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ABSTRACT: As is known, centralized federated learning faces risks of a single point of failure and privacy breaches,
and blockchain-based federated learning frameworks can address these challenges to a certain extent in recent
works. However, malicious clients may still illegally access the blockchain to upload malicious data or steal on-chain
data. In addition, blockchain-based federated training suffers from a heavy storage burden and excessive network
communication overhead. To address these issues, we propose an asynchronous, tiered federated learning storage
scheme based on blockchain and IPFS. It manages the execution of federated learning tasks through smart contracts
deployed on the blockchain, decentralizing the entire training process. Additionally, the scheme employs a secure and
efficient blockchain-based asynchronous tiered architecture, integrating attribute-based access control technology for
resource exchange between the clients and the blockchain network. It dynamically manages access control policies
during training and adopts a hybrid data storage strategy combining blockchain and IPFS. Experiments with multiple
sets of image classification tasks are conducted, indicating that the storage strategy used in this scheme saves nearly
50 percent of the communication overhead and significantly reduces the on-chain storage burden compared to
the traditional blockchain-only storage strategy. In terms of training effectiveness, it maintains similar accuracy as
centralized training and minimizes the probability of being attacked.
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1 Introduction

With the technological advancements in computing and communication technologies, mobile com-
munication equipment and Internet of Things (IoT) devices can generate huge amounts of data suitable
for model training. However, these data often have privacy restrictions on usage, making it impossible to
aggregate them for model training. The concept of “Federated Learning” was first introduced by McMahan
et al., which allows training data to be distributed across different local devices [1]. Participating parties
no longer need to share the raw training data but can collectively train a global model by sharing their
local model. However, synchronous federated learning algorithms suffer from issues such as inconsistent
communication efficiency among participants and imbalanced computational speed [1-3], and the central
server has to wait for the slowest device to respond before proceeding to the next round of training. Moreover,
a large number of clients upload their model parameters to the server, causing the transmission bottleneck.

To address the aforementioned challenges, Xie et al. have proposed asynchronous federated opti-
mization methods based on traditional federated learning algorithms [4,5]. Chai et al. have introduced
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asynchronous federated training methods based on a hierarchical approach, where clients are divided into
different layers based on response latency and asynchronously communicate with the server [6,7]. This
hierarchical mechanism better adapts to the device heterogeneity and enhances the overall performance of
federated training.

However, existing federated learning algorithms are designed assuming the central aggregator is secure.
In practical scenarios, a malicious central aggregator may steal or tamper with model data, leading to privacy
breaches or disruption of normal training. Furthermore, malicious participants can launch poisoning attacks
by uploading malicious model parameters or gradients, introducing a backdoor into the model, and causing
the global model to train in a direction unfavorable for convergence.

To address the security issues as mentioned above, Lyu et al. proposed differential privacy [8], while
Truex et al. introduced a fully homomorphic encryption algorithm [9]. However, these methods suffer from
issues such as slow speed and lack of decentralization due to the introduction of noise or extensive use
of encryption algorithms. In recent years, an increasing number of researchers have utilized blockchain to
manage the federated learning model training process and data storage management. For instance, Goel
et al. leveraged blockchain technology to store CNN models by storing each layer of the model in blocks
of the blockchain. The blockchain’s hash chain structure was utilized to provide tamper resistance and
secure verification for the model [10]. Mondal et al. employed smart contracts in blockchain to achieve
distributed machine learning, eliminating centralization and utilizing differential privacy techniques to
counter poisoning attacks [11]. Feng et al. proposed a blockchain-based asynchronous federated learning
framework that optimized the control of block generation rate to reduce the latency of federated learning. It
dynamically adjusted the training frequency of asynchronous federated learning to prevent frequent uploads
of local models, which could overload blockchain transactions [12].

In practical IoT scenarios such as IoT, mobile edge networks, computer vision, and finance, collaborative
federated training is a holistic process that includes local training, device interactions, and model aggregation
on the server. Security vulnerabilities can arise at any point. At the algorithm level, as a widely used technique,
federated learning typically requires a framework that strikes a balance between model convergence speed,
model accuracy, cross-client fairness, communication efficiency, and security [13]. Meanwhile, due to the
collaborative nature of the training process, federated learning faces security issues at the management level
as well. Wang et al. proposed a blockchain-based secure data aggregation strategy for edge computing-
enabled IoT [14]. They also proposed a blockchain-based heterogeneous hierarchical trust assessment
strategy for 5G-ITS using joint deep learning techniques [15].

In addition, access control technology [16,17], as an information security mechanism, is widely used in
managing access permissions for resources or information on the blockchain because it can be efficiently
deployed on the blockchain through smart contracts [18-20]. For example, Li et al. implemented medical
device supply chain management through access control smart contracts [21]. Jiang et al. proposed a
blockchain-based trusted model evaluation framework for deep learning and applied it in mobile object
segmentation and designed access control policies to manage operations on blockchain [22].

One of the challenges faced by blockchain-based federated learning is the heavy burden of on-chain
storage when dealing with a large-scale model. Large-scale models possess more robust representational
capabilities and significantly improve performance in various tasks such as natural language processing,
computer vision, and speech recognition, however, they impose significant communication and storage
burdens on federated training. To address this problem, Wang et al. utilized ASTORE to alleviate system
storage overhead [23]. Jiang et al. employed IPES as an auxiliary storage tool for model files in the blockchain
system to alleviate the on-chain storage burden [22]. Introducing IPFES as an additional distributed storage
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service can share part of the data storage pressure for the blockchain, providing new possibilities for solving
the storage performance bottleneck problem of blockchain-based federated training.

Currently, two main issues have not been effectively addressed in existing research on blockchain-
based federated learning. Firstly, the increasing number of clients and the complexity of models lead to a
heavier storage burden on the blockchain and a surge in communication volume. Secondly, the security of
communication between the clients and the nodes on the blockchain has not been adequately considered
in previous work. To fill this research gap, we propose a storage scheme for asynchronous tiered federated
learning based on blockchain and IPFS, which is not dependent on specific blockchain platform architecture,
making it highly scalable and suitable for various research and production applications. At the technical
level, the strategy employed in our scheme differs from the existing work. The proposed blockchain-based
federated learning scheme demonstrates good storage performance, high communication efficiency, and
secure privacy protection by access control policies. The main contributions and innovations are as follows:

1. We apply the asynchronous tiered federation learning aggregation algorithm to the blockchain frame-
work and design a layered blockchain-based architecture that ensures decentralization and security of
the asynchronous federation aggregation process.

