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ABSTRACT: Breast Cancer (BC) remains a leading malignancy among women, resulting in high mortality rates. Early
and accurate detection is crucial for improving patient outcomes. Traditional diagnostic tools, while effective, have
limitations that reduce their accessibility and accuracy. This study investigates the use of Convolutional Neural Networks
(CNNs) to enhance the diagnostic process of BC histopathology. Utilizing the BreakHis dataset, which contains
thousands of histopathological images, we developed a CNN model designed to improve the speed and accuracy of
image analysis. Our CNN architecture was designed with multiple convolutional layers, max-pooling layers, and a
fully connected network optimized for feature extraction and classification. Hyperparameter tuning was conducted to
identify the optimal learning rate, batch size, and number of epochs, ensuring robust model performance. The dataset
was divided into training (80%), validation (10%), and testing (10%) subsets, with performance evaluated using accuracy,
precision, recall, and F1-score metrics. Our CNN model achieved a magnification-independent accuracy of 97.72%,
with specific accuracies of 97.50% at 40×, 97.61% at 100×, 99.06% at 200×, and 97.25% at 400× magnification levels.
These results demonstrate the model’s superior performance relative to existing methods. The integration of CNNs in
diagnostic workflows can potentially reduce pathologist workload, minimize interpretation errors, and increase the
availability of diagnostic testing, thereby improving BC management and patient survival rates. This study highlights
the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for
AI-driven diagnostic solutions to improve patient care.

KEYWORDS: Histopathology; breast cancer; convolutional neural networks; BreakHis dataset; medical imaging;
healthcare technology

1 Introduction
According to the most recent global cancer statistics, lung cancer was the most commonly diagnosed

cancer worldwide in 2022, accounting for 12.4% of all new cases, followed closely by female breast cancer
at 11.6%. In women, breast cancer was the most frequently diagnosed cancer and also the leading cause of
cancer-related deaths [1]. The most recent WHO data also indicate that BC remains a major global health
condition, with the infection being diagnosed in nearly 2.3 million women annually and causing almost
670,000 deaths throughout the world. This situation highlights the role played by the disease in determining
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the global health burden [2]. BC detection generally combines imaging techniques with histopathological
assessments. Predominantly, mammography, ultrasound, and Magnetic Resonance Imaging (MRI) are
employed [3–5]. Mammography serves as a primary screening tool but often has high false-positive rates
and reduced sensitivity in dense breast tissues [6,7]. Ultrasound acts as an adjunctive tool, particularly
beneficial in dense breasts, though its reliability is significantly dependent on the operator’s skill [8]. MRI is
recognized for its high sensitivity and is predominantly used to screen individuals at high risk. However, it
lacks specificity and incurs higher costs compared to other imaging methods [9]. Despite these modalities,
histopathological examination continues to be the definitive method for cancer confirmation following
the detection of anomalies via imaging. This method entails the microscopic analysis of biopsied tissue
samples [10]. The precision of cancer classification from these samples largely relies on the pathologist’s
expertise. Challenges such as pathologist fatigue and a high caseload can lead to diagnostic delays and
potential misdiagnoses [11].

Deep learning, and specifically Convolutional Neurol Networks (CNNs), has emerged as a transforma-
tive force in medical imaging, offering the potential to automate and enhance the accuracy of diagnostic
processes [12,13]. CNNs excel in feature recognition tasks by learning optimal features for classification
through training with large labeled datasets. In the context of BC, CNNs can be trained to detect subtle
patterns in histopathological images that may be indicative of malignancy. In fact, the integration of
the CNNs into the diagnostic workflow for BC helps minimize subjective interpretation errors, thereby
improving the accuracy of diagnostic procedures and, consequently, enhancing the care of BC patients.

The BreakHis dataset [14,15], which contains thousands of histopathological images of benign and
malignant breast tumors, provides a comprehensive resource for training and testing deep learning models.
However, existing approaches often suffer from a dependency on specific magnifications, limiting their
generalizability. Our study aims to bridge this gap by developing a magnification-independent CNN model
capable of achieving high accuracy across different histopathological image magnifications. The novelty of
our work lies in optimizing the CNN architecture to ensure robust feature extraction and classification,
outperforming state-of-the-art models in BC classification. This advancement contributes to the early and
accurate detection of BC, potentially reducing the mortality rate associated with the disease.

