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ABSTRACT: Fire can cause significant damage to the environment, economy, and human lives. If fire can be detected
early, the damage can be minimized. Advances in technology, particularly in computer vision powered by deep learning,
have enabled automated fire detection in images and videos. Several deep learning models have been developed for
object detection, including applications in fire and smoke detection. This study focuses on optimizing the training
hyperparameters of YOLOv8 and YOLOv10 models using Bayesian Tuning (BT). Experimental results on the large-scale
D-Fire dataset demonstrate that this approach enhances detection performance. Specifically, the proposed approach
improves the mean average precision at an Intersection over Union (IoU) threshold of 0.5 (mAP50) of the YOLOv8s,
YOLOv10s, YOLOv8l, and YOLOv10l models by 0.26, 0.21, 0.84, and 0.63, respectively, compared to models trained with
the default hyperparameters. The performance gains are more pronounced in larger models, YOLOv8l and YOLOv10l,
than in their smaller counterparts, YOLOv8s and YOLOv10s. Furthermore, YOLOv8 models consistently outperform
YOLOv10, with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l
when trained with BT. These results establish YOLOv8 as the preferred model for fire detection applications where
detection performance is prioritized.

KEYWORDS: Fire detection; smoke detection; deep learning; YOLO; Bayesian hyperparameter tuning; hyperparam-
eter optimization; Optuna

1 Introduction
Fires and wildfires cause significant damage to property, the environment, and human lives. In the

United States, approximately 1.5 million fires occurred in 2022, resulting in 3790 civilian fatalities, 13,250
injuries, and $18 billion in property damage, according to the National Fire Protection Association [1].
Surprisingly, a fire occurred every 21 s on average in that year. In 2024, the United States experienced 7734
wildfires, with an average area burned per wildfire of 8299 hectares [2].

Various methods and sensors for early fire detection are essential for minimizing damage and saving
lives [3]. Vision sensors, such as cameras, offer several advantages over non-visual techniques like ionization
smoke sensors, which detect changes in air ionization levels. Cameras can monitor larger areas, including
extensive regions when mounted on drones. They are also easy to install, cost-effective, and adaptable to
different environments. Furthermore, camera data can be utilized to analyze fire development, including the
speed and direction of spread. Consequently, visual-based fire detection has gained significant attention in
recent years.
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Early visual-based fire detection methods relied on rule-based or traditional machine learning
approaches [4,5], which required significant effort in feature design. In contrast, by learning directly
from data, deep learning (DL) [6] approaches have achieved state-of-the-art performance in vision tasks,
including object detection [7], and have been applied to fire and smoke detection in images and videos. A
comprehensive review [8] highlights the growing adoption of DL, particularly YOLO-based architectures [9],
for fire and smoke detection. Unlike two-stage detectors like Faster R-CNN [10], YOLO follows a single-
stage detection approach, enabling significantly faster inference while maintaining strong accuracy. This
speed-accuracy tradeoff is crucial for real-time fire detection, where rapid response minimizes damage.
For instance, YOLOv3 [11] not only achieves a slightly higher mAP than Faster R-CNN but is also nine
times faster, demonstrating its superiority for time-sensitive applications. The YOLO series has evolved
through multiple architectural advancements, with some widely used versions including YOLOv5 [12]
(2020), YOLOv8 [13] (2023), and YOLOv10 [14] (2024). Basic information about these models and their
performance metrics is illustrated in Fig. 1.

Figure 1: Variants of You Only Look Once (YOLO) versions (v5, v8, v10) compared by number of model parameters,
Giga Floating Point Operations (GFLOPs), and mean average precision (mAP) at Intersection over Union (IoU)
Thresholds of 0.50 to 0.95 (mAP50-95) on the Common Objects in Context (COCO) dataset [15]. The size of each dot
on the chart indicates the model’s GFLOPs as an indicator of its computational complexity. One aspect of this study
investigates whether the performance of YOLOv8 and YOLOv10 on the D-Fire dataset [16] is consistent with their
performance on the COCO dataset