2. We design an access control model based on asynchronous tiered federated learning and deploy it
in smart contracts to achieve decentralized permission management of clients, which has not been
proposed in any other research.

3. This scheme designs and implements a hybrid on-chain and off-chain storage strategy for federated
learning with the help of IPFS distributed file system, which is safe, efficient, and effectively reduces the
storage burden and communication overhead of the blockchain in the process of federated training.

4. The proposed scheme applies to any deep learning model and any blockchain platform, demonstrating
robust scalability. We deploy the scheme on the Hyperledger Fabric framework and showcase its
full functionality. Finally, we conduct experiments on multiple datasets and settings to validate and
analyze this scheme’s federated training effectiveness, storage performance, communication overhead,
and security.

5. We compare this scheme with several other federated learning frameworks, and our security analysis
demonstrates the effectiveness of the proposed scheme in countering model inference attacks, backdoor
attacks, illegal client connection attacks, data theft, data forgery, and identity forgery attacks.

The remainder of this work is organized as follows. In Section 2, we present the background knowledge
for this work. In Section 3, we provide a detailed description of the overall architecture, operational steps, and
module designs of the proposed scheme. In Section 4, we present the necessary experimental procedures and
results, analyzing them from storage performance, communication performance, and security perspectives.
Finally, concluding remarks and future research works are given in Section 5.

2 Preliminaries

In this section, we present some background knowledge and necessary concepts for the pro-
posed research.

2.1 Asynchronous Tiered Federated Learning

The most used method in federated learning is Fed Avg, where the training approach involves randomly
selecting a subset of clients to participate in aggregation during each round of training and synchronously
waiting for responses from all selected clients [1]. However, FedAvg encounters the straggler issue when
dealing with large-scale edge devices due to limitations in computational and communication capabilities,
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making it challenging to achieve global synchronization among clients and thus resulting in slow training
speed [4].

To address the abovementioned issues, Chai et al. proposed a layered asynchronous training approach
to mitigate the heterogeneous latency issue among different devices [6,7]. The strategy based on layered
federated training is that the central server allocates clients to different logical layers based on their response
latency before formal training. During each round of training, the central server only needs to wait for clients
with similar response speeds within the same layer, effectively improving training efficiency and accelerating
the convergence of the global model.

2.2 Blockchain

Blockchain is a decentralized tamper-proof ledger that is widely used and consists of a series of
records called “blocks” that are linked together using specific cryptographic algorithms [24]. The blocks are
maintained in a network of several mutually distrusting peer nodes, with each peer maintaining a copy of the
ledger, thus eliminating the reliance on a centralized institution [25]. Blockchain platforms typically support
programmable script execution. Cryptocurrencies like Bitcoin use scripts to validate transactions [26],
while platforms like Hyperledger Fabric employ smart contracts as trusted decentralized applications [27].
Smart contracts can replace the central aggregator in federated learning and handle tasks such as managing
model storage, exchange, and aggregation. To ensure scalability, this work investigates the architecture of
mainstream blockchain platforms, as shown in Table 1.

Table 1: Architecture design comparison of major blockchain platforms

Blockchain Consensus Support for Categorize Extensibility Segregation
frameworks mechanisms smart contract mechanisms
Bitcoin Pow No Public Only for digital SigWit
currency
Ethereum Pow, Pos Yes Public Extensible Virtual machine
Hyperledger Kafka, Solo Yes Allied Extensible Docker,
fabric Channel

Compared to various blockchain frameworks in the research results, Hyperledger Fabric is more
friendly to supporting smart contracts, adopts a consortium chain-level privacy architecture, and is easy to
deploy. Most importantly, due to its robust scalability, it can support smart contracts for different businesses,
making it more convenient for practical applications. Considering the above factors, Hyperledger Fabric is
selected as the blockchain platform to support the deployment of this scheme.

2.3 Attribute-Based Access Control Model

Attribute-Based Access Control (ABAC) is a fine-grained and flexible authorization model that checks
whether a user has the permissions to perform operations on an object based on entity attributes, action
types, and relevant environment conditions [28]. The ABAC model consists of AS (authorization subject),
AO (authorization object), EE (environment entity), and AP (authorization policy), which together form the
access rule. Administrators assign specific values to these four components based on access rules, creating
an access control policy, Policy = {AS U AO U AE U AP}. Users submit corresponding authentication infor-
mation based on access rules, and the system compares it with existing access control policies to determine
whether the user is authorized to perform the requested operation.
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However, applying ABAC carries the risk that if the ABAC access control policies are illegitimately
created, the private data protected by this authorization model may be at risk of leakage. Blockchain
technology can address these risks with its anonymity, immutability, and decentralization, and it can protect
and provide traceability to access control policies.

2.4 Model Storage Technology

Deep learning is an important branch of machine learning, and various deep learning frameworks are
popular in academia and industry, such as PyTorch, TensorFlow, and Keras. They all assist in saving complex
model parameters as binary files and reloading model parameters when needed. In practical federated
learning scenarios, participants cannot exchange model parameters by passing specific model variables as
they would in a local setting. An effective solution is to communicate by exchanging model parameter files in
a consistent format. Therefore, we need a secure and efficient model storage technology to support federated
learning applications in real-world scenarios.

Common model storage technologies include data encryption, access control, blockchain, and the Inter
Planetary File System (IPFS). As a decentralized, distributed, and tamper-proof digital ledger, blockchain is
often used as a secure data storage platform. However, as the amount of data on the blockchain increases, it
becomes essential to allocate on-chain storage space effectively to store more valuable information.

IPES is a peer-to-peer distributed file storage system [29]. It utilizes content-based addressing. When
a user initiates a file upload request, the IPFS service generates a content identifier (CID) based on the file’s
content hash value and returns the CID as the unique identifier for the file. IPFS offers high-performance
data transmission and decentralized storage services, and the content-based addressing mechanism provides
it with a certain level of tamper resistance.

