biomedical
signals. While other architectures have strengths, CNNs are the most versatile and practical choice for many
biomedical signal processing tasks across diverse healthcare applications.

16.4.2 RNN, LSTM, and GRU
RNNs, LSTM networks, and GRUs are essential architectures for processing sequential data. This

analysis evaluates their performance across various applications via research papers that apply RNN, LSTM,
and GRU models to different domains. Table 7 Empirical analysis of the RNN, LSTM, and GRU models.

Table 7: Empirical analysis of the RNN, LSTM, and GRU models

Application Model type Accuracy
(%)

Dataset
description

Key findings

ECG signal
classification

LSTM 99.39
MIT-BIH

arrhythmia
database

LSTM outperforms standard
RNN in capturing long-term
dependencies in ECG data

GRU 99.06 GRU shows good performance
but slightly less than LSTM

Blood pressure
estimation

LSTM 90.1
MIMIC II
database

LSTM-based multistage model
shows superior performance

Traditional
RNN

Lower Traditional RNN performs worse
than LSTM

Muscle activity
detection

LSTM 97%
(simulated)

90%
(absolute)

Simulated and
real sEMG

signals

LSTM outperforms
threshold-based methods

Muscle fatigue
classification

LSTM 95.18 sEMG signals
from 20

participants

LSTM outperforms CNN and
SVM models

Human activity
recognition

LSTM-GRU 99.06

UCI-HAR and

Ensemble model with LSTM and
GRU shows best performance

LSTM 96.61 LSTM performs well alone but
slightly less than ensemble model

(Continued)
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Table 7 (continued)

Application Model type Accuracy
(%)

Dataset
description

Key findings

GRU 94.06 WISDM
datasets

GRU shows good performance
but slightly less than LSTM

Traditional
RNN

91.65 Traditional RNN performs worse
than specialized RNN variants

Type-2
diabetes

prediction

LSTM 81.8
PIMA Indian

dataset

LSTM outperforms other
machine learning models

Traditional
RNN

Lower Traditional RNN performs worse
than LSTM

In biomedical signal analysis tasks, LSTM consistently outperforms traditional RNNs and GRUs in
performance. For ECG signal classification via the MIT-BIH arrhythmia database, the LSTM model achieves
an accuracy of 99.39%, significantly outperforming standard RNN models. This suggests that the ability
of LSTM to capture long-term dependencies in sequential data makes it particularly suitable for ECG
analysis. In blood pressure estimation from photoplethysmography signals via the MIMIC II database, the
LSTM-based multistage model attains an accuracy of 90.1%, outperforming traditional RNN approaches.
For muscle activity detection from surface electromyography (sEMG) signals, LSTM achieves 97% accuracy
on simulated data and 90% accuracy on accurate data, clearly outperforming threshold-based methods. In
muscle fatigue classification using sEMG signals from 20 participants, the LSTM model reached 95.18%
accuracy, surpassing the CNN and SVM models. While the GRU performs well in these medical applications,
it generally falls slightly short of the accuracy of the LSTM.

Ensemble models that combine LSTM and the GRU demonstrate the best performance in wearable
sensor data for human activity recognition tasks. The LSTM-GRU ensemble model achieves 99.06% accuracy
on the UCI-HAR and WISDM datasets, suggesting that combining different RNN architectures can leverage
their strengths. The LSTM model alone performs well at 96.61% accuracy, whereas the GRU model achieves
94.06% accuracy. Traditional RNN models perform worse than these specialized RNN variants, indicating
that the LSTM and GRU architectures are better suited for capturing the complex patterns in human
activity data.

In genomic and tabular data analysis for type 2 diabetes prediction via the PIMA Indian dataset, the
LSTM model performs strongly, with an accuracy of 81.8%, outperforming traditional machine learning
approaches. This finding suggests that LSTM’s ability to handle long-term dependencies and complex
patterns makes it suitable for genomic sequence analysis. Traditional RNN models perform worse than LSTM
in this context, further highlighting the advantages of LSTM for such data types.

Based on empirical evidence, LSTM generally outperforms traditional RNNs and GRUs in most
applications, particularly in healthcare signal analysis and human activity recognition. While the GRU offers
computational efficiency advantages, it typically achieves slightly lower accuracy than LSTM in these tasks.
Ensemble approaches combining different RNN architectures can improve performance, but LSTM remains
the most consistent and accurate choice for sequential data analysis across diverse domains.
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16.4.3 Hybrid Models (CNN-RNN, CNN-LSTM, CNN-SVM)
CNNs have emerged as powerful tools in biomedical signal analysis, with exceptional performance

across different applications. Based on recent research findings, this analysis evaluates the effectiveness of
hybrid models using CNNs and RNN, LSTM, or SVM in different biomedical signal processing tasks. Table 8
Empirical analysis of the hybrid models.

Table 8: Empirical analysis of hybrid models

Application
domain

Model
type

Accuracy/Metric Dataset
description

Key findings

Respiratory
disease

diagnosis

CNN-
LSTM

84.1%
(COVID-19),

84.6%
(normal)