The remainder of the paper is structured as follows: Section 2 covers the literature review. Section 3
details the materials and methods employed in the study, including an in-depth overview of the BreakHis
dataset and the CNN model architecture. Section 4 presents the experimental results, addressing both
magnification-independent and magnification-dependent binary classification outcomes. Section 5 offers a
comparative analysis of different techniques used for BC histopathology classification. Finally, the paper
concludes with a summary of findings and recommendations for future research.

2 Related Work
Recently, deep learning for BC case classification and detection from histopathological images has

gained attention in several studies. The authors of [16] proposed a Deep Manifold Preserving Autoencoder
(DMAE) for the classification of BC histopathological images. The DMAE is an autoencoder with the
objective of reducing the distance between input and output by maintaining a geometrical data structure.
The classifier is implemented using a softmax and fine-tuned in the cascade model with labeled training
data. On this point, DMAE outperforms its predecessors, the traditional deep learning and machine learning
methods, on the BreaKHis data set, as it can achieve high accuracy in image classification. However, this
way seems to be less scalable due to the relative complexity of the architecture and training. The authors
in [17] proposed a novel approach to enhance the accuracy of BC histopathology image classification.
This approach employs a combination of DenseNet121 and Anomaly Generative Adversarial Networks
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(AnoGAN) to address the challenge of mislabeled patches in the dataset. DenseNet121 is utilized to extract
features from discriminative patches of images, and AnoGAN is used for unsupervised anomaly detection
to screen out mislabeled patches effectively. The methodology was tested using the BreaKHis dataset and
demonstrated high accuracy, with the best performance showing a 99.13% accuracy rate at 40×magnification.
This model performs optimally at 40× and 100× magnifications. However, its effectiveness decreases at
200× and 400× magnifications, requiring modifications for improved performance. In [18], the authors
introduced an automatic classification method for BC histopathological images, utilizing deep feature fusion
and an enhanced routing mechanism (FE-BiCapsNet). This approach combines the strengths of CNNs and
Capsule Networks (CapsNets) through a dual-channel framework to enhance classification accuracy. But the
dual-channel feature extraction and the complex feature fusion process result in significant computational
demands, leading to increased training and prediction times for FE-BiCapsNet. In [19], the authors discussed
the design and evaluation of hybrid architectures for binary classification of BC images using both deep
learning techniques for feature extraction and machine learning classifiers. The most effective architecture
included the MLP classifier and DenseNet 201 for extracting features. The obtained accuracy was acceptable
for the BreakHis datasets with magnification factors. In [20], the authors investigated the effectiveness of
handcrafted features and representation learning techniques in BC detection from histopathological images.
It contrasts these with pre-trained CNNs and explores feature fusion strategies to enhance detection accuracy.
The research involves applying these techniques to two significant datasets, KIMIA Path960 and BreakHis,
and demonstrates that feature fusion can significantly improve classification performance compared to
individual techniques. But the complexity of combining multiple feature extraction techniques could lead to
increased computational demand, which might limit the practical deployment of such models in resource-
constrained settings. In [21], the authors introduced the dense residual Dual-Shuffle Attention Network
(DRDA-Net) model to advance the classification of BC through histopathological images. Incorporating a
channel attention mechanism within its architecture, the model enhances its pattern recognition capabilities.
Tested on the BreaKHis dataset across several magnifications, DRDA-Net demonstrates the improvements in
the accuracy for cancer detection. But this model is deep due to its densely connected nature, which increases
training time and computational cost. In [22], the authors investigated the use of CNNs for classifying
histopathological breast images. They presented three types of CNN models: a single CNN model, a fusion of
two CNN models, and a fusion of three CNN models. The three CNN models attained an accuracy of 90.10%
on the Kaggle dataset. However, the combination of multiple CNN models increases the complexity of model
interpretation, which could affect its usability in clinical settings where understanding the model’s decision-
making process is crucial. In [23], the authors employed CNNs and transferred learning techniques to classify
BC histopathology images. The study aimed to automate the detection process to facilitate faster and more
accurate medical diagnoses. The models used include CNNs, VGG16, and ResNet50, which were evaluated
on the BreakHis dataset containing images of benign and malignant breast tumors. Data augmentation was
applied to enhance model training. The study found that CNNs were the most effective method, achieving a
94% accuracy rate, compared to the lower accuracies of VGG16 and ResNet50. In [24], a deep learning model
named BCDecNet was developed. This model features a complex architecture with multiple layers, including
convolution layers, activation functions, pooling layers, and fully connected layers, utilizing data from the
Kaggle online repository. The BCDecNet demonstrated a performance accuracy rate of 97.33%. However,
its complexity and high computational demands may limit its practical application in settings with limited
resources. In [25], the authors proposed a breast tumor classification approach using histopathology images
from the BreaKHis dataset. In fact, their approach incorporated a custom CNN alongside four pretrained
models (MobileNetV3, EfficientNetB0, VGG16, and ResNet50V2) for feature extraction and classification.
To enhance performance, they applied Grey Wolf Optimization (GWO) and Modified Gorilla Troops
Optimization (MGTO) for hyperparameter tuning. The study highlights the effectiveness of combining deep
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learning models with metaheuristic optimization for improving diagnostic accuracy in BC classification.
In [26], the authors introduced a two-stage hybrid network for BC classification using the BreaKHis dataset.
Their method integrates ResNet34 as the initial convolutional network for feature extraction, followed by
a Long Short-Term Memory (LSTM) network to capture contextual dependencies. The findings indicate
that combining CNNs with LSTM-based contextual learning enhances classification performance in BC
histopathology. In [27], the authors presented the CNN approach using the Inception-v3 architecture for the
classification of BC images into benign and malignant categories. Experimental results demonstrated over
92% accuracy across all four magnification levels on the BreaKHis dataset, highlighting the effectiveness of
CNNs in automating BC histopathological classification.