3 Scheme Description

In this section, we present a secure and efficient scheme for federated training and data storage that
ensures strict privacy protection. Based on blockchain technology, it utilizes access control techniques to
validate the legitimacy of client requests, employs an asynchronous, tiered federated aggregation algorithm
for federated training, and adopts an on-chain and oft-chain hybrid model storage strategy to improve
communication efficiency and alleviate the storage burden on the blockchain.

Assuming N mutually distrusting clients C;, C,, ..., Cy, holding datasets Dy, D,,...,Dy. These N
clients aim to collectively train a shared global model W¢ without exposing their private datasets to other
participants. In the case of horizontal federated learning, the training samples owned by each participant
have the same feature space but different data IDs in their respective datasets.

The potential threat scenarios that this scheme may face are limited to the following situations. Curious
clients may attempt to access the updated model parameters of other participants during the training process
and plan attack behaviors based on them. For instance, the attribute inference attack utilizes stolen model
parameters as input features to train attack models and infer the sensitive attributes of other participant’s
data [30]. Malicious clients may also attempt to connect with the blockchain network to carry out disruptive
actions such as short-link non-poisoning backdoor attacks [31,32].

3.1 System Framework

The proposed scheme consists of three main modules: the federated training module, the access control
module, and the data storage module. The system framework is illustrated in Fig. 1.
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Figure 1: The system architecture

The federated training module is responsible for federated aggregation. Smart contracts deployed on the
blockchain act as central aggregators to avoid a single point of failure. The access control module manages the
interaction process between clients and the blockchain. Any requests submitted by clients to the blockchain
must undergo identity verification and access control policy validation. Access privileges to the global model
for different rounds are dynamically generated during the training process. The data storage module consists
of the blockchain network and IPES service, which manages client identity information, dynamic access
control policies, and model resources. The data required by access control policy and CIDs of model files
are stored on the blockchain network in a (key — value) format, while complete model parameter files are
stored on the IPFS service.

The detailed operational steps of this scheme are provided in Algorithm 1 and Fig. 2. Implementation
details of each module will be discussed in subsequent sections.

Algorithm 1: Detailed operational steps of the proposed scheme

Require: Client 1 - k, each with its private dataset D;.

Ensure: Federated Global Model W¢

1. Divide clients into blockchain nodes of different communication tiers based on response latency and
register legitimate identities for clients on the blockchain.

2. Generate the initial global model w° on the blockchain and store it there. Simultaneously, register the
initial access control policy on the blockchain, allowing all clients to request this initial global model.

3. Each client requests the global model.

4. The blockchain network verifies the client’s identity through a smart contract and checks the
request’s legitimacy based on the access control policy. If the request passes, the model is returned.

5. Each client starts training the global model on its private dataset and submits a request to aggregate
the local model to the communication node in its corresponding logical tier.

(Continued)
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Algorithm 1 (continued)

6.  The blockchain node verifies the client’s identity and the correctness of the request through the
access control smart contract. If correct, it saves the submission.

7. The blockchain node checks the number of local models requested. Whenever the threshold is
reached, it automatically triggers the execution of the federated aggregation smart contract, aggregates the
models, obtains the global model for this round, and saves it on the blockchain.

8.  After each aggregation is completed, the blockchain automatically triggers the execution of the access
control smart contract and dynamically registers a new access control policy (if round > 2). Clients ready
for the next round of training can access this latest global model.

9. Repeat steps 3-8 until the global model converges or the maximum number of global training
rounds T is reached.

v

— &
-
Client AC Module Fed Module Storage Module
— 1. Register Identity — 2.1Initialize
2.2 Register Access Global Model

3. Client Requests ContfalRalicy

Global Model
> 4.1 Verify Client Identity
and Request Legitimacy
4.2 If not approved,
deny access
4.3 If validated,
return Model CID

&
+

D 5.1 Client Performs
Local Training

5.2 Request to

Submit Local Model
> 6.1 Verify Client Identity

and Request Legitimacy
6.2 If not approved,

ey aeoe 6.3 If approved, save the submission ——

7.1 Aggregation starts when the
number of requests from clients
reaches the threshold.

8. Register a new access

9. Repeat the above control policy allowing _— 7.2 Save to the blockchain =
process until reaching prepared clients to access
— the maximum rounds —» this latest global model.
or the global model
converges.

Figure 2: The detailed implementation and the algorithm depicted in Algorithm 1
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3.2 Blockchain-Based Asynchronous Tiered Federated Training

In the federated training module, model aggregation is managed by the federated aggregation smart
contract. This contract implements a decentralized, asynchronous tiered federated aggregation algorithm.
Before training begins, each client is assigned to a different logical communication layer based on their
response latency. Considering that each node on the blockchain needs to store a copy of the data, in scenarios
with many clients participating in training, it can impose a significant storage burden on the blockchain. To
address this, we reduce the number of blockchain nodes and maintain one blockchain node participating in
consensus for each logical communication layer, instead of assigning each client to a consensus node.

In each training round, clients complete local training and submit their local models to the blockchain.
When the number of submissions from clients in the same layer reaches the set threshold, it automatically
triggers the execution of the federated aggregation smart contract. This smart contract implements both
intra-layer aggregation and inter-layer aggregation processes. Clients participating in aggregation within
each round belong to the same layer and utilize Eq. (1).

C
Mg
Wtier,, = Z N_ t+1 1)

To perform intra-layer aggregation to obtain the updated model for this layer, the intra-layer aggregation
algorithm within the same layer is the Federated Averaging (FedAvg) algorithm introduced in Section 2.1.
After updating the layer model for the current communication layer, Eq. (2) is applied.

M Tt'er
witl = Z T )
m=1 T

To perform cross-layer global model aggregation and obtain the global model w'*!, the weight corre-
sponding to the layer m during the global model aggregation is Ttjcr,,,,_,, /T, signifying that layers with more
frequent updates have smaller corresponding weights during aggregation, while layers with lower update
frequencies have greater weights during aggregation. This approach helps prevent the global model from
biasing towards the logic layers that respond faster [6]. The complete algorithm process of the federated
training module is described in Algorithm 2.