While previous studies have applied YOLO models for fire and smoke detection, most have focused
on architectural modifications [17,18] while relying on default or manually selected hyperparameters, or
have only employed a basic grid search for hyperparameter tuning [19]. This study proposes an alternative
approach to enhance YOLO models for fire and smoke detection by optimizing training hyperparameters
using Bayesian Tuning (BT). YOLOv8 and YOLOv10 are utilized in this study due to their recent advance-
ments, widespread adoption in academia and industry, and their implementation within the Ultralytics
framework [13], enabling direct comparative analysis. Moreover, as illustrated in Fig. 1, YOLOv10 surpasses
YOLOv8 in performance on the COCO dataset [15]. However, in the context of fire and smoke detection,
this trend remains ambiguous in literature. To investigate this, we train YOLOv8 and YOLOv10 models,
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evaluate their performance, and compare the results on the D-Fire dataset [16], a large-scale dataset for fire
and smoke detection.

Our main contributions are summarized as follows:

• We provide an overview of the Optuna framework [20], outline its general applications, and present a
procedure for applying Bayesian tuning to optimize the training parameters of YOLOv8 and YOLOv10
models. This approach enables the identification of optimal training configurations for each model.

• We perform the proposed Bayesian tuning process for the YOLOv8 and YOLOv10 models using the D-
Fire dataset [16] to identify the optimal training hyperparameters for each model. We then utilize these
optimized hyperparameters to train the models and evaluate their performance on the same dataset.

• We present detailed analyses of the hyperparameter tuning process and the object detection performance
of the YOLOv8 and YOLOv10 models on the D-Fire dataset. Additionally, we offer insights into these
models, including speed-accuracy trade-offs, generalization capacity evaluated through testing on a
different dataset, and detection failure analysis supported by visualizations.

The rest of this paper is organized as follows: Section 2 provides an overview of the D-Fire dataset,
the Optuna framework, and related YOLO-based fire and smoke detection studies. Section 3 describes our
methodology, including evaluation metrics, the YOLO models utilized, and the proposed hyperparameter
tuning protocol. Section 4 presents the experimental results, while Section 5 presents the key conclusions,
discusses the limitations of this study, and outlines potential directions for future research.

2 Related Work

2.1 D-Fire Benchmark Dataset
Our method requires extensive image data for hyperparameter tuning, training, and testing the

experimental YOLO models in real-world scenarios. To meet these requirements, the D-Fire dataset [16] was
selected due to its large size, and well-defined training, validation, and testing subsets. The D-Fire dataset [16]
contains a total of 21,527 images. Each image is manually annotated with bounding boxes categorized into
two classes: fire and smoke. Consequently, four scenarios can occur in an image: (1) an image with fire, (2)
an image with smoke, (3) an image with both fire and smoke, and (4) an image without any fire or smoke
(referred to as “None”). Statistical data on image categories and bounding box classes of this dataset are
presented in Fig. 2b. The D-Fire image dataset was divided by its authors into a training set comprising 17,221
images (80% of the total dataset) and a testing set comprising 4306 images (20%). The training set was further
split into five folds for cross-validation, facilitating our proposed Bayesian hyperparameter optimization
process. After training the models with the optimized parameters, their final performance is evaluated using
the testing set.

Dataset characteristics: The D-Fire dataset contains a diverse collection of fire/smoke images, exhibit-
ing variations in resolution, lighting conditions, sharpness, surrounding environments, and bounding box
sizes, as illustrated by sample images in Fig. 2a. However, this dataset lacks statistical summary regarding
fire/smoke conditions, such as whether incidents occurred in indoor, outdoor, urban, or rural environments.
To further characterize the dataset, we utilized FiftyOne [21] to evaluate thematic patterns in fire and smoke
conditions based on image uniqueness. A quick analysis was conducted by examining samples in the dataset
at different levels of uniqueness computed by [21]. The analysis revealed that most images depict outdoor
scenes, primarily in mountainous, forested, or grassland regions, with urban settings being less prevalent.
Additionally, fire and smoke are often observed at significant distances from the camera. A limitation of this
dataset is the scarcity of indoor images. Regarding temporal distribution, daytime images dominate, followed
by nighttime images, with a minor fraction captured during pre-evening hours.
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Figure 2: D-Fire dataset for fire and smoke detection. (a) Sample images from the D-Fire dataset, demonstrating
variation in resolution, lighting conditions, and sharpness. Bounding box sizes also exhibit significant variability;
(b) Statistics of the D-Fire database by image category and bounding box classes

Dataset selection: Previous datasets employed in YOLO-based fire and smoke detection studies have
been characterized by being either large but not publicly accessible [22], small in scale [17], or lacking
diversity in fire and smoke conditions [23]. In this study, we selected the D-Fire dataset due to its extensive
image collection, predefined train-validation-test partitioning, and strong resemblance to real-world surveil-
lance footage. Its high proportion of outdoor images, particularly those captured from a distance, makes it
well-suited for developing fire/smoke detection models for public safety applications.