Self-collected
cough audio

dataset

Hybrid model outperforms
traditional ML models and

demonstrates robust
performance across

demographics
Muscle fatigue

recognition
CNN-SVM 80.33%–

86.69%
Custom sEMG
dataset with 20

participants

CNN-SVM model outperforms
traditional feature-based

methods
Cardiac

arrhythmia
diagnosis

CNN-
BiGRU

with
attention

99.41%
accuracy

MIT-BIH
arrhythmia

database

Hybrid model significantly
outperforms previous

state-of-the-art methods

Human
activity

recognition

DeepConv-
LSTM

95.8%
accuracy

OPPORTUNITY
dataset

Combination of CNN and
LSTM layers effectively captures

spatial and temporal features
Lung sound
classification

CNN-
LSTM with
focal loss

73.69%–
76.39%

accuracy

ICBHI 2017
Respiratory

Sound Database

Hybrid model with focal loss
effectively handles data

imbalance
Pulmonary

disease
detection

Multi-Task
Autoencoder-

SVM

89.47%–
93.08%

accuracy

KAUH database Hybrid model demonstrates
superior performance compared

to traditional methods

In respiratory disease diagnosis using cough audio signals, hybrid CNN-LSTM models have shown
marked effectiveness. The RBF-Net model achieved 84.1% accuracy for COVID-19 detection and 84.6% for
standard samples. This hybrid architecture effectively combines CNNs for feature extraction with LSTM
layers to capture temporal dependencies in cough audio signals. The model’s robust performance across
diverse demographics highlights its potential for real-world applications in respiratory disease screening.
A CNN-SVM framework that significantly outperforms traditional feature-based methods was developed
for muscle fatigue recognition via surface electromyography (sEMG) signals. Their model achieved clas-
sification accuracies ranging from 80.33% to 86.69% on a custom dataset with 20 participants. The CNN
component automatically extracted spatial and temporal features from raw sEMG signals, whereas the SVM
classifier provided robust classification performance. This approach eliminates the need for manual feature
engineering, which is typically time-consuming and requires domain expertise.
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A hybrid CNN-BiGRU model with multihead attention achieved 99.41% accuracy on the MIT-BIH
arrhythmia database for cardiac arrhythmia diagnosis. This architecture effectively combines CNNs for
feature extraction with bidirectional gated recurrent units (BiGRUs) to model temporal dynamics in ECG
signals. The multihead attention mechanism further enhances the performance by focusing on the most
relevant features for classification. The model significantly outperforms previous state-of-the-art methods,
demonstrating the power of combining CNNs with recurrent architectures and attention mechanisms
for ECG analysis. For human activity recognition via wearable sensors, a DeepConvLSTM framework
outperforms previous approaches by 4% on average on the OPPORTUNITY dataset and 9% on an 18-
class gesture recognition task. Their model combined CNN layers for feature extraction with LSTM layers
to capture temporal dependencies in sensor data. The architecture demonstrated the effectiveness of deep
learning in automatically extracting features from raw sensor data without requiring extensive preprocessing.

A hybrid CNN-LSTM network with focal loss achieved state-of-the-art ICBHI 2017 Respiratory
Sound Database results for lung sound classification. Their model effectively handled data imbalance while
achieving accuracies ranging from 73.69% to 76.39% across different evaluation strategies. The combination
of CNNs for feature extraction and LSTM for temporal modeling, along with the focal loss function,
demonstrated superior performance compared with traditional methods. A hybrid multitask autoencoder-
SVM model that achieved 89.47% to 93.08% accuracy on the KAUH database was used for pulmonary
disease detection from lung sound signals. Their framework combined an autoencoder for unsupervised
feature learning with a supervised classifier, optimizing classification accuracy and signal reconstruction and
integrating SVM classification with CNN-extracted features enhanced performance, particularly in scenarios
with limited training data.

These findings demonstrate that CNNs consistently outperform other architectures in biomedical signal
analysis because they automatically extract meaningful features from raw data. The effectiveness of these
methods in capturing spatial and temporal patterns makes them particularly suitable for complex biomedical
signals. While other architectures have strengths, CNNs are the most versatile and practical choice for
many biomedical signal processing tasks across diverse healthcare applications. The hybrid approaches that
combine CNNs with other architectures (such as LSTM, attention mechanisms, or SVM) often achieve the
highest performance, suggesting that future research should continue to explore these combinations for
specific biomedical applications.

16.5 Comparisons of Methodologies
In biomedical signal processing, the choice of DL methodology depends on the nature of the data, the

specific task, and the available computational resources. Below, we provide a detailed comparison of the most
commonly used methodologies, including CNNs, RNNs, and hybrid models (e.g., CNN-LSTM).

16.5.1 CNN
1. Strengths

• Spatial Feature Extraction: CNNs excel at capturing spatial patterns in data, making them ideal
for tasks where the input can be represented as an image (e.g., spectrograms of ECG or EEG
signals) [3,36].

• Hierarchical Learning: CNNs automatically learn hierarchical features, starting from low-level
patterns (e.g., edges) to high-level abstractions (e.g., arrhythmia patterns in ECG signals) [1,243].

• Robustness to Noise: CNNs are relatively robust to noise, especially when combined with data
augmentation techniques such as random cropping or rotation [36,243].
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2. Weaknesses
• Limited Temporal Modeling: CNNs struggle to capture temporal dependencies in sequential data,

such as EEG or PPG signals, where the order of data points is crucial [3,36,44].
• High Computational Cost: Training CNNs on large datasets can be computationally expensive,

mainly when deep architectures with many layers are used [44].
3. Best use cases

• ECG Classification: CNNs have been widely used for arrhythmia detection and achieved high
accuracy on datasets such as the MIT-BIH Arrhythmia Database [27].

• Image-Based Signal Analysis: CNNs are adequate for tasks where signals are transformed into
images, such as time-frequency representations (e.g., spectrograms or scalograms) [2,25].

16.5.2 RNN, LSTM, and GRU
1. Strengths

• Temporal Dependency Modeling: RNNs, particularly LSTM and GRU variants, are designed to
handle sequential data, making them ideal for tasks such as EEG seizure detection or PPG-based
blood pressure estimation [244].

• Memory of Past Inputs: RNNs can remember information from previous time steps, which is crucial
for tasks where the context of past data points influences the current prediction [244].

2. Weaknesses
• Vanishing Gradient Problem: Traditional RNNs suffer from the vanishing gradient problem, which

limits their ability to learn long-term dependencies. LSTMs and GRUs mitigate this issue but are
still computationally expensive [244].

• Sensitivity to Noise: RNNs can be sensitive to noise in the input data, requiring careful preprocessing
and regularization [244].

3. Best use cases
• EEG Signal Analysis: RNNs are widely used for seizure detection, sleep stage classification, and BCI

applications [244].
• Time Series Prediction: RNNs are adequate for tasks such as predicting blood pressure or glucose

levels from continuous monitoring data [244].

16.5.3 Hybrid Models (CNN-RNN, CNN-LSTM, CNN-SVM)
1. Strengths

• Combining Spatial and Temporal Features: Hybrid models, such as CNN-LSTM, leverage the
strengths of both CNNs (spatial feature extraction) and RNNs (temporal dependency modeling).
This makes them highly effective for tasks that require both spatial and temporal analysis, such as
PPG-based blood pressure estimation or respiratory sound classification [26,125].

• Improved Performance: Hybrid models often achieve state-of-the-art performance on complex
tasks by capturing both local patterns and long-term dependencies [125,240].

2. Weaknesses
• Computational Complexity: Hybrid models are computationally intensive and require significant

resources for training and inference [26,125].
• Risk of Overfitting: The increased complexity of hybrid models makes them more prone to

overfitting, especially when trained on small datasets [26,125].
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3. Best use cases
• Multimodal Signal Analysis: Hybrid models are ideal for tasks that involve multiple types of signals,

such as combining ECG and PPG data for cardiovascular disease diagnosis [26,125].
• Complex Temporal Tasks: Tasks such as predicting disease progression or detecting anomalies in

long-term monitoring data benefit from the combined strengths of CNNs and RNNs [125].

16.6 Critical Analysis of Current Applications
The studies reviewed here highlight significant advancements in the use of DL for biomedical signal

processing, particularly in enhancing diagnostic accuracy and automating feature extraction. Models such
as CNNs and RNNs have demonstrated high performance in tasks such as lung sounds classification and
wheeze segmentation [229,245], often achieving accuracy levels above 90% on controlled datasets, including
PhysioNet’s MIT-BIH Arrhythmia Database and the TUH EEG Corpus [233]. These successes underscore
deep learning’s ability to capture complex, nonlinear patterns in biomedical data that are challenging for
traditional methods. Despite these achievements, however, the reliability of these models often depends on
the availability of high-quality, large-scale datasets, a condition rarely met in clinical practice. Studies have
shown that models trained on clean, standardized data can underperform on noisy or inconsistent real-world
data, indicating a critical gap in data robustness.