Algorithm 2: Asynchronous tiered federated training

Require: C denotes the number of clients in one round. tier,, isthe number of updates of tier m. T is
the current global rounds, T = Tyier, + Thier, + - . . + Tiier,,- Bach client gets the initial global model w°.
Ensure: Trained global model W¢.
for each training round do
for each client k in parallel do
ng = Dy
w! "1« Local Training (wf, 1)
C=C+1
end for
if ¢ > threshold then
Ny = Zg =11k
Wrier, < TieredAggregation (w,tc LR C)
Ttierm = Ttierm +1

O ® NN

-
e

(Continued)
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Algorithm 2 (continued)

11. C=1

12. end if

13. w'*l « CrossTierAggregation (Wyier, , M)
14. end for

15. return global weight w’

16.

17. LocalTraining (wf{,l)

18. witl = wi — VI (w')

19. return w; "’

20.

2. TieredAggregation (wi",C)

22. Wrier, = z,le :[—’;w,i“

23. return wy;,

24.

25.  CrossTierAggregation (Wiie,, , M)
26. witl =y M —T“c”%“"” Wrier,,

27. return w'*!

Unlike other federated learning frameworks, the federated training process in this scheme is not led
by a central server. Instead, it is orchestrated by smart contracts deployed on the blockchain acting as
central aggregators, passively waiting for client requests, achieving an utterly decentralized management
architecture. Model data is transmitted between clients and the blockchain network, and its security is
maintained by the blockchain and access control smart contracts.

3.3 Access Control

In our scheme, the interaction between clients and the blockchain network is divided into two categories:
(1) To submit local models to the blockchain network. (2) To request the aggregated global model. The above
processes correspond to security vulnerabilities that are twofold: (1) Unauthorized malicious clients may
upload malicious local models to disrupt the entire federated training process. (2) The updated global model
is stored on the blockchain. And the layer aggregation models for each layer and the local models submitted
by each client are saved. Clients may access model data other than the global model, leading to privacy leaks.

To securely share model resources, this scheme uses access control to manage access requests from
clients to the blockchain.

3.3.1 Definition of Access Control Model

The scheme adopts an Attribute-Based Access Control model (ABAC) to achieve fine-grained and
flexible access control. The basic concepts of ABAC have been introduced in Section 2.3. In our scheme, the
user entity (AS) represents the client, the object entity (AO) represents model resources, and the permission
operation (AP) represents a client’s upload or access operation on-chain model resources. The definitions of
attributes for each entity are provided below.

Definition 1. Client defines the attributes of the client entity. Client = {ClientID, ClientTier, TierRound,
GlobalRound }. ClientID is the identifier of the client participating in federated training, Client Tier indicates
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the client’s communication layer, TierRound represents the number of updates in the client’s communication
layer (also the number of updates for the client) and Global Round is the global round.

Definition 2. Model defines the attributes of the model resources saved on-chain. Model = { ModelID, Mod-
elType, ModelTier, TierRound, GlobalRound, Model EncryAddr, Timestamp}. ModelID is the unique
index of the on-chain model resource, ModelType denotes the type of model resource, categorized as client
local model, layer aggregation model, and global aggregation model. If it is not a global model, the Model Type
identifies the model’s layer, and TierRound explains the communication rounds of that layer. GlobalRound
represents the global update round, Model Encr yAddr indicates the IPFS storage index of the encrypted model,
and Timestamp is a timestamp recording the time when the model is saved to the blockchain.

3.3.2 Federated Secure Access Policies

The access control policy in this scheme is called the Federated Secure Access Policy
(FSAP), where FSAP={AC,AM}, AC={Client.ClientTier,Client.GlobalRound}, AM =
{Model.ModelID}, AC and AM are the necessary attributes involved in the access control verification
for Client and Model respectively. The unique identifier calculation for FSAP is FSAP_ID =
SHA256 {AC.ClientTier + AM.ModelID}. Access control policies are recorded on the blockchain
network in the form (FSAP_ID, FSAP).

Before exchanging model data between clients and the blockchain network, identity legitimacy
verification and access control request verification are required. Initially, an access control request
FSAPRequest = {Client, Model, OP} is generated, where Client represents the requesting client, Model
denotes the model the client is requesting to operate on, and OP signifies the client’s requested
operation, which can be model upload or model access. Subsequently, we define FSAPRequestID =
SHA256 {FSAPRequest.Client.ClientTier + FSAPRequest.Model.ModelID}, and validated clients
must check if this index exists in the blockchain state database. If FSAPRequestID is found, access is granted
for subsequent operations. Otherwise, it indicates that the client does not have permission for this operation,
and access is denied.

To achieve decentralized dynamic management of client access to on-chain resources, a smart contract
named the Federal Secure Access Contract (FSAPC) is designed, which includes the following methods:

AddValidClient: Add legitimate client identities participating in federated learning to the
blockchain ledger.

CheckClient: Retrieve client information from the blockchain state database to verify legitimacy.
AddPolicy: Add access control policies to the blockchain ledger.
QueryPolicy: Retrieve access control policies from the blockchain state database.

CheckValid: Generate access control requests for the client’s current access operation and verify the
validity of the request.

Algorithms 3-5 describe the main methods in this smart contract. APIstub.PutState (k,v) denotes
uploading index k and its corresponding value v to the blockchain ledger, APIstub.GetState (k) indicates
retrieving index k from the blockchain state database, and SHA-256 is a commonly used hash function in
the SHA-2 hash family.
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Algorithm 3: AddPolicy(): Adding access control policy to the blockchain

Require: AC, AM, APIstub
Ensure: OK or Error

PN UE W

—
= o

if AC = NullorAM = Null then
return Error(“Invalid input!”)

end if

FSAP_ID <« SHA256 (AC.ClientTier + AM.ModelID)
Respose < APIstub.GetState (FSAP_ID)
if Response + Null then

return Error(“Policy already exists!”)

end

FSAP « {AC,AM}

APIstub.PutState (FSAP_ID, FSAP)
return Success(FSAP)

Algorithm 4: QueryPolicy(): Querying access control policy from the blockchain

Require: AC, AM, APIstub
Ensure: FSAP policy or Error

1
2
3
4.
5.
6
7.
8
9

if AC = NullorAM = Null then
return Error(“Invalid input!”)
end if
FSAP_ID « SHA256 (AC.ClientTier + AM.ModellD)
FSAP « APIstub.GetState (FSAP_ID)
if FSAP = Null then
return Error(“Policy does not exist!”)
end if
return Success(FSAP)