3 Materials and Methods

3.1 BreakHis Dataset
The BreakHis dataset [14,15] is a collection of histopathological images designed for research in

BC analysis. Compiled between January 2014 and December 2014, it consists of 7909 high-resolution
microscopic images, including 2480 images of benign tumors and 5429 images of malignant tumors, obtained
from 82 patients. This dataset is prepared from tissue biopsies stained with hematoxylin and eosin (H&E)
following the standard paraffin process to maintain histological integrity. Digitization of these images ensures
high-quality representations for detailed analysis, as illustrated in Fig. 1.

In this dataset, these images were captured using four different magnification levels (40×, 100×, 200×,
and 400×), providing a diverse range of details for examinations. By providing such detailed and diversified
data, the BreakHis dataset plays a pivotal role in the ongoing efforts to integrate more sophisticated analytical
technologies, like deep learning, into everyday clinical practices, enhancing both the speed and accuracy
of cancer diagnostics. In fact, it enables researchers to develop, test, and compare innovative computational
methods for BC classification from histopathological images, potentially reducing pathologists’ workload
by automatically identifying cancerous regions. This resource is invaluable for enhancing computer-aided
diagnosis systems and improving patient outcomes through earlier and more precise detection.

3.2 CNN Model
The proposed CNN architecture is designed to improve the diagnostic accuracy for BC by effectively

combining feature extraction, abstraction, and classification. By using multiple convolutional and pooling
layers, as illustrated in Fig. 2, the network can learn intricate patterns within the data, which is crucial for
distinguishing between benign and malignant tumors.

In the proposed CNN architecture, the network initiates the process by handling input images sized
at 224 × 224 pixels with three color channels (RGB). Initially, the input layer receives images with these
dimensions (224 × 224 × 3). The first convolutional layer (conv1) uses 3 × 3 filters to extract 64 feature maps
from the input image, reducing the spatial dimensions slightly to 222 × 222. Following this, subsequent
convolutional layers (conv2 to conv5) progressively increase the depth of the feature maps from 128 to
1024, allowing the network to capture more complex patterns and features. Each convolutional layer is
typically followed by an activation function, which introduces non-linearity. To down-sample the feature
maps, MaxPooling layers (MaxPooling1 to MaxPooling5) are employed for each convolution layer. These
layers reduce the dimensions while retaining the most significant features, helping to decrease computational
complexity and prevent overfitting. Following the convolutional layers, the feature maps are flattened into
one vector of 16,384 elements using the flatten layer. Such a vector is then passed through a fully connected
(fc) layer of 512 units. It is a dense layer in which the high-level features that were extracted by the
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convolutional layers are combined into a unified representation. Finally, the output layer contains the dense
layer, with 2 units for the two classes: benign and malignant. SoftMax activation was used to generate class
probabilities. Table 1 provides a summary of the parameters for the proposed model.