2.2 Optuna Framework for Hyperparameter Optimization
The performance of DL models is significantly influenced by hyperparameters such as the learning rate

and the configuration values of optimizers [24]. A review paper [25] presents several methods for optimizing
hyperparameters, including grid search, random search, and Bayesian optimization, providing foundational
context for our approach. Although grid search and random search are straightforward to implement, they
can be computationally expensive. In contrast, Bayesian optimization [25] is regarded as more efficient,
requiring fewer evaluations to identify a suitable set of hyperparameters.

The Optuna framework [20] is a popular tool for hyperparameter optimization that provides an
easy-to-use programming interface in Python. It allows for simple parallelization and supports various
optimization algorithms. Optuna has demonstrated good performance in hyperparameter optimization
tasks, as highlighted in [26]. The general workflow of Optuna is as follows:

1. Define the Search Space: Specify the hyperparameters to optimize and their respective search ranges.
2. Define the Objective Function: Formulate the function to be optimized (e.g., maximize mAP50 of a

YOLO model).
3. Run the Optimization Trials: Each trial involves executing the objective function with a specific set of

hyperparameters. The next set of hyperparameters is determined based on the results of previous trials
using a sampler, which implements an optimization algorithm (e.g., random search).

4. Select the Best Hyperparameters: After all trials are completed, the optimal set of hyperparameters are
those that yield the best value for the objective function.
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Optuna provides various samplers that correspond to different optimization algorithms. Common
samplers include GridSampler, RandomSampler, and TPESampler, which implement grid search, random
search, and Tree-structured Parzen Estimator (TPE) [27], respectively.

2.3 YOLO-Based Fire and Smoke Detection
Numerous studies have explored YOLO architectures for fire and smoke detection, primarily focus-

ing on architectural modifications while often neglecting hyperparameter optimization. For instance, the
work [17] proposed modifications to YOLOv8 by incorporating an advanced attention mechanism to
enhance detection performance but relied on manually selected hyperparameters, which may not be optimal.
Additionally, their used dataset is not publicly available and contains only ∼4400 images, significantly smaller
than the D-Fire dataset. Similarly, the authors in [18] introduced an enhanced YOLOv8n-based architecture
with modifications to the backbone, head, and bounding box loss function to improve performance on the
D-Fire dataset. However, they did not optimize hyperparameters and only tested YOLOv8n and YOLOv10n,
limiting insights into larger model variants. Other studies utilizing YOLOv10 for fire detection also lacked
hyperparameter tuning and employed private or small-scale/less diverse datasets, such as the 6000-image
dataset (primarily consisting of indoor images) in [23] or dataset focused on specific scenarios instead of
general fire/smoke detection cases, such as the fire ship detection dataset in [28].

A few studies have conducted hyperparameter optimization for YOLO models. The authors in [19]
conducted hyperparameter tuning for YOLOv5 models on the D-Fire dataset [16], however they only used
a simple grid search strategy for selecting the best hyperparameters. In contrast, the study by [29] optimized
YOLOv8 hyperparameters using a more sophisticated hyperparameter tuning called one-factor-at-a-time
(OFAT) approach, but this study tested with a publicly available dataset containing only 10,000 images,
significantly fewer than the D-Fire dataset utilized in this research.

Overall, research on YOLO-based fire and smoke detection has primarily emphasized architectural
modifications, with limited attention to hyperparameter optimization and a lack of performance evaluations
across multiple YOLOv8 and YOLOv10 variants on large-scale, publicly available datasets. Our study aims
to address these gaps by proposing an advanced hyperparameter optimization technique, Bayesian tuning,
to improve the performance of both small and large variants of YOLOv8 and YOLOv10. Additionally, we
provide a comprehensive performance comparison of these models using the D-Fire dataset, offering insights
into their effectiveness for fire and smoke detection.