Another common issue is the limited generalizability of these models across diverse patient populations
and varying clinical conditions. Many studies rely on homogeneous datasets that lack representation from
different demographic or health backgrounds, resulting in models that may perform poorly in broader
clinical settings [241]. For example, an ECG model trained on adult data may struggle when applied to
pediatric cases because of physiological differences. In contrast, studies have shown that performance
declines when models are tested on demographically diverse datasets [30]. DL models, particularly GANs
and hybrid models, often demand substantial computational resources, which are typically unavailable in
many healthcare settings. This computational complexity restricts real-world applicability, particularly in
underresourced medical facilities that lack high-performance computing hardware [30].

Finally, interpretability and ethical concerns further limit the clinical adoption of these DL models.
Although some studies have employed tools such as Grad-CAM and SHAP for interpretability [95,105], the
practical value of these techniques in clinical contexts remains unclear. DL models are frequently criticized as
black-box algorithms, hindering trust among clinicians, who require transparent insights to make informed
decisions. Ethical and regulatory considerations also pose challenges, especially when patient privacy and
data protection laws such as the GDPR and HIPAA are in play [21,246]. Many studies do not address how
to handle these legal requirements, data anonymization, or secure data management, which are essential
for real-world applications. As a result, while these models demonstrate promising capabilities, addressing
their limitations in data dependency, generalizability, computational demands, interpretability, and ethical
compliance will be essential for successful clinical integration.

17 From Lab to Real-Life: Realizing DL in Biomedical Signal Processing
Integrating DL into biomedical signal processing has transformed the field, enabling the transition

from theoretical research to practical, life-changing applications. DL models have bridged the gap between
laboratory innovation and real-world implementation because of their remarkable ability to analyze complex
and noisy biomedical signals. This section explores how these technologies, initially developed in research
settings, now underpin tools and systems widely used in the clinical, consumer, and research domains. From
wearable devices that monitor heart rhythms to AI-powered diagnostic tools for disease detection, these
applications demonstrate the profound impact of DL on patient care, diagnostics, and treatment planning.
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By examining real-world examples, we highlight the challenges overcome, the factors driving this evolution,
and the transformative role of DL in advancing healthcare outcomes.

17.1 Apple Watch–Atrial Fibrillation Detection
The Apple Watch incorporates DL algorithms for atrial fibrillation (AFib) detection via PPG signals. The

device processes PPG signals in real time by employing RNNs, identifying irregular heart rhythms indicative
of AFib. This feature, validated through large-scale clinical studies such as the Apple Heart Study [247], has
received FDA clearance and is now widely used by millions of users for early detection and monitoring of
cardiac conditions.

17.2 AliveCor—AI-Powered ECG Interpretation
AliveCor’s KardiaMobile is an FDA-approved personal ECG device in which CNNs detect atrial

fibrillation and other arrhythmias. The device pairs with a smartphone application, enabling users to record
and analyze real-time ECG data. The CNN model processes signal features and provides instant feedback,
empowering users with actionable health insights. This innovation has seen widespread cardiovascular
monitoring adoption among clinicians and patients [248].

17.3 Tempus–AI in Precision Oncology
Tempus, a leading health technology company, utilizes DL to analyze genomic and transcriptomic

signals alongside clinical data for precision oncology. Tempus AI models predict treatment outcomes and
optimize therapy selection for cancer patients. The system integrates DL pipelines into hospitals and research
institutions, directly impacting clinical decision-making [249].

17.4 SleepScore Max-Sleep Analysis and Tracking
The SleepScore Max device uses DL algorithms to analyze breathing and movement signals for sleep

stage classification. Its noncontact sensors collect respiratory and motion data, which are then processed via
hybrid DL models to provide insights into sleep quality and patterns. The product is widely used in consumer
markets and research studies for personalized sleep improvement recommendations [250].

17.5 iRhythm-Zio Patch for Cardiac Monitoring
iRhythm Technologies’ Zio Patch is a wearable device for long-term cardiac rhythm monitoring.

Powered by DL algorithms, it analyzes ECG data over extended periods, detecting arrhythmias and other
abnormalities. The Zio Patch has received FDA approval and is used in clinical practice to diagnose
conditions that require continuous monitoring, such as atrial fibrillation and bradycardia [251].

17.6 Bridging the Gap: Advancing Practical Deployment
These real-world applications demonstrate how DL has evolved from research to market-ready prod-

ucts, delivering significant benefits in biomedical signal processing. The transition from academic research
to commercial success involves overcoming numerous challenges, including scalability, interoperability, and
user acceptance [250]. However, the successful integration of DL technologies into healthcare highlights their
potential to revolutionize diagnostics, monitoring, and treatment [248]. The success of these applications in
the stock market underscores several critical factors:

1. Regulatory Approvals: Achieving FDA or equivalent clearances validates their reliability and safety.
Regulatory approval is a rigorous process that ensures that technology meets stringent standards for
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efficacy and safety, which is crucial for gaining trust among healthcare providers, investors, and end-
users. For example, FDA clearance opens doors to the U.S. market and serves as a benchmark for global
markets, enhancing the product’s credibility and market potential [202,207].

2. User-Centric Design: Seamless integration into consumer devices or clinical workflows increased
adoption rates. A key aspect of this is the intuitive design that caters to healthcare professionals and
patients. For example, wearable devices monitoring vital signs must be easy to use, comfortable, and
provide actionable insights without extensive training. Similarly, clinical tools must integrate smoothly
with existing electronic health records (EHR) systems to avoid disrupting workflows, increasing their
acceptance and utility in real-world settings.

3. Real-World Validation: Extensive testing ensured these tools met real-world demands in diverse envi-
ronments. Beyond controlled laboratory settings, real-world validation involves testing the technology
in various clinical and nonclinical scenarios to ensure robustness and reliability. This includes evaluating
performance across patient populations, environmental conditions, and usage patterns. Real-world
validation not only demonstrates the technology’s practical applicability but also helps identify and
address potential issues before its widespread deployment [248–250].

Moreover, the financial performance of companies leveraging these technologies in the stock market
reflects investor confidence in their long-term viability and impact. As these technologies continue to mature,
they are likely to drive further innovation, creating new opportunities for growth and improving patient
outcomes globally. The convergence of advanced algorithms, regulatory support, and user-friendly design
is paving the way for a new era in biomedical signal processing. DL plays a central role in transforming
healthcare delivery.

18 Black-Box Challenge: DL Interpretability in Clinical Practice
The “black-box” nature of DL models presents significant challenges for their trust and acceptance in

clinical applications. Unlike traditional rule-based systems or simpler machine learning models, DL models
often operate as opaque systems where human experts do not easily understand the relationship between
input data and output predictions. This lack of transparency raises concerns about reliability, accountability,
and safety in healthcare settings where decisions can have life-or-death consequences.