Algorithm 5: CheckValid(): Checking whether a client’s request is valid or not

Require: Client, Model, OP, APIstub
Ensure: OK or Error

1
2
3
4.
5.
6
7.
8
9

10.
11.

if AC = NullorModel = Null then
return Error(“Invalid input!”)

end if

Client < APIstub.GetState (Client.ClientID)

if ClientID = Null then
return Error(“Invalid Client!”)

end if

if OP is uploading local model and Model.ModelType islocal model then
return Success("OK”)

end if

return Error(“Wrong model type, access is denied!”)
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3.4 Data Storage Management

As the round of federated training increases, the data storage burden on the blockchain will intensify
and throughput will also be constrained. This scheme employs a combined on-chain and off-chain storage
strategy to reduce communication costs and storage burdens. The storage of client’s identity information and

access control policies has been discussed in previous Section 3.3.2, and this section focuses on the exchange
and storage strategy for model data.

In this work, IPES is utilized as off-chain auxiliary storage service to store actual model files, generating
a unique CID for each file. The CID returned by the IPFS service is encrypted and saved on blockchain
as the attribute Model.ModelEncryAddr for model resources. Model resources are stored in the form
(ModelID, Model), where ModelID is derived by hashing essential description information of the
model resource, ModelID = SHA256 { Model Type + ModelTier + TierRound + GlobalRound}. These
four attributes uniquely identify a model resource, and the SHA256 algorithm exhibits strong collision
resistance, making it nearly impossible to find or fabricate other data with the same hash result. Thus, the
ModellD generated using this method is unique and can serve as the unique identifier for model resources.

In this storage strategy, clients and the blockchain no longer exchange actual model files. Clients upload
the encrypted CID of their local model as part of the FSAPRequest to the blockchain, completing the
submission of their local model. The blockchain responds to client requests by providing the CID of the
global model. Fig. 3 illustrates the data flow corresponding to the above storage process.

(1) (4)
(2) (5)

- R

Client Blockchain
Network

Figure 3: Data flow of the proposed scheme, showing the data interactions between components

Explanation of each step in Fig. 3 is as follows:

The client uploads a local model file to IPES service.

IPES service returns the corresponding CID.

Client sends local model identifier to blockchain network.
Blockchain sends CID to IPFS service.

IPFS service returns the corresponding model file.
Blockchain returns a global model identifier.

S o

To achieve the decentralization and efficient management of the storage process described above, a
Model Storage Smart Contract (MSC) is designed with the following main methods:

AddModel (): Add model resources to the data storage module.

RequestModel (): Retrieve model resources on the blockchain network.
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Algorithms 6 and 7 provide algorithmic descriptions of the two methods mentioned above.

Algorithm 6: AddModel(): Uploading a model resource to the blockchain
Require: Model file, Model attribute information
Ensure: OK or Error
CID <+ Upload model file to IPFS
if CID = Null then
return Error(“Error while uploading model file to IPFS”)
end if
Model <Model attribute information
Model.ModelEncryAddr < Encrypt (CID)
Model.Timestamp < Linux.Time.Now ()
ModelID < SHA256 (Model Type + ModelTier + TierRound + GlobalRound)
APIstub.PutState (ModelID, Model)
10. return Success(“OK”)

W o NN AW

Algorithm 7: RequestModel(): Searching for a model record in the blockchain

Require: Model attribute information
Ensure: Encrypted IPFS CID or Error
ModelID < SHA256 (Model Type + ModelTier + TierRound + GlobalRound)
Model < APIstub.GetState (ModelID)
if Model = Null then
return Error(“Error in model information!”)
end if
return Success(Model. ModelEncryAddr)

oG a

4 Experiment and Analysis

As experimentation, we deployed the Hyperledger Fabric blockchain platform [27], utilized Golang
for smart contract programming, employed Node.js for client applications, and executed all client nodes
in separate Docker containers. All experiments were conducted on Linux servers equipped with Intel(R)
Xeon(R) Silver 4214R CPU and RTX 3080Ti GPU, with 12 CPU cores and 45 GB RAM. The setup involved
40 clients distributed across 4 nodes on the blockchain network, each with 10 clients.

The federated learning training on convolutional neural networks performed in this research utilized
the MNIST and CIFAR-10 standard datasets. MNIST comprises 60,000 training images of size 28 * 28 and
10,000 test images, with 1input channel and images categorized into 10 classes [33]. CIFAR-10 includes 50,000
training images of size 32 * 32 and 10,000 test images, with 3 input channels and images categorized into
10 classes [34]. We randomly divide the data based on the data sample index. The local training settings
were that local epoch set to 3, local batch size set to 10, and all clients using the same learning rate across
different datasets.
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4.1 Experimental Procedure

This subsection demonstrates the key steps and functionalities of the experiments. As shown in Fig. 4
the smart contracts executed in the experiment, method names, and input parameters are marked with blue
underlines, while the experiment results are marked with red underlines.

root@jtli-ubuntu:/home/gopath/src/github.com/FSAP/client/nodejs# node ./invoke
.js fsapc QueryPolicy '{"AC":{"ClientTier":2,"GlobalRound":89},"AM":{"ModelID"
:"bb128b310c994e98a1f05317d62349191f38fa7cce5fb952a5f2a212314b8551"},"AE":0}"

Wallet path: /home/gopath/src/github.com/FSAP/client/nodejs/wallet

fsapc QueryPolicy {"AC":{"ClientTier":2,"GlobalRound":89},"AM":{"ModelID":"bb1l
28b310c994e98a1f05317d62349191f38fa7cce5fb952a5f2a212314b8551"},"AE": 0}
Transaction has been submit, result is: 19199811b086075b2ee2356ael942c7abbcc7f

1fffdécc3f0ald2101172e5243

Figure 4: QueryPolicy execution result

Fig. 4 illustrates the query result of an FSAP access control policy on the blockchain, obtained by
invoking the QueryPolicy () method in the access control module smart contract. The meaning of the
input parameters is whether a certain client with communication layer 2 and the current global round being
89, has permission to access the model indexed by the ModelID shown in Fig. 4. ModelID is derived
from SHA256 { ModelType:1, ModelTier: -1, TierRound: -1, Global Round: 89}, representing the global
model aggregated after the round 89 of federated training. Since a new access control policy is dynamically
registered after each round of federated aggregation, allowing legitimate clients to access the global model,
this query successfully returns the FSAP_ID of the access control policy.