3 Proposed Method for Hyperparameter Tuning
This study focuses on optimizing training hyperparameters to enhance the performance of YOLO

models (YOLOv8 and YOLOv10) for the fire/smoke detection task. The Optuna framework [20] is employed
to perform Bayesian hyperparameter optimization. The study workflow, illustrated in Fig. 3, employs 5-fold
cross-validation on the D-Fire dataset training set [16] to identify optimal hyperparameters that maximize
the average mAP across folds (see Section 3.2). These parameters are then applied to train each model on the
full training set, while model performance is assessed using the test set.

3.1 YOLO Models Used in This Study
As mentioned in Section 1, YOLO-based object detectors have evolved through multiple versions. In this

study, we focus on two more recent versions of YOLO: YOLOv8 [13] and YOLOv10 [14]. These YOLO versions
are developed based on the YOLO Ultralytics framework [13], which offers ease of use through a simple user
interface, demonstrating good speed and accuracy. The framework facilitates the training, exporting, and
deployment of models across various environments and provides multiple model variants with the trade-off
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between speed and accuracy. This section presents an overview of the key architectural features of YOLOv8
and YOLOv10, along with their model variants to contextualize our study. Detailed information on YOLOv8
and YOLOv10 can be found in the original publications [13,14].

Figure 3: Workflow of this paper

3.1.1 YOLOv8
The network architecture of YOLOv8 [13] (Fig. 4a) incorporates several significant changes, including

the replacement of the C3 module from YOLOv5 [12] with the new C2f module. Additionally, modifications
to the kernel sizes in the backbone and bottleneck layers have been implemented. A key innovation is the
introduction of a decoupled head with an anchor-free mechanism, which enhances both detection speed
and accuracy.

Figure 4: YOLO architectures used in this study. (a) YOLOv8 architecture (reproduced from [30] under the CC BY-
NC-ND 4.0 license); (b) YOLOv10 architecture with Dual Label Assignments (adapted from [14] under the CC BY 4.0
license)

YOLOv8 provides five model variants, including YOLOv8n (nano), YOLOv8s (small), YOLOv8m
(medium), YOLOv8l (large), and YOLOv8x (extra large), offering a range of options based on computational
efficiency and performance requirements. In this paper, we utilize the YOLOv8s and YOLOv8l models for
experimentation, as they represent two distinct categories: a smaller and faster model with reduced accuracy
(YOLOv8s), and a larger and more accurate model with slower processing speed (YOLOv8l).
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3.1.2 YOLOv10
In May 2024, YOLOv10 [14] was introduced as an updated version of YOLO, developed by a research

team at Tsinghua University and based on the Ultralytics framework [13]. The authors aimed to enhance
speed and accuracy through two key implementations: 1) NMS (Non-Maximum Suppression)-Free training
utilizes Dual Label Assignments with an additional one-to-one head alongside the traditional one-to-many
head (as shown in Fig. 4b), eliminating the NMS post-processing step and increasing processing speed
and 2) an efficiency-accuracy driven model design that features lightweight classification heads, decoupled
downsampling strategies, and a rank-guided block design to reduce layer redundancy [31]. Additionally,
YOLOv10 employs larger convolution filters for improved context capture and a partial self-attention
mechanism to reduce complexity.

Similar to YOLOv8, YOLOv10 presents multiple model variants: YOLOv10n (nano), YOLOv10s (small),
YOLOv10m (medium), YOLOv10b (balanced), YOLOv10l (large), and YOLOv10x (extra large). For this
study, YOLOv10s was selected to represent the small and fast model, which is less accurate, while YOLOv10l
was chosen to represent the large and accurate model, although it operates at a slower speed.

As shown in Fig. 1, YOLOv10 outperforms YOLOv8 on the COCO dataset [15] in terms of mAP50-
95, with fewer parameters and lower GFLOPs. However, its performance advantage over YOLOv8 for fire
and smoke detection remains unclear. One objective of this study is to address this gap by comparing the
performance of YOLOv8 and YOLOv10 on the D-Fire dataset [16].