18.1 Critical Need for Interpretability in Healthcare
In clinical practice, interpretability is not merely a desirable feature but also a fundamental requirement.

Healthcare providers must understand why a model makes a particular diagnosis or recommendation as
follows:

• Validation of the clinical relevance of the predictions
• Identifying potential errors or biases in the model
• Integrate model insights with their professional judgment
• Explain decisions to patients and justify treatment plans

The opacity of DL models creates barriers to these essential clinical processes. A study in 2019
highlighted that while DL models can achieve remarkable accuracy in medical imaging tasks, their inability
to provide transparent explanations for predictions remains a significant obstacle to widespread clinical
adoption [252].
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18.2 Real-World Application Examples Illustrating the Black-Box Challenge
18.2.1 Cardiology

Cardiac monitoring devices that use DL to detect arrhythmias must provide interpretable results for
clinicians to trust. A DL model developed for arrhythmia detection from ECG signals has achieved high
accuracy but faces resistance in clinical settings because of its lack of transparency regarding which ECG
segments or features contribute to its classification [14].

18.2.2 EEG Seizure Detection
Deep learning models have demonstrated high accuracy in detecting epileptic seizures from EEG

signals, with sensitivity exceeding 90% in specific applications [13]. These models analyze complex temporal
patterns in EEG data to identify seizure activity. However, they typically output a binary classification
(seizure/no seizure) without indicating which specific temporal or spectral features contributed to the
prediction. For example, a DL model might flag a seizure event in an EEG recording without specifying
whether the detection was based on increased theta activity, decreased alpha waves, or specific spike-and-
wave patterns. This lack of transparency makes it difficult for clinicians to validate the model’s decision or to
understand potential false positives/negatives.

18.3 Approaches to Enhance Interpretability
To address these challenges, researchers have developed various interpretability techniques:

• Feature importance visualization: Methods such as local interpretability model-agnostic explanations
(LIME) and Shapley additive explanations (SHAP) values help identify which input features most
influence model predictions [105,253,254]

• Attention mechanisms: These allow models to highlight specific regions of input data that contribute to
decisions, which is particularly useful in image and signal analysis [105]

• Prototypal networks: These networks identify representative examples from the training data that are
similar to the input being analyzed, providing clinicians with concrete examples to understand model
reasoning [253]

19 Future Directions
DL has revolutionized many fields, and its prospects in biomedical signals hold immense potential for

advancing healthcare and improving patient outcomes. By leveraging the power of deep neural networks,
researchers and clinicians can extract valuable insights from complex biomedical data, paving the way
for more accurate diagnostics, personalized treatments, and innovative healthcare solutions. First, DL
algorithms can enhance the analysis and interpretation of biomedical signals, such as ECGs, EEGs, and
EMGs. These algorithms can automatically detect patterns, anomalies, and abnormalities in signals, enabling
earlier and more accurate detection of diseases. For example, DL models have shown promising results in
detecting cardiac arrhythmias and epileptic seizures, allowing timely interventions and reducing the risk
of complications.

Second, DL can facilitate the development of intelligent medical devices and wearable technologies. By
integrating DL algorithms into these devices, real-time monitoring and analysis of biomedical signals can
be performed, providing continuous health monitoring and early warning systems for patients. This can be
particularly useful in managing chronic diseases, where regular monitoring is essential. DL can also enable
the extraction of valuable biomarkers from signals, aiding in predicting and preventing diseases.
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Third, DL can contribute to precision medicine by facilitating the development of personalized treat-
ment strategies. DL algorithms can identify patient-specific patterns and predict treatment outcomes by
leveraging large amounts of patient data, including genetic information, medical records, and biomedical
signals. This can help clinicians select the most effective therapies, reduce adverse effects, and optimize
treatment plans tailored to individual patients.

Furthermore, DL can assist in drug discovery and development processes. DL models can identify
potential drug targets, predict drug efficacy, and optimize drug design by analyzing large datasets, including
molecular structure, genomics, and clinical trial data. This can significantly accelerate the drug discovery
pipeline and lead to the development of novel therapies for various diseases.

Finally, DL can support medical research by enabling the integration and analysis of heterogeneous
data sources. Biomedical signals can be combined with other data types, such as imaging data, electronic
health records, and omics data, to understand diseases and their underlying mechanisms comprehensively.
DL algorithms can integrate and learn from these diverse datasets, leading to discoveries and insights that
can advance our understanding of complex diseases and inform the development of innovative treatments.

Despite these promising prospects, challenges remain, including model interpretability and data pri-
vacy. The black-box nature of DL models hinders their adoption in critical medical applications where
model interpretability is essential. Researchers are actively exploring methods for making DL models more
interpretable, fostering trust among healthcare professionals and leading to broader acceptance in clinical
settings. Moreover, the sensitive nature of biomedical data demands stringent privacy measures. Federated
learning offers a solution by allowing models to be trained across multiple institutions without sharing
raw data, preserving patient privacy while benefiting from collective knowledge. Implementing privacy-
preserving techniques will be crucial in encouraging healthcare institutions to collaborate and leverage the
full potential of DL in biomedical signals.

20 Transforming Healthcare with Deep Learning: Unlocking the Power of Biomedical Signals
DL has emerged as a powerful tool in biomedical signal analysis, exhibiting remarkable success in

various applications, such as disease diagnosis, image classification, and predictive modeling. In the future,
the prospects of DL in biomedical signals present many exciting opportunities to transform healthcare and
medical research [43]. One of the most promising prospects is the advancement of personalized medicine. DL
algorithms can learn intricate patterns from diverse biomedical data, enabling the development of tailored
treatment strategies for individual patients. This approach can optimize therapeutic outcomes, minimize
adverse effects, and improve patient satisfaction. DL has demonstrated the potential to predict drug responses
based on genetic information, paving the way for more comprehensive personalized treatment plans [43].

Real-time monitoring and decision support systems are another area where DL holds immense poten-
tial. With DL algorithms, wearable devices and implantable sensors can continuously analyze biomedical
signals and provide instantaneous feedback to healthcare providers and patients. This real-time monitoring
can aid in the early detection of anomalies and prompt intervention, enhancing patient outcomes [255].
Furthermore, integrating DL with medical imaging data and biomedical signals could revolutionize disease
diagnosis and prognosis. Multimodal learning techniques can combine information from various sources,
providing a more comprehensive view of a patient’s health status. For example, integrating electrocardiogram
(ECG) data with medical images improved the accuracy of heart disease diagnosis. This approach can lead to
earlier and more accurate diagnoses, allowing timely interventions and improved patient management [256].

Despite these promising prospects, challenges remain, including model interpretability and data pri-
vacy. The black-box nature of DL models hinders their adoption in critical medical applications where
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model interpretability is essential. Researchers are actively exploring methods for making DL models
more interpretable, fostering trust among healthcare professionals and leading to broader acceptance in
clinical settings [43]. Moreover, the sensitive nature of biomedical data demands stringent privacy measures.
Federated learning offers a solution by allowing models to be trained across multiple institutions without
sharing raw data, preserving patient privacy while benefiting from collective knowledge. Implementing
privacy-preserving techniques will be crucial in encouraging healthcare institutions to collaborate and
leverage the full potential of DL in biomedical signals [256].