Fig. 5 displays the verification result of a client’s request initiated on the blockchain. The client
information and model information are the same as shown in Fig. 3. As described in Section 3.3.2, this client
has undergone identity validation, operation type validation and access control policy validation through the
CheckValid() method, returning a success message, indicating that the client’s request has been validated
through the access control module.

root@jtli-ubuntu:/home/gopath/src/github.com/FSAP/client/nodejs# node ./invoke
.js fsapc CheckValid '{"Client":{"ClientID":23,"ClientTier":2,"TierRound":11,"

GlobalRound":89},"Model": {"ModelType":1,"ModelTier":-1,"TierRound":-1,"GlobalR

ound":89,"ModelEncryAddr":"","Timestamp":0},"0P":{"OPType":0}}"'

Wallet path: /home/gopath/src/github.com/FSAP/client/nodejs/wallet

fsapc CheckValid {"Client":{"ClientID":23,"ClientTier":2,"TierRound":11,"Globa
1Round":89},"Model":{"ModelType":1,"ModelTier":-1,"TierRound":-1,"GlobalRound"
:89,"ModelEncryAddr":"","Timestamp":0},"0P": {"OPType":0}}

Transaction has been submit, result is: 0K

Figure 5: CheckValid execution result
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Fig. 6 shows the result of adding model resource records to the blockchain ledger, obtained by calling
the AddModel () method in the Model Storage Smart contract. The input parameters indicate adding the
local model submitted by a certain client in communication layer 3 to the blockchain, with the client’s current
update round being 23 and the current global round being 90. Upon completion of the method, a success
message is returned.

root@jtli-ubuntu:/home/gopath/src/github.com/FSAP/client/nodejs# node ./invoke
.js store AddModel '{"ModelType":-1,"ModelTier":3,"TierRound":23,"GlobalRound"
:90,"ModelEncryAddr" :"CSSLXx@LwtOgVqX/LBZTSAEH3TbMr7wGhoLeQFsnXdP1lEHJ9qjsvlbxn
CFlb7iub","Timestamp":1697363262}"'

Wallet path: /home/gopath/src/github.com/FSAP/client/nodejs/wallet

store AddModel {"ModelType":-1,"ModelTier":3,"TierRound":23,"GlobalRound":90,"
ModelEncryAddr" :"CSSLXx@Lwt0gVqX/L8ZTSAEH3TbMr7wGhoLeQFsnXdPLEHJ9qjsv1lbxnCF1lb7
iub","Timestamp":1697363262}

Transaction has been submit, result is: The model information has been on-chai

n successfully!

Figure 6: AddModel execution result

Fig. 7 illustrates the result of querying the global model for round 89 by executing the method
RequestModel(). Upon successful querying, the Model.ModelEncryAddr is returned.

root@jtli-ubuntu:/home/gopath/src/github.com/FSAP/client/nodejs# node ./invoke
.js store RequestModel '{"ModelType":1,"ModelTier":-1,"TierRound":-1,"GlobalRo

und":89,"ModelEncryAddr":"","Timestamp":0}"'

Wallet path: /home/gopath/src/github.com/FSAP/client/nodejs/wallet

store RequestModel {"ModelType":1,"ModelTier":-1,"TierRound":-1,"GlobalRound":
89,"ModelEncryAddr":"","Timestamp":0}

Transaction has been submit, result is: RpEjkNKHtGcaG5+XMZBGE1kjtukEX5Q3uJAzbZ
ImuEHFgYk3pjPv7QeMeiMWzebQ

Figure 7: RequestModel execution result

Figs. 8 and 9 depict the results of an unauthorized access attempt. This unauthorized access
was a random probe from a curious client. A client in communication layer 1 attempted to
access a model in the global training round 92. The AM.ModellD is computed from SHA256
{ModelType: -1, ModelTier:1, TierRound:19, Global Round: 76 }, where Model Type indicates a request
for the client’s local model. Since access permissions are not registered for any local models on the chain, and
only access permissions for global models are dynamically generated during training, this query returned
an error message indicating that the access control policy does not exist, and the client was informed that
access was denied.
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Fig. 10a,b and Table 2 demonstrate the federated training results of our experiments, including the
accuracy rate and global elapsed time of training. The experimental results show that the blockchain-based
asynchronous tiered federated learning algorithm used in this scheme achieves similar accuracy rates as
centralized training. Compared to oft-chain training without blockchain, the main time loss in this scheme
is due to the time consuming for clients to exchange model data with the blockchain network, the execution
time of multiple smart contracts and the consensus verification time of various nodes of the blockchain
network. Among them, the node consensus time consumption is not within the scope of this work. We will
provide a detailed analysis of the time overhead of this scheme in subsequent Section 4.2.2.

4.2 Performance of the Scheme
4.2.1 Storage Performance

To verify the advantages of the collaborative storage strategy in this scheme, we compared multiple
strategies based on the performance metric of the storage space occupied by model resources saved on-chain.
Assuming the number of client requests submitted per round is C, the number of on-chain nodes is N, and
the total number of clients is K.

Our storage strategy is to reasonably compress the number of on-chain nodes based on the federated
training hierarchy. Nodes on blockchain must store N (C + 2) copies of model resources. However, if node
compression is not applied, K (C + 2) copies would need to be stored, and the difference in storage volume
lies in the gap between N and K. Therefore, although the relationship between blockchain networks and
clients is not fixed in practical applications, we still recommend establishing a reasonable mapping between
the number of clients and the number of blockchain nodes to save storage space while maintaining sufficient
on-chain consensus.

root@jtli-ubuntu:/home/gopath/src/github.com/FSAP/client/nodejs# node ./invoke
.js fsapc QueryPolicy '{"AC":{"ClientTier":1,"GlobalRound":92},"AM":{"ModelID"
:"d01c@9f7fc38542b320b5c6f26f774d1d857f5bffb@e374ddba2dc5112b68bc2"}, "AE":0}"
Wallet path: /home/gopath/src/github.com/FSAP/client/nodejs/wallet

fsapc QueryPolicy {"AC":{"ClientTier":1,"GlobalRound":92},"AM":{"ModelID":"d01
c09f7fc38542b320b5c6f26f774d1d857f5bffb@e374ddba2dc5112b68bc2"}," "AE": 0}
2023-11-01T706:38:36.201Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G0:0 - endorsement failed - Error: Policy does not exist!