3.2 Evaluation Metrics
In this study, we employ common evaluation metrics for object detection, including Precision (P), Recall

(R), F1-score, and Mean Average Precision (mAP) for performance assessment. P measures the proportion
of correctly predicted positive instances among all predicted positives, while R evaluates the proportion of
true positives relative to all actual positives in the ground truth. The F1-score provides a balance between P
and R by computing their harmonic mean. The formulas for P, R, and F1 are given as follows:

P = TP
TP + FP

, R = TP
TP + FN

, F1-score = 2 × P × R
P + R

(1)

where TP, FP and FN represent true positive, false positive and false negative, respectively.
The primary evaluation metric used in this study is mAP [32]. Initially, Average Precision (AP) is

computed for each class as the area under the precision-recall curve, as described in [32]. In the computation
of AP, a specific threshold for Intersection over Union (IoU) is established (e.g., 0.25, 0.5, 0.75) to categorize
predictions into true positives, false positives, and false negatives. In this context, IoU acts as a metric for
assessing the accuracy of predicted bounding boxes in relation to the ground truth bounding box, as defined
in Eq. (2):

IoU(Bp ,Bg t) =
Area(Bp ∩Bg t)
Area(Bp ∪Bg t)

(2)

where Bp and Bg t represent the predicted and ground truth bounding boxes, respectively.
Subsequently, the mAP (at a specified IoU threshold) is calculated as the mean of AP across all classes

C (in our case, C = {fire, smoke}). In this study, a conventional IoU threshold of 0.50 is used to compute
mAP50, as follows:

mAP50 = 1
C

C
∑
c=1

APc (3)
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For the assessment of computational costs, we use Floating Point Operations (FLOPs) to quantify the
number of floating-point operations required for model execution. Specifically, we express the computational
cost in terms of Giga Floating Point Operations (GFLOPs), representing billions of FLOPs. An increase in
GFLOPs indicates a higher computational cost, while a decrease suggests lower computational demand.

3.3 Practical Bayesian Hyperparameter Tuning Using Optuna
Our proposed tuning process follows the general workflow of the Optuna framework, as described

in Section 2.2. At the core of our approach, the Tree-structured Parzen Estimator (TPE) algorithm [27]
is employed as the sampler for hyperparameter optimization. The TPE method is a widely recognized
Bayesian optimization method designed to enhance the efficiency of hyperparameter searches [33]. During
the optimization process utilizing the TPE sampler, for each parameter in each trial, a set of candidate values
for each parameter is derived based on the results of previous trials. These values are then modeled with two
Gaussian Mixture Models (GMMs) l(x) and g(x), representing two distinct groups:
• GMM l(x): Fitted to the values that yield the best results for the objective function.
• GMM g(x): Fitted to the remaining values.

The next hyperparameter value is selected to maximize the ratio l(x)
g(x) , thereby guiding the search towards

the most promising hyperparameter values.

Algorithm 1: Optuna-Based Hyperparameter Optimization for each YOLO Model
Define fixed parameters:

image size (imgsz): 640 × 640
optimizer (optim): SGD (Stochastic Gradient Descent)
number of epochs (epoch): 200 (with early stopping patience of 40)

Define hyperparameters to optimize and their search spaces:
Learning rate (lr ∈ [1e−3, 1e−1]), log space sampling
optimizer momentum (mon ∈ [0.9, 0.99])
optimizer weight decay (wd ∈ [1e−5, 1e−1]), log space sampling
batch size (bsz ∈ {16, 32, 64})

Define the objective function:
For each fold in the 5-fold cross-validation (CV):

Train the YOLO model on the training set using fixed and to-be-optimized
hyperparameters above, then calculate the mAP50 on the validation set.

Compute the average mAP50 across all folds.
Run the Optuna optimization trials:

Use TPE sampler with T trials.
Retrieve the best hyperparameters:

Select the hyperparameters that yield the highest average mAP50 in 5-fold CV.

Algorithm 1 outlines the proposed hyperparameter optimization protocol, while Fig. 5 provides the
flowchart of this procedure as implemented using the Optuna framework. Due to constraints related to
computational resources and time, particularly when conducting 5-fold cross-validation on DL models, we
held a specific set of parameters constant during the optimization process. The parameters fixed included:
• Image size (imgsz): Fixed at 640 × 640 as this size is a standard choice for YOLO models, providing a

balance between detection performance and inference speed. Increasing the image size may enhance
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accuracy but imposes substantial computational overhead, resulting in slower training and higher
resource demands (e.g., GPU memory).