Overall, the prospects of DL in biomedical signals hold enormous potential to revolutionize health-
care delivery and medical research. The development of personalized medicine, real-time monitoring,
multimodal learning, model interpretability, and privacy-preserving approaches is expected to drive the
adoption of deep understanding in various clinical applications, ultimately improving patient care and
advancing medical knowledge. Fig. 35 illustrates the potential impact of DL in revolutionizing healthcare
through biomedical signal analysis. It depicts a futuristic healthcare scenario where deep learning-enabled
technologies are pivotal in diagnosis, treatment, and personalized patient care.

Figure 35: Potential impact of DL in revolutionizing healthcare through biomedical signals
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21 Advantages and Disadvantages of DL in Biomedical Signals
DL appears to be an emerging tool for practical healthcare applications. It offers numerous benefits

but faces significant challenges. Understanding DL strengths and weaknesses is crucial for practical appli-
cations in biomedical signals. Below, we outline the key advantages and disadvantages of using DL for
biomedical signals.

21.1 Advantages
• High accuracy: DL outperforms ML in processing and analyzing complex biomedical signals when a

suitable model is designed and applied.
• Automatic feature extraction: Automatic feature extraction can learn directly from raw data in the time

or frequency domain, eliminating manual feature engineering.
• Scalability: The ability to handle large and high-dimensional datasets is essential in fields such as

genomics and neuroimaging.
• Versatility: This method can be applied to various tasks, including image-based diagnostics, signal

classification, and personalized treatment. Additionally, it can handle multiple inputs simultaneously
from different data types.

21.2 Disadvantages
• Data requirements: Large, labeled datasets are needed, which are often difficult to obtain because of

privacy and cost issues.
• Computational demands: Significant computational power and specialized hardware are needed, which

can be a barrier for some researchers and institutions.
• Hard interpretability: The model predictions’ “black box” nature makes understanding them in clinical

settings challenging. More training is required to understand the model predictions fully.
• Risk of overfitting: Overfitting, especially with small datasets, leads to poor generalization of new data.
• Ethical and privacy concerns: Raise issues related to patient data confidentiality and the ethical use of

AI in healthcare.

By examining these advantages and disadvantages, we provide a balanced perspective on using DL
in biomedical signals, highlighting the factors that must be addressed for successful integration into
healthcare applications.

22 Advancing AI in Healthcare: Strategic Research Directions and Technical Pathways for Enhanced
Patient Care

Integrating AI into healthcare systems represents one of our most transformative technological advance-
ments. Since its conceptualization in the 1950s, AI has evolved from simple pattern recognition algorithms to
sophisticated machine learning models capable of processing complex medical data. Advances in computing
power, the availability of large-scale health datasets, and innovations in deep learning architectures have
accelerated this evolution [257,258].

AI applications in healthcare now span a wide range of medical disciplines, including diagnostic imag-
ing, personalized treatment planning, drug discovery, and patient monitoring [259,260]. These technologies
have demonstrated remarkable potential for improving diagnostic accuracy, optimizing treatment protocols,
and enhancing operational efficiency within healthcare systems. For example, AI-powered imaging analysis
has achieved diagnostic performance comparable to that of human experts in some instances, whereas
predictive models have enabled early intervention for high-risk patients [261]. Despite these advances,
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significant challenges remain in translating AI capabilities into widespread clinical practice. Data quality,
algorithmic bias, interpretability, and patient privacy hinder adoption [262]. Additionally, there is a critical
need for research that addresses the human factors in AI implementation, including clinician trust, workflow
integration, and the preservation of the essential human element in patient care [263,264].

This paper identifies specific research directions and technical pathways that can overcome these
barriers and accelerate the development of AI systems that truly enhance patient outcomes while supporting
healthcare professionals. By focusing on these strategic areas, researchers can contribute to creating AI tools
that are technically advanced, clinically practical, and ethically sound. The following subsection discusses
and proposes research directions and technical pathways for AI in healthcare.

22.1 Explainable AI (XAI) Development
• More transparent AI models that can justify their diagnostic or treatment recommendations should be

created [264]
• Implementing techniques such as layer-wise relevance propagation or attention mechanisms to highlight

which patient features influence AI decisions
• Develop standardized evaluation metrics for model interpretability in medical contexts

22.2 Federated Learning Frameworks
• Designing decentralized learning systems that allow AI models to be trained across multiple healthcare

institutions without sharing raw patient data
• Implement secure aggregation protocols to protect patient privacy while enabling knowledge sharing
• Creating benchmarking standards to evaluate the performance of federated learning models against

centralized approaches

22.3 AI Robustness and Validation
• Establishing rigorous testing protocols for AI models under various clinical scenarios and patient pop-

ulations
• Development of adversarial training methods to improve model resilience against noisy or manipulated

medical data
• Create open-source validation toolkits for healthcare AI that include diverse datasets and perfor-

mance metrics

22.4 Personalized Treatment Optimization
• Investigate AI-driven adaptive treatment strategies that evolve with patient response
• Explore the integration of multi-omics data (genomics, proteomics, and metabolomics) with clinical

data for precision medicine [265]
• Development of AI models that can predict optimal drug combinations for individual patients

22.5 Clinical Workflow Integration
• Study human–AI interaction design principles specifically for healthcare settings
• Creating AI systems that can seamlessly integrate with EHRs and clinical decision support systems
• Investigate the impact of AI-assisted documentation on clinician workload and patient interaction

quality [265]
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22.6 Health Equity and Bias Mitigation
• Development of AI fairness algorithms that can identify and correct for biases in medical data
• Create benchmark datasets that represent diverse populations to test the generalizability of the AI model
• Establishing guidelines for inclusive AI development that involves multidisciplinary teams, including

ethicists and patient representatives

22.7 AI for Preventive Care
• Research predictive models for identifying patients at risk of developing chronic conditions
• Development of AI-powered interventions for personalized prevention strategies
• Investigate the cost-effectiveness of AI-driven preventive care programs

23 Conclusion
This paper comprehensively reviews DL in biomedical signal processing, highlighting its current impact

and future potential. DL has significantly increased the accuracy of models for analyzing various biomedical
signals, enabling more effective extraction of valuable insights. This review demonstrates the versatile
applications of DL architectures such as CNNs, RNNs, and GANs across diverse medical domains, from
personalized treatment planning to early disease detection.

The study’s findings reveal several essential insights. DL models have consistently outperformed
traditional methods in tasks such as arrhythmia detection, seizure identification, and signal classification,
with some models achieving accuracy rates exceeding 98% on standard datasets. The superiority of DL
approaches is particularly notable in handling complex, high-dimensional data where traditional feature
engineering methods fall short. For example, CNNs have proven exceptionally effective in capturing spatial
patterns in ECG signals for arrhythmia detection. Moreover, RNNs and their variants have shown remarkable
ability to model temporal dependencies in EEG signals for seizure prediction. However, the review also
acknowledges significant challenges that must be addressed for effective clinical deployment. These include:

• Data limitations: Most DL models require large, high-quality datasets, often unavailable in clinical
settings.