Figure 1: Samples of benign and malignant images from the BreakHis dataset
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Figure 2: Detailed CNNs architecture diagram for BC classification

Table 1: Technical parameters of the proposed CNN model

Parameters Value
Input image size 224 × 224 × 3 pixels

Number of convolutional layers 5
Filter sizes 3 × 3

Number of filters 64, 128, 256, 512, 1024
Activation function ReLU

Pooling type MaxPooling
Pooling size 2 × 2

Fully connected layer 512 units
Output layer 2 units (SoftMax)

Total trainable parameters 27,653,890
Computational complexity 4.0 GFLOPs

3.3 Methodology
Fig. 3 illustrates the methodology employed in this study, which comprises several key steps: data

acquisition, data preprocessing, hyperparameter optimization, model training, evaluation metrics, and data
classification. Each step is essential for enhancing the robustness and effectiveness of the CNN model in
classifying BC histopathological images from the BreakHis dataset.
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Figure 3: Proposed methodology

3.3.1 Data Preprocessing
We resized input images using a dataset from BreakHis to 224 × 224 pixels in this study. Resizing makes

computations efficient and saves training time. Since the dataset contains few images for training the model,
the chances of overfitting were high. We applied augmentation techniques using Keras ImageDataGenerator.
For that reason, we made random rotations up to 180 degrees, horizontal and vertical flipping, and zooming
in up to 20%. Such augmentations guaranteed that our model would be exposed to training on a wide
variety of images, thus making it more robust and better at generalizing new, unseen data. Following
image augmentation, we converted the color map from RGB to BGR and normalized the pixel values.
Normalization is vital as it ensures that the input data values are within a consistent range, enhancing the
model’s ability to learn effectively. This task was accomplished by subtracting the mean of the training dataset
from each image and then dividing it by the standard deviation, both calculated exclusively from the training
dataset. This approach ensures consistent scaling of the input images, which facilitates learning and better
performance by the model.

3.3.2 Hyperparameter Optimization and Model Training
In our research, we meticulously adjusted the hyperparameters to improve the performance of our CNN

model. We set up the fully connected layer with 512 neurons that were activated by the ReLU function.
The output layer used a SoftMax activation function to decide whether an image was benign or malignant.
We only used the categorical cross-entropy loss function because it works well for handling outputs from
more than one class. We took 80% of the data for training and 20% for validation and testing, making
equal parts of it. We have used an Adam optimizer here, which automatically modifies learning rates during
adaptive optimization. This technique facilitates fast model convergence. For fine-tuning, we have done
experiments using three values of learning rates, such as 0.001, 0.0001, and 0.00001. This experiment was of
high importance for grasping how the learning rate influences model performance and is used to determine
the best setting for the highest classification accuracy. We monitored the validation accuracy at the end of
each epoch, training the model for a total of 500 epochs. We experimented with diverse batch sizes (2, 4, 8,
and 16) based on the learning rate to find the best classification performance. By varying the batch sizes, we
aimed to balance computational efficiency with the stability of gradient updates. By meticulously configuring
these hyperparameters and implementing robust training protocols, we ensured the development of a
high-performing model capable of accurately classifying BC from histopathological images.
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3.3.3 Evaluation Metrics
We utilized the following four widely referred metrics in the literature to measure model performance:

accuracy, precision, recall, and F1-score. The latter metrics are widely applicable in any study of whether the
model can correctly assign the category of benign or malignant tumors, with the model’s sensitivity towards
really positive cases and specificity making the right predictions. Accuracy on (1) says how frequently the
model gave a correct prediction in general, regarding both the positive and negative cases. Precision under
(2), however, shows how many instances were true when the model predicted them as positive, in relation
to the true positives. In other words, recall under (3) shows how effective a model is at capturing all actual
positives, representing its suitability in grabbing relevant cases. Conversely, the F1-score in (4) offers a singular
metric that harmonizes the measures of precision and recall.

Accurac y = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recal l = TP
TP + FN

(3)

F1 − score = 2 × precision × recal l
precision + recal l

(4)

Using these metrics, we can thoroughly evaluate the reliability and effectiveness of our CNN model for
BC classification. Moreover, we employed a confusion matrix to analyze the model’s predictions in detail. This
matrix distinguishes between True Negatives (TN) and True Positives (TP), which correspond to correctly
identified benign and malignant cases, respectively. It also highlights the False Negatives (FN), which indicate
malignant cases erroneously classified as benign, and the False Positives (FP), which present benign cases
mistakenly identified as malignant. This evaluation was performed on histopathological images from the
BreaKHis dataset across various magnifications (40×, 100×, 200×, and 400×).