• Optimizer (optim): Stochastic Gradient Descent (SGD) [34] was chosen due to its effectiveness in
training deep learning models and superior generalization performance compared to alternatives like
Adam Optimizer, as suggested by the study [35].

• Training epochs (epoch): Based on preliminary experiments, we determined that 200 epochs were
sufficient for training these YOLO models, with early stopping enabled (a patience of 40 epochs, i.e.,
training halts if the loss does not improve for 40 consecutive epochs).

Figure 5: Flowchart illustrating the implementation of Algorithm 1 using the Optuna framework for hyperparameter
optimization, with the objective of maximizing the average mAP50 over 5-fold cross-validation

The search for optimized hyperparameters was conducted within well-defined search spaces, which
included:

• The learning rate (lr): The search space for (lr) was defined as [1e−3, 1e−1] with logarithmic sampling,
following recommendations from the work [36].

• Momentum (mon): Sampled from the range [0.9, 0.99] using logarithmic sampling, as suggested by the
study [37].

• Weight decay (wd): The search space for wd was defined as [1e−5, 1e−1] with logarithmic sampling,
following guidelines from the literature [37].

• Batch size (bsz): Values of 16, 32, and 64 were considered as they are commonly used for training deep
learning models and fit within our hardware constraints.

The objective of this tuning step was to identify a set of hyperparameters that maximizes the aver-
age mAP50 across a 5-fold cross-validation on the D-Fire image dataset for each experimental YOLO
model, specifically YOLOv8s, YOLOv8l, YOLOv10s, and YOLOv10l by systematically exploring the defined
hyperparameter space using the TPE algorithm.

4 Experimental Results
The experiments were conducted using a Windows 10 Pro 22H2 operating system with 64 GB of

RAM and two NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of VRAM. The NVIDIA CUDA
Toolkit version 11.8 was used in conjunction with PyTorch 2.1.0 for training YOLO models. Pretrained
weights for the YOLOv8 and YOLOv10 models from the Ultralytics framework [13] served as initial weights
during the hyperparameter tuning and final training processes. The hyperparameter optimization process
was performed using Optuna 3.6.1 [20] on the D-Fire training set, which is divided into five folds as
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described in Section 2.1. This process follows the procedure outlined in Algorithm 1 in Section 3.3, with
a total of 20 trials (T = 20) conducted for each YOLO model. The choice of 20 trials is justified by two
key factors. First, preliminary tests with YOLOv8s showed no significant mAP improvement beyond 20
trials across five-fold cross-validation, suggesting signs of convergence. Second, computational constraints–
e.g., a single YOLOv10l trial requiring around 27 h with 5-fold cross-validation across multiple models
(YOLOv8s, YOLOv8l, YOLOv10s, YOLOv10l)–made exceeding 20 trials impractical given our resource
limitations. Setting T = 20 ensures a fair comparison across models while balancing optimization and
resource availability, though additional trials could potentially improve results at the cost of significantly
increased tuning time. The relationships between hyperparameters across all trials for each YOLO model
are visualized in Fig. 6. Tuning results for YOLOv8s, YOLOv8l, YOLOv10s, and YOLOv10l are summarized
in Table 1. Fig. 6 highlights distinct hyperparameter selection patterns, learning rate (lr) and the weight decay
(wd) favoring smaller values, while momentum (mon) and batch size (bsz) exhibit broader distributions
across their search ranges. More specifically, all models (YOLOv8s, YOLOv8l, YOLOv10s, and YOLOv10l)
predominantly favor a small lr, primarily within the range of 0.001 to 0.01. Similarly, wd values are generally
low, ranging from 0.00001 to 0.01. In contrast, the mon parameter shows variability across its entire search
range. Additionally, YOLOv8s, YOLOv8l, and YOLOv10s tend to prefer smaller batch sizes (16 or 32), while
YOLOv10l exhibits a preference for a larger batch size of 64.