• Computational demands: Specialized hardware remains a barrier for many institutions
• Model interpretability: The “black-box” nature of DL models hinders their clinical acceptance
• Generalizability: Models often perform poorly when applied to diverse patient populations

Future research directions should focus on the following:

1. Development of more efficient DL architectures that require less computational resources while
maintaining performance.

2. Robust data augmentation techniques for biomedical signals have been created to address data scarcity.
3. Advancing explainability methods to improve model interpretability and clinical trust.
4. Implementing privacy-preserving techniques such as federated learning to enable multi-institutional

collaboration without compromising patient data.
5. Standardizing evaluation frameworks to facilitate meaningful comparisons of different DL approaches.
6. Exploring the integration of multimodal data sources for comprehensive patient assessment.
7. Establishing benchmarks for real-world clinical performance rather than just technical metrics.

The future of this field lies in developing more effective models that can improve patient outcomes
through personalized treatment. This paper aims to inspire further research in this field and lead to
innovative solutions that can enhance healthcare. Healthcare systems and the well-being of patients and
health workers can benefit greatly from AI. However, there are still barriers to applying AI in clinical settings,
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such as trust, coordination, data and privacy challenges, and patient hesitance. We should design AI systems
that put patients first and earn the confidence of health workers in this fantastic technology. AI is not meant
to replace health workers but to support them and enhance their lives. After all, people do not want a robot
to treat them; they need a human touch, which is vital in every field.

AI and clinicians should collaborate to optimize patient outcomes. This article provides directions for
future research and development in AI for healthcare. With the massive amount of data and computing
power we currently have, we foresee a growing role for AI and biosensors in clinics that will complement
or assist healthcare professionals and ease their burden. Moreover, this review highlights the transformative
potential of DL in biomedical signal processing, particularly in improving diagnostic accuracy for condi-
tions detectable through ECG and EEG signals. However, challenges in interpretability, data scarcity, and
computational demands persist. For example, while CNNs show high accuracy in arrhythmia detection, they
remain constrained by data availability and generalizability across patient populations. Addressing these
issues through enhanced data sharing, interpretability frameworks, and efficient model architectures will be
pivotal to future advancements in this field.

This review aims to provide researchers and healthcare professionals with a comprehensive view of the
recent technologies in this field from both technical and clinical points of view. We explored and discussed
ways AI can be applied to biomedical signals to provide diagnoses, predict outcomes and treatments, and
monitor patients. Additionally, we focused on the significance of explainable methods in this context. The
advantages of using AI in the biomedical signals field include enhanced performance and efficiency in
processing data and the ability to develop personalized medical care. However, the main obstacles still need to
be overcome, such as providing explainable AI to ensure that the method is trusted by healthcare providers,
ensuring that algorithms have no biases, and gathering extensive and high-quality data. Finally, we explored
some research inquiries about biomedical signal-based AI systems, including the necessity for improved
adaptability across diverse patient groups and the establishment of criteria for assessing AI effectiveness in
clinical environments.
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CBAM Convolutional Block Attention Module
CNN Convolutional Neural Network
CO Cardiac Output
CP Conformal Prediction
DBN Deep Belief Networks
DL Deep Learning
DNN Deep Neural Networks
DWT Discrete Wavelet Transform
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EEG Electroencephalography
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GPU Graphics Processing Unit
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HFO High-Frequency Oscillation
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LSTM Long Short-Term Memory
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PPG Photoplethysmography
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ShapAAL Shapley Attributed Ablation with Augmented Learning
SR2CNN Signal Recognition and Reconstruction Convolutional Neural Network
STFT Short-Time Fourier Transform
sEMG Surface Electromyography
SVM Support Vector Machine
ZSL Zero-Shot Learning
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127. Kilicarslan S, Celik M, Sahin Ş.. Hybrid models based on genetic algorithm and deep learning algorithms for
nutritional Anemia disease classification. Biomed Signal Process Control. 2021;63(1):102231. doi:10.1016/j.bspc.
2020.102231.

128. Mavaie P, Holder L, Skinner MK. Hybrid deep learning approach to improve classification of low-volume high-
dimensional data. BMC Bioinformatics. 2023;24(1):419. doi:10.1186/s12859-023-05557-w.

129. Woo S, Park J, Lee JY, Kweon IS. CBAM: convolutional block attention module. In: Computer vision–ECCV 2018.
Cham, Switzerland: Springer International Publishing; 2018. p. 3–19. doi:10.1007/978-3-030-01234-2_1.

130. Park SA, Lee HC, Jung CW, Yang HL. Attention mechanisms for physiological signal deep learning: which
attention should we take? In: Medical image computing and computer assisted intervention-MICCAI 2022. Cham,
Switzerland: Springer Nature Switzerland; 2022. p. 613–22. doi:10.1007/978-3-031-16431-6_58.

131. Wang S, Huang L, Jiang D, Sun Y, Jiang G, Li J, et al. Improved multi-stream convolutional block attention module
for sEMG-based gesture recognition. Front Bioeng Biotechnol. 2022;10:909023. doi:10.3389/fbioe.2022.909023.

132. Li H, Wang T, Zhang M, Zhu A, Shan G, Snoussi H. Hierarchical attention networks for image classification of
remote sensing images based on visual Q&A methods. In: 2019 Chinese Automation Congress (CAC); 2019 Nov
22–24; Hangzhou, China. p. 4712–7. doi:10.1109/cac48633.2019.8997347.

133. Huang KH, Yang M, Peng N. Biomedical event extraction with hierarchical knowledge graphs. In: Findings of the
Association for Computational Linguistics: EMNLP 2020; Online. Stroudsburg, PA, USA: ACL; 2020. p. 1277–85.
doi:10.18653/v1/2020.findings-emnlp.114.

134. Wang J, Li M, Diao Q, Lin H, Yang Z, Zhang Y. Biomedical document triage using a hierarchical attention-based
capsule network. BMC Bioinformatics. 2020;21(suppl 13):380. doi:10.1186/s12859-020-03673-5.

135. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep
networks via gradient-based localization. Int J Comput Vis. 2020;128(2):336–59. doi:10.1007/s11263-019-01228-7.

136. Aslan Z. Deep convolutional neural network-based framework in the automatic diagnosis of migraine. Circuits
Syst Signal Process. 2023;42(5):3054–71. doi:10.1007/s00034-022-02265-3.

137. Kavak S, Chiu XD, Yen SJ, Chen MY. Application of CNN for detection and localization of STEMI using 12-lead
ECG images. IEEE Access. 2022;10:38923–30. doi:10.1109/ACCESS.2022.3165966.