3.3.4 Implementation Details
We implemented our model using TensorFlow and Keras, which are powerful libraries for developing

and training deep learning models. The major reasons for selection include their flexibility, ease of use, and
comprehensive support of most neural network architectures. In fact, we used the programming language
Python, notably known for its simplicity and rich support of machine learning and data science. We
developed our project using PyCharm as an integrated development environment (IDE), which played a great
role in its effective management, debugging, and organization. Our training was conducted on a computer
with an Intel R© Core™ i9-13900H processor and NVIDIA GeForce RTX 3050 (4 GB) graphics card. This
high-performance processor quickly processed data and performed quick calculations. The dedicated GPU
sped up training by a large amount by handling the intensive matrix operations needed for deep learning.
To ensure our results were robust, we repeated the experiments multiple times. This procedure helped verify
that the model’s performance was consistent and not influenced by anomalies from a single training run.

4 Experimental Results
In this section, we present the results of the proposed CNN model for BC classification using histopatho-

logical images from the BreaKHis dataset. The results are categorized into magnification-independent and
magnification-dependent (40×, 100×, 200×, and 400×) binary classifications. We divided the dataset into
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training, validation, and test sets using an 80%, 10%, and 10% split. To find the best setting, we looked
at how well the model worked with different learning rates (0.001, 0.0001, and 0.00001) and batch sizes
(2, 4, 8, and 16).

4.1 Magnification-Independent Binary Classification
The dataset for the magnification-independent binary classification has 5429 malignant histopathologi-

cal images and 2480 benign ones. Table 2 presents the classification results, highlighting the impact of varying
learning rates (0.001, 0.0001, and 0.00001) and batch sizes (2, 4, 8, and 16) on the model’s diagnostic metrics,
such as accuracy, precision, recall, and F1-score. Based on this table, the proposed CNN model works best
when the learning rate is 0.0001 and the batch size is 8. It gets an impressive accuracy of 97.72%, a precision
of 97.64%, a recall of 99.08%, and an F1-score of 98.35%.

Table 2: Metrics evaluation of magnification-independent binary classification

Learning rate Batch size Accuracy (%) Precision (%) Recall (%) F1-score (%)
0.001 2, 4, 8, 16 86.65% 0% 0% 0%

0.0001

2 84.20% 82.45% 97.79% 89.47%
4 91.78% 96.50% 91.34% 93.85%
8 97.72% 97.64% 99.08% 98.35%
16 97.35% 97.45% 98.71% 98.08%

0.00001

2 94.82% 94.19% 98.53% 96.31%
4 95.32% 95.50% 97.79% 96.63%
8 95.70% 97.04% 96.69% 96.86%
16 91.66% 97.23% 90.42% 93.70%

Based on the accuracy and loss curves and the confusion matrix for a learning rate of 0.0001 and a batch
size of 8, Fig. 4 lets us see how well our model worked. Fig. 4a displays the training and validation accuracy
and loss curves over 500 epochs. These curves show that the model is steadily getting better. The small gap
between the training and validation curves indicates that the model is not prone to overfitting and performs
well on new data. The confusion matrix in Fig. 4b shows that the model has high rates of TN and TP and
low rates of FN and FP. This indicates that the model is accurate and reliable at telling the difference between
benign and malignant samples.

Fig. 5 presents a comparison of the predicted and actual classifications for 10 images from the BreaKHis
dataset. Each subplot displays the true label (0 for benign, 1 for malignant) alongside the model’s prediction,
highlighting its effectiveness in distinguishing different breast tissue types. The close match between
predicted and actual labels shows how accurate and reliable the CNN model is, which increases its usefulness
for diagnostic purposes in the real world.
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Figure 4: It illustrates the training and validation accuracy, loss curves, and confusion matrix. (a) Training and
validation accuracy and loss curves over 500 epochs, illustrating the model’s convergence and stability. The minimal
gap between training and validation curves indicates low overfitting and strong generalization performance. (b)
Confusion matrix for magnification-independent binary classification, showing high TP and TN rates, with minimal
false classifications, demonstrating the model’s effectiveness in distinguishing between benign and malignant breast
cancer histopathological images

Figure 5: Prediction vs. actual results of 10 images for magnification-independent binary classification
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4.2 Magnification-Dependent Binary Classification
The model was further evaluated at specific magnification levels: 40×, 100×, 200×, and 400×. For

each magnification, the dataset was split into 80% for training, 10% for validation, and 10% for testing to
ensure a balanced evaluation. Table 3 summarizes the performance metrics at each magnification level,
demonstrating the impact of different learning rates (0.001, 0.0001, and 0.00001) and batch sizes (2, 4, 8,
and 16) on the model’s accuracy, precision, recall, and F1-score. Fig. 6 illustrates the training and validation
accuracy, loss curves, and confusion matrix. Fig. 7 provides a comparative visualization of predicted vs. actual
classifications for each magnification level.