2023-11-01T06:38:36.202Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G1:1 - endorsement failed - Error: Policy does not exist!

2023-11-01T06:38:36.205Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G@:0 - endorsement failed — Error: Policy does not exist!

2023-11-01T06:38:36.206Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G1:1 - endorsement failed - Error: Policy does not exist!

2023-11-01T06:38:36.206Z — error: [DiscoveryEndorsementHandler]: _endorse - en

dorsement failed::Error: Endorsement has failed

Figure 8: QueryPolicy query failure
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root@jtli-ubuntu:/home/gopath/src/github.com/FSAP/client/nodejs# node ./invoke
.js fsapc CheckValid '{"Client":{"ClientID":15,"ClientTier":1,"TierRound":28,"

GlobalRound":92},"Model":{"ModelType":-1,"ModelTier":1,"TierRound":19,"GlobalR

ound":76,"ModelEncryAddr":"","Timestamp":0},"OP":{"OPType":0}}"

Wallet path: /home/gopath/src/github.com/FSAP/client/nodejs/wallet

fsapc CheckValid {"Client":{"ClientID":15,"ClientTier":1,"TierRound":28,"Globa
1Round":92},"Model":{"ModelType":-1,"ModelTier":1,"TierRound":19,"GlobalRound"
:76,"ModelEncryAddr":"","Timestamp":0},"0P": {"OPType":0}}
2023-11-01T06:54:45.068Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G@:1 - endorsement failed - Error: Policy does not exist, acc

ess is denied!
2023-11-01T06:54:45.069Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G1:2 - endorsement failed - Error: Policy does not exist, acc

ess is denied!
2023-11-01T06:54:45.074Z - : [DiscoveryEndorsementHandler]: _build endorse

_group_member >> G0:1 - endorsement failed - Error: Policy does not exist, acc

ess 1is denied!

2023-11-01T06:54:45.075Z - : [DiscoveryEndorsementHandler]: _build_endorse

_group_member >> G1:@ - endorsement failed - Error: Policy does not exist, acc

ess is denied!

2023-11-01T06:54:45.075Z - error: [DiscoveryEndorsementHandler]l: _endorse - en

dorsement failed::Error: Endorsement has failed

Figure 9: CheckValid verification failure
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Figure 10: On-chain federated training performance. (a) On-chain federated training accuracy with global training
rounds; (b) On-chain federated training accuracy over time
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Table 2: Training results on two datasets

Dataset On-chain Off-chain Centralized On-chain
federated training federated training training accuracy federated training
accuracy (%) accuracy (%) (%) time (s)
MNIST 98.85 98.76 98.92 8061
CIFARI10 66.45 66.94 69.74 10,374

For the hybrid storage strategy and the blockchain-only storage strategy, we only consider the storage
space occupied by model resources, excluding client identities and dynamic access control policy data stored
on the blockchain ledger. The model scale chosen for federated learning in this scheme is variable without
an upper limit, and we conducted experiments using a model based on the CIFAR-10 dataset. The size of
the model resource files used in this experiment is 895 KB, and according to statistics, each resource record
on-chain requires storage space within 200 bytes. In the experimental setup, the global model converges
around 100 rounds, and we observed the on-chain storage performance of the three storage strategies before
100 rounds during the experiment. As shown in Fig. 10a, before the accuracy reaches 0.6, we recorded the
consumption of on-chain storage space for every 0.1 increase in accuracy. In the later stages of training, as the
improvement in accuracy slows with the global training rounds after the accuracy reaches 0.6, we recorded
the consumption of on-chain storage space for every 0.01 increase in accuracy. The graph shows that as
the global model accuracy improves, the consumption of on-chain storage resources under the blockchain-
only strategy increases sharply. In contrast, under the collaborative storage strategy used in this scheme, the
consumption of on-chain storage resources changes very gradually. In Fig. 11b, we recorded the on-chain
storage space consumption at global rounds 20, 40, 60, 80, and 100, showing that under the collaborative
storage strategy, as the global rounds increase, less storage space is consumed on blockchain.
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Figure 11: On-chain storage space consumption. (a) On-chain storage space consumption with accuracy changes;
(b) On-chain storage space consumption with global rounds change

The experimental results demonstrate that with the increase in global rounds and improvement in global
model accuracy, the growth of on-chain storage space under the collaborative storage strategy is significantly
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lower than under the blockchain-only strategy, which indicates that the hybrid storage strategy in this scheme
effectively reduces the storage burden on the blockchain, enhancing the scheme’s storage performance.

4.2.2 Communication Overhead

To evaluate the communication overhead of the scheme, we considered the main steps in the federated
training process. Specifically, apart from the necessary time spent on federated aggregation, the remaining
overhead can be divided into the following three aspects: (request-response) overhead between clients and
the blockchain, execution overhead of access control smart contracts, and communication overhead of model
storage, including the execution of relevant smart contracts and communication between parties and the
IPES server.

We use C to represent the threshold value of the number of client requests each tier of the federated
training, | Tp| to represent the transmission time of the request or response between clients and the blockchain
network, |T4c| to represent the execution overhead of access control smart contracts, |Tsc| to represent
the execution overhead of model storage smart contracts, |Ty| for the time overhead of uploading model
files to IPFS, | Tp| for the time overhead of retrieving model files from IPFS and | Ty| to represent the time
overhead of directly transmitting model files. In our experiments, the overheads’ average time consumption
was calculated as shown in Table 3.