138. Jha A, Aicher JK, Gazzara MR, Singh D, Barash Y. Enhanced integrated gradients: improving interpretability of
deep learning models using splicing codes as a case study. Genome Biol. 2020;21(1):149. doi:10.1186/s13059-020-
02055-7.

139. Kawai Y, Tachikawa K, Park J, Asada M. Compensated integrated gradients for reliable explanation of electroen-
cephalogram signal classification. Brain Sci. 2022;12(7):849. doi:10.3390/brainsci12070849.

140. Rozemberczki B, Watson L, Bayer P, Yang HT, Kiss O, Nilsson S, et al. The shapley value in machine learning. In:
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence; 2022 Jul 23–29; Vienna,
Austria. p. 5572–9. doi:10.24963/ijcai.2022/778.

141. Ukil A, Marin L, Jara AJ. When less is more powerful: shapley value attributed ablation with augmented learning for
practical time series sensor data classification. PLoS One. 2022;17(11):e0277975. doi:10.1371/journal.pone.0277975.

142. Roder J, Maguire L, Georgantas R, Roder H. Explaining multivariate molecular diagnostic tests via Shapley values.
BMC Med Inform Decis Mak. 2021;21(1):211. doi:10.1186/s12911-021-01569-9.

https://doi.org/10.1186/s12911-021-01546-2
https://doi.org/10.1109/ACCESS.2024.3467181
https://doi.org/10.1038/s41598-023-41314-y
https://doi.org/10.1038/s41598-023-41314-y
https://doi.org/10.3390/electronics13030665
https://doi.org/10.1016/j.bspc.2020.102231
https://doi.org/10.1016/j.bspc.2020.102231
https://doi.org/10.1186/s12859-023-05557-w
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-031-16431-6_58
https://doi.org/10.3389/fbioe.2022.909023
https://doi.org/10.1109/cac48633.2019.8997347
https://doi.org/10.18653/v1/2020.findings-emnlp.114
https://doi.org/10.1186/s12859-020-03673-5
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s00034-022-02265-3
https://doi.org/10.1109/ACCESS.2022.3165966
https://doi.org/10.1186/s13059-020-02055-7
https://doi.org/10.1186/s13059-020-02055-7
https://doi.org/10.3390/brainsci12070849
https://doi.org/10.24963/ijcai.2022/778
https://doi.org/10.1371/journal.pone.0277975
https://doi.org/10.1186/s12911-021-01569-9


3836 Comput Mater Contin. 2025;83(3)

143. Zhang D, Yang S, Yuan X, Zhang P. Interpretable deep learning for automatic diagnosis of 12-lead electrocardio-
gram. iScience. 2021;24(4):102373. doi:10.1016/j.isci.2021.102373.

144. Tyagi AK. Computational analysis and deep learning for medical care: principles, methods, and applications. 1st
ed. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2021. doi:10.1002/9781119785750.

145. Lac L, Leung CK, Hu P. Computational frameworks integrating deep learning and statistical models in mining
multimodal omics data. J Biomed Inform. 2024;152(1):104629. doi:10.1016/j.jbi.2024.104629.

146. Bhandari N, Walambe R, Kotecha K, Khare SP. A comprehensive survey on computational learning methods for
analysis of gene expression data. Front Mol Biosci. 2022;9:907150. doi:10.3389/fmolb.2022.907150.

147. Yousef M, Allmer J. Deep learning in bioinformatics. Turk J Biol. 2023;47(6):366–82. doi:10.55730/1300-0152.2671.
148. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, Phys-

ioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation.
2000;101(23):E215–20. doi:10.1161/01.cir.101.23.e215.

149. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical
care database. Sci Data. 2016;3(1):160035. doi:10.1038/sdata.2016.35.

150. Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberyé JJ. Analysis of a sleep-dependent neuronal feedback
loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng. 2000;47(9):1185–94. doi:10.1109/10.
867928.

151. Sajda P, Gerson A, Müller KR, Blankertz B, Parra L. A data analysis competition to evaluate machine learning
algorithms for use in brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):184–5. doi:10.1109/
TNSRE.2003.814453.

152. Blankertz B, Müller KR, Curio G, Vaughan TM, Schalk G, Wolpaw JR, et al. The BCI Competition 2003: progress
and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng. 2004;51(6):1044–51.
doi:10.1109/TBME.2004.826692.

153. Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, et al. The BCI competition III: validating
alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):153–9. doi:10.1109/
TNSRE.2006.875642.

154. Wagner P, Strodthoff N, Bousseljot RD, Kreiseler D, Lunze FI, Samek W, et al. PTB-XL, a large publicly available
electrocardiography dataset. Sci Data. 2020;7(1):154. doi:10.1038/s41597-020-0495-6.

155. Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttag J. Patient-specific seizure onset detection. Epilepsy
Behav. 2004;5(4):483–98. doi:10.1016/j.yebeh.2004.05.005.

156. Busso C, Bulut M, Lee CC, Kazemzadeh A, Mower E, Kim S, et al. IEMOCAP: interactive emotional dyadic motion
capture database. Lang Resour Eval. 2008;42(4):335–59. doi:10.1007/s10579-008-9076-6.

157. Abdelhamid AA, El-Kenawy EM, Alotaibi B, Amer GM, Abdelkader MY, Ibrahim A, et al. Robust speech
emotion recognition using CNN+LSTM based on stochastic fractal search optimization algorithm. IEEE Access.
2022;10:49265–84. doi:10.1109/ACCESS.2022.3172954.

158. Shi T, Huang SL. MultiEMO: an attention-based correlation-aware multimodal fusion framework for emotion
recognition in conversations. In: Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Toronto, ON, Canada. Stroudsburg, PA, USA: ACL; 2023. p. 14752–66. doi:10.
18653/v1/2023.acl-long.824.

159. Zhang S, Yang Y, Chen C, Zhang X, Leng Q, Zhao X. Deep learning-based multimodal emotion recognition from
audio, visual, and text modalities: a systematic review of recent advancements and future prospects. Expert Syst
Appl. 2024;237:121692. doi:10.1016/j.eswa.2023.121692.

160. Alqudah AM, Qazan S, Obeidat YM. Deep learning models for detecting respiratory pathologies from raw lung
auscultation sounds. Soft Comput. 2022;26(24):13405–29. doi:10.1007/s00500-022-07499-6.

161. Obeid I, Picone J. The temple university hospital EEG data corpus. Front Neurosci. 2016;10(183):196. doi:10.3389/
fnins.2016.00196.