Table 3: Metrics evaluation of binary classification at magnification-dependent (40×, 100×, 200×, and 400×)

Learning rate Batch size Accuracy (%) Precision (%) Recall (%) F1-score (%)
Metrics evaluation at 40×magnification level

0.001 2, 4, 8, 16 63% 0% 0% 0%

0.0001

2 80.50% 78.81% 94.44% 85.92%
4 81% 83.33% 87.30% 85.27%
8 93.50% 90.65% 100% 95.09%
16 97.50% 96.90% 99.21% 98.04%

0.00001

2 89.50% 95.65% 87.30% 91.29%
4 96% 94.03% 100% 96.92%
8 95.50% 93.98% 99.21% 96.53%
16 91% 92.86% 92.86% 92.86%

Metrics evaluation at 100×magnification level
0.001 2, 4, 8, 16 67.46% 0% 0% 0%

0.0001

2 89% 87.82% 97.16% 92.26%
4 93.78% 96.38% 94.33% 95.34%
8 96.17% 95.86% 98.58% 97.20%
16 97.61% 97.89% 98.58% 98.23%

0.00001

2 95.22% 95.80% 97.16% 96.48%
4 97.13% 96.55% 99.29% 97.90%
8 95.22% 95.80% 97.16% 96.48%
16 93.30% 94.41% 95.74% 95.07%

Metrics evaluation at 200×magnification level
0.001 2, 4, 8, 16 58.69% 0% 0% 0%

0.0001

2 90.61% 90.70% 93.60% 92.13%
4 93.90% 94.44% 95.20% 94.82%
8 97.18% 95.42% 100% 97.66%
16 99.06% 98.43% 100% 99.21%

0.00001

2 97.18% 96.12% 99.20% 97.64%
4 94.84% 92.54% 99.20% 95.75%
8 96.24% 94.66% 99.20% 96.88%
16 95.77% 93.94% 99.20% 96.50%

(Continued)
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Table 3 (continued)

Learning rate Batch size Accuracy (%) Precision (%) Recall (%) F1-score (%)

Metrics evaluation at 400×magnification level
0.001 2, 4, 8, 16 63.19% 0% 0% 0%

0.0001

2 92.31% 91.06% 97.39% 94.12%
4 92.31% 99.03% 88.70% 93.58%
8 97.25% 97.41% 98.26% 97.84%
16 96.70% 97.39% 97.39% 97.39%

0.00001

2 89.01% 86.82% 97.39% 91.80%
4 89.56% 88.10% 96.52% 92.12%
8 92.31% 95.50% 92.17% 93.81%
16 91.12% 96.26% 89.57% 92.79%

As shown in Table 3, we got the best results for classification at 40×magnification with a learning rate
of 0.0001 and a batch size of 16. We got a precision of 96.90%, a recall of 99.21%, and an F1-score of 98.04%.
There were a total of 1995 images used, with 625 being benign and 1370 being malignant. Further, at 100×
magnification, using 2081 images (644 benign, 1437 malignant), the best accuracy of 97.61% was achieved
under the same hyperparameter configuration, yielding a precision of 97.89%, a recall of 98.58%, and an
F1-score of 98.23%. Moreover, the model did best at classifying images at 200× magnification, with an
accuracy of 99.06%, a precision of 98.43%, a recall of 100%, and an F1-score of 99.21%. This score was achieved
with 2013 images (623 benign and 1390 malignant) and the best settings of a learning rate of 0.0001 and a
batch size of 16. In the end, with a learning rate of 0.0001 and a batch size of 8, the model was able to achieve
an accuracy of 97.25% at 400× magnification, with 588 benign images and 1232 malignant images used. It
also had a precision of 97.41%, a recall of 98.26%, and an F1-score of 97.84%. These results confirm that the
model performs consistently well across different magnifications, with 200× magnification providing the
highest accuracy.