Table 3: Average time consumption statistics of various overheads in the communication process

Notation Average time spent (s)

| Tl 0.056
| Tac] 0.5588
| Tsc| 0.6113
| Ty 0.2452
| Tp| 0.180
| T 1.5616

It is assumed that client requests do not always arrive at the blockchain simultaneously in the asyn-
chronous scenario. In each round of training, each client needs to request the global model and upload
the local model, with a transmission overhead of 2C|Tp|, each request needs to undergo access control
verification, incurring an overhead of 2C | Ts¢|. Each round of training needs to operate C local models, save
a new layer model and a new global model, which incurs storage overhead of (C + 2) |Tsc|. Additionally,
the model files from clients and the blockchain network need to be stored on IPFS, incurring storage
overhead of (C + 2) | Ty|, each client needs to download the global model file from IPFS, and the blockchain
also needs to download the local model files from each client, resulting in a total overhead of 2C|Tp|.
Therefore, the total additional overhead for one round of training in our scheme is T' = 2C ‘ Tp‘ +2C|Tac| +
(C+2)|Tsc|+ (C+2)|Ty| +2C|Tp| = 2.4461C + 2.7130 (ms). In comparison, the total overhead without
using the collaborative storage strategy is T’ = 2C|Ty| + C|Tac| + (C + 2) | Tsc| = 4.2933C +1.2226 (ms),
Compared to T, the overhead of IPFS storage has been reduced while the overhead of direct transmission
of model files between clients and the blockchain has been increased. In the case of federated learning alone
without blockchain, the total overhead for one round of trainingis T" = 2C |Ty| = 3.1232C (ms). Comparing
the differences between T and 7", it is evident that this scheme has significant advantages over the storage
strategy solely based on the blockchain. Particularly, when federated learning adopts models with larger
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parameter sizes or when the number of client nodes significantly increases, the advantage of using the storage
strategy in reducing communication overhead becomes more pronounced. Additionally, the overhead of
smart contracts added for security purposes in this scheme is within an acceptable range, providing the
scheme with higher security guarantees.

Suppose we consider more specific scenarios, a large number of client requests may simultaneously
reach the blockchain at certain moments, a situation more likely to occur when many clients participate
in training. Therefore, we need to test the performance of the smart contracts designed in this scheme in
high-concurrency scenarios. We set the number of concurrent transactions to be within 1000 and tested
the throughput of each smart contract method at intervals of 100. The experimental results are shown
in Fig. 12a,b. Based on the experimental results, it can be observed that the throughput of each smart contract
method is not significantly affected by the increase in the number of concurrent transactions, indicating
that the performance of the smart contracts in this scheme in high-concurrency scenarios can be considered
relatively stable.
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Figure 12: Throughput of smart contract methods at various levels of concurrency. (a) The throughput of each method
in the Access Control smart contract at different levels of concurrency; (b) The throughput of each method in the Model
Stor-age smart contract at different levels of concurrency

4.3 Security

Table 4 provides a detailed comparison of the implementation of various security measures between
this scheme and other federated learning frameworks.

Table 4: Security comparison of schemes

Security Our scheme Other FL framework
Model training security A fully decentralized scheme that Utilize secure federated training
strictly protects model resources to algorithms.

reduce the likelihood of attacks,
preventing adversaries from joining
the federated training process.

(Continued)
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Table 4 (continued)

Security Our scheme Other FL framework

Client access security Implementing client authentication Not the focus of our scheme.
and access control for client
requests using access control

technology.
Aggregation algorithm Not the focus of our scheme. Utilize methods such as differential

security privacy and homomorphic

encryption, but they may impact

the accuracy and effectiveness of

model training.
Resource sharing security ~ Utilize a fair decentralized smart Traditional Federated Learning

contract solely responsible for does not address this aspect.
resource storage, balancing Blockchain-based Federated

flexibility and security. Learning does not employ access

control mechanisms to manage
on-chain resources flexibly.

Table 5 comprehensively compare the security aspects of this scheme with other FL frameworks. Table 4
highlights this scheme’s innovative perspectives and approaches towards securing federated training.

Table 5: Security comparison between this scheme and other federated learning frameworks

Security [11] [12] [23] [35] Owurscheme
Model training security o/ v 4 4
Client access security X X X X v
Aggregation algorithm security vV x X x
Resource sharing security X X v v 4

The security requirements met by this program are listed below:

1.  Response to threat scenarios assumed by this scheme: The experimental results shown in Figs. 7 and 8
demonstrate that in this experiment, illegal access to resources cannot pass the verification of the access
control module, cutting off the attacker’s attack chain at its root, preventing them from accessing any
on-chain data sources. Therefore, attacks such as model theft or any attacks based on model parameters
during the training process are ineffective against this scheme.

2. Resource anonymity: The true attributes of model resources are hidden in the ModelID, computed by
SHA-256 based on the attributes of the model resources. SHA-256 is a secure one-way hash function
that protects the anonymity of model resources.

3. Traceability: Client requests to the blockchain can be recorded in the blockchain ledger. Expressly, any
model resource clients submit will be saved to the blockchain. Blockchain administrators can trace any
improper behavior back to any client node based on this information.
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4. Data integrity protection: The integrity of on-chain recorded data is maintained by the blockchain’s
distributed consensus mechanism, while the integrity of real model resources is maintained by IPES’s
content-based hash verification and distributed storage mechanism.

4.4 Scalability

As mentioned above, the proposed scheme exhibits high storage and communication performance,
enabling it to accommodate many clients participating in federated learning. Moreover, this scheme is
designed based on blockchain technology, independent of any specific blockchain platform, thus possessing
high portability. Additionally, the scheme is fully decentralized, the smart contracts on the blockchain are
also pluggable, and clients participating in federated learning can utilize any machine learning model and
optimization method. Therefore, the scheme proposed in this paper demonstrates high scalability.

5 Summary and Outlook

To minimize untrustworthy issues during the federated training process, we propose an asynchronous
tiered federated learning storage solution based on blockchain and IPFS. Experiments and analyses con-
ducted on various datasets and settings demonstrate the efficiency, security, and scalability of our scheme.
We address security concerns at the central aggregator node and along the path from clients to the aggregator
in the federated training process. Leveraging smart contracts on the blockchain network for federated
aggregation, the paper achieves a fully decentralized architecture for asynchronous hierarchical federated
training. The access control model designed effectively enhances supervision over client access and ensures
secure model resource access. Additionally, a hybrid on-chain and off-chain model storage strategy is
employed to alleviate storage burdens on the blockchain network and enhance the overall communication
efficiency of the solution.

In the future, we plan to incorporate secure federated aggregation algorithms into the scheme to enhance
the robustness of models against attack behaviors. Additionally, we will attempt to deploy our scheme in
specific scenarios through open-source channels to observe its real-time operation.
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