162. Karlen W, Raman S, Ansermino JM, Dumont GA. Multiparameter respiratory rate estimation from the photo-
plethysmogram. IEEE Trans Biomed Eng. 2013;60(7):1946–53. doi:10.1109/TBME.2013.2246160.

https://doi.org/10.1016/j.isci.2021.102373
https://doi.org/10.1002/9781119785750
https://doi.org/10.1016/j.jbi.2024.104629
https://doi.org/10.3389/fmolb.2022.907150
https://doi.org/10.55730/1300-0152.2671
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1109/10.867928
https://doi.org/10.1109/10.867928
https://doi.org/10.1109/TNSRE.2003.814453
https://doi.org/10.1109/TNSRE.2003.814453
https://doi.org/10.1109/TBME.2004.826692
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.1016/j.yebeh.2004.05.005
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1109/ACCESS.2022.3172954
https://doi.org/10.18653/v1/2023.acl-long.824
https://doi.org/10.18653/v1/2023.acl-long.824
https://doi.org/10.1016/j.eswa.2023.121692
https://doi.org/10.1007/s00500-022-07499-6
https://doi.org/10.3389/fnins.2016.00196
https://doi.org/10.3389/fnins.2016.00196
https://doi.org/10.1109/TBME.2013.2246160


Comput Mater Contin. 2025;83(3) 3837

163. Zhang GQ, Cui L, Mueller R, Tao S, Kim M, Rueschman M, et al. The national sleep research resource: towards a
sleep data commons. J Am Med Inform Assoc. 2018;25(10):1351–8. doi:10.1093/jamia/ocy064.

164. Chanchaochai N, Cieri C, Debrah J, Ding H, Jiang Y, Liao S, et al. GlobalTIMIT: acoustic-phonetic datasets for
the world’s languages. In: Interspeech 2018. Hyderabad, India: ISCA; 2018. p. 192–6. doi:10.21437/Interspeech.2018-
1185.

165. Yang J, Soh M, Lieu V, Weber DJ, Erickson Z. EMGBench: benchmarking out-of-distribution generalization and
adaptation for electromyography. arXiv:2410.23625. 2024.

166. Charlton PH. MESA polysomnography dataset. National Sleep Research Resource; 2024. [cited 2025 Mar 1].
Available from: https://peterhcharlton.github.io/info/datasets/mesa.

167. Charlton PH. PPG-DaLiA: a dataset for activity monitoring using photoplethysmography. Physiol Meas.
2018;39(10):105004. [cited 2025 Mar 1]. Available from: https://peterhcharlton.github.io/info/datasets/ppg-dalia.

168. Hahn G. PPG Diary: a dataset for continuous PPG monitoring. Physiol Meas. 2019;40(11):115007. [cited 2025 Mar
1]. Available from: https://peterhcharlton.github.io/info/datasets/ppg-diary1.

169. Charlton PH, Mariscal Harana J, Vennin S, Li Y, Chowienczyk P, Alastruey J. Modeling arterial pulse waves in
healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am J Physiol Heart
Circ Physiol. 2019 Nov;317(5):H1062–85. doi:10.1152/ajpheart.00218.2019.

170. Charlton PH, Bonnici T, Tarassenko L, Clifton DA, Beale R, Watkinson PJ. An assessment of algorithms to estimate
respiratory rate from the electrocardiogram and photoplethysmogram. Physiol Meas. 2016 Apr;37(4):610–26.
doi:10.1088/0967-3334/37/4/610.

171. Schmidt P, Reiss A, Duerichen R, Marberger C, Van Laerhoven K. Introducing WESAD, a multimodal dataset for
wearable stress and affect detection. In: Proceedings of the 20th ACM International Conference on Multimodal
Interaction. Boulder, CO, USA; 2018. p. 400–8. doi:10.1145/3242969.3242985.

172. Clifford G, Liu C, Moody B, Lehman LW, Silva I, Li Q, et al. AF classification from a short single lead ECG recording:
the physionet computing in cardiology challenge 2017. In: Computing in Cardiology Conference (CinC); 2017;
Rennes, France. p. 1–4. doi:10.22489/cinc.2017.065-469.

173. Subasi A. Practical guide for biomedical signals analysis using machine learning techniques: a MATLAB based
approach.Cambridge. MA, USA: Academic Press; 2019.

174. Petmezas G, Haris K, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, et al. Automated atrial fibrillation
detection using a hybrid CNN-LSTM network on imbalanced ECG datasets. Biomed Signal Process Control.
2021;63(3):102194. doi:10.1016/j.bspc.2020.102194.

175. Forkan ARM, Khalil I, Atiquzzaman M. ViSiBiD: a learning model for early discovery and real-time prediction
of severe clinical events using vital signs as big data. Comput Netw. 2017;113(4):244–57. doi:10.1016/j.comnet.2016.
12.019.

176. Del Pup F, Atzori M. Applications of self-supervised learning to biomedical signals: a survey. IEEE Access.
2023;11:144180–203. doi:10.1109/ACCESS.2023.3344531.

177. Kuzmanov I, Ackovska N, Bogadova AM. Transformer models for processing biological signal. In: The 20th
International Conference on Informatics and Information Technologies–CIIT 2023. Republic of North Macedonia:
Ss Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering; 2023 Jun.

178. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE.
1998;86(11):2278–324. doi:10.1109/5.726791.

179. Saito K, Ushiku Y, Harada T. Asymmetric tri-training for unsupervised domain adaptation. In: 34th International
Conference on Machine Learning, ICML 2017; 2017; Sydney, NSW, Australia. p. 4573–85.

180. Dietterich TG. Ensemble methods in machine learning. Vol. 1875. In: Lecture notes in computer science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Berlin/Heidelberg,
Germany: Springer; 2000. p. 1–15. doi:10.1007/3-540-45014-9_1/COVER.

181. Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series
modeling. Pattern Recognit Lett. 2014;42(5):11–24. doi:10.1016/j.patrec.2014.01.008.

182. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional
distribution. Neural Comput. 2001;13(7):1443–71. doi:10.1162/089976601750264965.

https://doi.org/10.1093/jamia/ocy064
https://doi.org/10.21437/Interspeech.2018-1185
https://doi.org/10.21437/Interspeech.2018-1185
https://peterhcharlton.github.io/info/datasets/mesa
https://peterhcharlton.github.io/info/datasets/ppg-dalia
https://peterhcharlton.github.io/info/datasets/ppg-diary1
https://doi.org/10.1152/ajpheart.00218.2019
https://doi.org/10.1088/0967-3334/37/4/610
https://doi.org/10.1145/3242969.3242985
https://doi.org/10.22489/cinc.2017.065-469
https://doi.org/10.1016/j.bspc.2020.102194
https://doi.org/10.1016/j.comnet.2016.12.019
https://doi.org/10.1016/j.comnet.2016.12.019
https://doi.org/10.1109/ACCESS.2023.3344531
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/3-540-45014-9_1/COVER
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1162/089976601750264965


3838 Comput Mater Contin. 2025;83(3)

183. Liu FT, Ting KM, Zhou ZH. Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining; 2008
Dec 15–19; Pisa, Italy. p. 413–22. doi:10.1109/ICDM.2008.17.

184. Jiang H, Gao M, Li H, Jin R, Miao H, Liu J. Multi-learner based deep meta-learning for few-shot medical image
classification. IEEE J Biomed Health Inform. 2023;27(1):17–28. doi:10.1109/JBHI.2022.3215147.
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