Fig. 6a displays the training and validation accuracy and loss curves over 500 epochs. The curves show
stable convergence and little overfitting at different levels of magnification. The confusion matrix in Fig. 6b
shows that the model has high rates of TP and TN and low rates of FP and FN. This indicates that it is
excellent at telling the difference between benign and malignant cases. This finding is supported by Fig. 7,
which shows that the predicted and actual labels for 10 images from the BreaKHis dataset are very close at
every magnification level.
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Figure 6: It illustrates the training and validation accuracy, loss curves, and confusion matrix. (a) Training and
validation accuracy and loss curves for magnification-dependent binary classification at 40×, 100×, 200×, and 400×
magnification levels. The curves indicate stable model convergence across all magnifications, with minimal overfitting.
(b) Confusion matrices for each magnification level, illustrating the model’s classification performance. High TP and
TN rates confirm the model’s effectiveness in distinguishing benign and malignant histopathological images across
different magnifications
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Figure 7: Comparison of predicted vs. actual classifications for 10 images across different magnification levels
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5 Discussion

5.1 Performance Trends across Magnifications
The experimental results confirm the high classification performance of the proposed CNN model

across all magnification levels, achieving an overall magnification-independent accuracy of 97.72%, with a
peak accuracy of 99.06% at 200× magnification. While the accuracies at 40× (97.50%), 100× (97.61%), and
400× (97.25%) were slightly lower, likely due to the increased complexity of tissue structures, the model still
exhibited high classification reliability. We determined these results through systematic experimentation,
using a learning rate of 0.0001 and a batch size of 8 or 16. Table 4 provides a summary of the classification
performance metrics for each magnification level and magnification-independent classification under the
optimal hyperparameter settings for high-accuracy binary classification of histopathology images of BC.

Table 4: Summary of performance metrics for all magnification levels using optimal hyperparameters

Magnification Learning rate Batch size Accuracy (%) Precision (%) Recall (%) F1-score (%)
Magnification-
independent

0.0001 8 97.72% 97.64% 99.08% 98.35%

40× 0.0001 16 97.50% 96.90% 99.21% 98.04%
100× 0.0001 16 97.61% 97.89% 98.58% 98.23%
200× 0.0001 16 99.06% 98.43% 100% 99.21%
400× 0.0001 8 97.25% 97.41% 98.26% 97.84%

This study underscores the critical role of hyperparameter optimization in enhancing classification
accuracy. A learning rate of 0.0001 consistently did better than 0.001 and 0.00001, showing that moderate
learning rates help keep models from becoming too perfect while still ensuring stable convergence. Con-
versely, when the learning rate was set to 0.001, accuracy dropped significantly across all magnifications,
confirming that an excessively high learning rate results in unstable training and poor generalization. Fur-
thermore, a batch size of 8 or 16 was found to be the most effective, balancing computational efficiency with
stable gradient updates. These results highlight the importance of fine-tuning hyperparameters to enhance
the CNN’s ability to extract meaningful features from histopathological images, further demonstrating
the effectiveness of deep learning in BC classification. Moreover, the findings emphasize the necessity of
dataset diversity and proper hyperparameter selection in maximizing the generalizability and robustness of
CNN-based models for histopathological image analysis.

5.2 Comparative Analysis with Existing Methods
Table 5 provides a comprehensive comparison of various techniques used in BC histopathology clas-

sification, highlighting their effectiveness and accuracy at different magnification levels. The table includes
several references, with each reference corresponding to a specific technique or a combination of techniques
employed for classifying BC histopathological images. These techniques range from traditional machine
learning methods to advanced deep learning models, such as the DMAE, DenseNet121-AnoGAN, and
the FE-BkCapsNet, among others. The primary datasets used in these studies are BreakHis and Kaggle,
both providing high-resolution histopathological images essential for training and testing the models. The
BreakHis dataset includes images at four magnification levels: 40×, 100×, 200×, and 400×, allowing for a
detailed examination of model performance across varying levels of image detail. The table reveals that the
accuracy of each technique varies with magnification, indicating the strengths and weaknesses of each model
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at different levels of detail. For example, DMAE [16] achieves an accuracy of 91.34% at 200× magnification
but performs less effectively at 100×, with an accuracy of 87.75%. Similarly, DenseNet121-AnoGAN [17]
excels at 40× magnification with 99.13% accuracy but experiences a significant drop to 85.20% at 400×.
The models proposed in [18,19,21,26] consistently maintain high accuracy across all magnifications, yet their
substantial computational requirements and complex feature fusion processes pose practical challenges. In
contrast, the feature fusion approach in [20], which combines CNNs with handcrafted features (CH+ULBP),
struggles with lower accuracy across all magnifications. Other deep learning models designed for binary BC
classification, such as those in [22–25,27], achieved magnification-independent accuracies of 90.10%, 94%,
97.33%, 93.13%, and 92%, respectively.

Table 5: Comparative study of techniques and accuracy for BC histopathology classification

Reference Dataset Techniques Dataset splitting ratio Accuracy
[16] BreakHis DMAE Assign 70% to the

training and 30% to the
testing

89.79% at 40×, 87.75% at
100×, 91.34% at 200× and

89.16% at 400×
[17] BreakHis Dense-Net121-

AnoGAN
Assign 80% to the

training and 20% to the
testing

99.13% at 40×, 96.39% at
100×, 86.38% at 200× and

85.20% at 400×
[18] BreakHis FE-BkCapsNet Assign 70% to the

training and 30% to the
testing

92.71% at 40×, 94.52% at
100×, 94.03% at 200× and

93.54% at 400×
[19] BreakHis MLP classifier

with DenseNet
201

– 92.61% at 40×, 92% at
100×, 93.93% at 200× and

91.73% at 400×
[20] BreakHis CH + ULBP +

Pre-trained
CNN

– 85.46% at 40×, 84.40% at
100×, 87.60% at 200× and

85.77% at 400×
[21] BreakHis DRDA-Net7 Assign 80% to the

training, 10% to the
validation, and 10% to the

testing

95.72% at 40×, 94.41% at
100×, 97.43% at 200× and

96.84% at 400×

[22] Kaggle CNNs Assign 80% to the
training and 20% to the

testing

90.10%

[23] BreakHis CNNs Assign 70% to the
training, 10% to the

validation, and 20% to
the testing

94%

[24] Kaggle BCDecNet Assign 80% to the
training and 20% to the

testing

97.33%

[25] BreakHis MGTO-
optimized

Custom CNN

Assign 67% to the
training and 33% to the

testing

93.13%

(Continued)
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Table 5 (continued)

Reference Dataset Techniques Dataset splitting ratio Accuracy
[26] BreakHis CNNs with

LSTM
– 93.67% at 40×, 97.08% at

100×, 98.01% at 200× and
94.73% at 400×

[27] BreakHis Inception-V3 Assign 70% to the
training, 15% to the

validation, and 15% to the
testing

92%

Proposed BreakHis CNNs Assign 80% to the
training, 10% to the

validation, and 10% to the
testing

Magnification-
Independent: 97.72%

97.50% at 40×, 97.61% at
100×, 99.06% at 200× and

97.25% at 400×

The proposed CNN model stands out with its high classification accuracy across all magnifications,
achieving an impressive 99.06% accuracy at 200×magnification, suggesting a robust ability to generalize and
accurately classify images irrespective of the magnification level. Our model’s magnification-independent
accuracy of 97.72% further emphasizes its effectiveness in handling diverse image details, making it a promis-
ing tool for practical diagnostic applications. Compared to other models, our CNN model demonstrates
superior performance not only in terms of accuracy but also in its ability to maintain high performance
consistently across all magnification levels without increasing the model complexity. So, this comparative
study highlights the novel aspects of our model:

• Magnification independence: Unlike previous methods that experience accuracy drops at different mag-
nifications, our model maintains high performance across all resolutions, making it more generalizable
for clinical applications.

• Optimized feature extraction: Many prior studies use hybrid models (e.g., DenseNet121-AnoGAN, CNNs
with LSTM), increasing computational complexity. The proposed CNN model achieves comparable or
better accuracy without requiring additional architecture, making it more efficient and reducing both
training time and computational costs.

• Balanced performance across metrics: our CNN model achieves high accuracy, precision, recall, and
F1-score simultaneously, ensuring reliable and well-rounded classification performance.

While the proposed CNN model demonstrates high classification accuracy across magnification levels,
further advancements can be achieved by integrating multimodal data sources, such as histopathologi-
cal images, genetic data, and clinical information. The combination of these diverse data types has the
potential to enhance diagnostic accuracy, improve personalized treatment planning, and provide a more
comprehensive understanding of BC.

6 Conclusion
Our study demonstrates the significant potential of CNNs in improving the accuracy and efficiency

of BC histopathology diagnostics. Utilizing the BreaKHis dataset, the proposed CNN model demonstrated
high performance across different magnification levels, achieving 97.50% at 40×, 97.61% at 100×, 99.06%
at 200×, and 97.25% at 400×, with an overall magnification-independent accuracy of 97.72%. This robust
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performance underscores the model’s capability to handle diverse image details, making it a valuable tool for
practical diagnostic applications. Compared to other models, our CNN model not only excels in accuracy
but also ensures reliable performance across all magnifications, addressing a critical need in clinical settings.
The adoption of such advanced deep learning techniques in medical diagnostics promises to enhance
early detection, reduce diagnostic errors, and ultimately improve patient outcomes. As the field of artificial
intelligence in medicine continues to evolve, the integration of CNNs into routine diagnostic workflows
could play a transformative role in advancing BC care.
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