Figure 6: The parallel coordinate plot illustrates the interrelationships among the tuning hyperparameters across all
Optuna trials for each YOLO model
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Table 1: Optimal hyperparameters and average mAP50 values across five folds for each YOLO model after Optuna
tuning process

Network Learning rate Batch size Momentum Weight decay Average mAP50 (%)
YOLOv8s [13] 0.006948 16 0.928685 0.000379 78.59
YOLOv8l [13] 0.001032 16 0.960639 0.008724 79.91

YOLOv10s [14] 0.001117 16 0.940489 0.001015 78.24
YOLOv10l [14] 0.002797 64 0.923013 0.000102 79.07

As shown in Table 1, despite YOLOv10 being the later version, YOLOv8 models tend to excel in fire
and smoke detection tasks within the D-Fire dataset. This observation may seem counterintuitive, given
that YOLOv10 achieves higher mAP scores on the COCO dataset, as illustrated in Fig. 1. However, model
performance is inherently dataset-dependent; a model may excel in one dataset while underperforming in
another. The superior performance of YOLOv8 over YOLOv10 in fire and smoke detection was exhibited in
other studies [18,38]. The study [18] found that YOLOv8n outperforms YOLOv10n in terms of mAP50 in the
D-Fire dataset. Similarly, in the work [38], YOLOv8s surpasses YOLOv10s in mAP50 and mAP50-95.

Preliminary tuning results suggest that YOLOv8 models may outperform their YOLOv10 counterparts;
however, definitive performance evaluation requires testing on the test set. Therefore, using the optimal
hyperparameter sets for each model, all YOLO variants (YOLOv8s, YOLOv8l, YOLOv10s, and YOLOv10l)
were trained five times on the complete D-Fire image dataset and subsequently evaluated on the test set. The
average performance metrics from these five training sessions are presented in Table 2.

For comparative purposes, we also included performance metrics from other studies on the D-Fire
dataset [18,19,39,40], as it is essential to evaluate the models’ performances on the same large-scale dataset.
Note that Table 2 presents the performance of YOLO models under different hyperparameter selection
methods. These methods include:

• Grid search (GS): Exhaustive search over a predefined set of hyperparameters.
• Manual selection (MS): Manual selection of hyperparameters based on prior knowledge or experience.
• Ultralytics default (UD): Default hyperparameters provided by the Ultralytics framework [13].
• Bayesian tuning (BT): Our proposed method.

Comparison Rules and Significance Test: To compare our work with existing studies, we utilize mean
values for each metric due to the unavailability of the data required for conducting significance tests. To assess
the performance of YOLOv8 and YOLOv10 models under different hyperparameter selection strategies, this
study employs the Almost Stochastic Order (ASO) test, a statistical significance test originally proposed
by [41] and reimplemented by [42] for enhanced usability. ASO is suitable for comparing the performance
metrics of two models across multiple runs on the same test set. The test takes as input two lists of metric
x scores: one for Model A and one for Model B. At a 95% confidence level, it computes the violation ratio
ε, which quantifies the extent to which Model A stochastically dominates Model B in terms of metric x.
If ε < 0.5, Model A is considered superior to Model B. The smaller ε is, the more reliable the conclusion.
Otherwise, no significant dominance is established.

Comparison across YOLO Versions: The results reveal consistent trends: YOLOv8 and YOLOv10
models generally outperform their YOLOv5 counterparts and derivatives (e.g., GTP-YOLO backbone) in
terms of mAP50. For instance, YOLOv8s (UD) achieved an mAP50 of 79.27, exceeding YOLOv5s (GS) at
78.15 and GTP-YOLO at 78.20. Interestingly, YOLOv5l (GS) achieved the highest F1-score (0.78), with a
marginal difference compared to other models (0.76–0.77).
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Table 2: Performance metrics of selected YOLO models with varying hyperparameter selection strategies on the D-
Fire image dataset test set, compared with results from other studies. Each metric represents the mean performance of
models derived from five training iterations. Abbreviations for hyperparameter selection methods: Grid Search (GS),
Manual Selection (MS), Ultralytics Default (UD), and Bayesian Tuning (BT) = our proposed method

Network mAP50 (%) APfire (%) APsmoke (%) Precision (%) Recall (%) F1-score
YOLOv5s [19] (GS) 78.15 72.45 83.85 – – 0.76
YOLOv5l [19] (GS) 79.1 72.32 85.88 – – 0.78

GTP-YOLO [39] 78.2 72.6 83.7 – – –
ESFD-YOLOv8n a [18] 79.4 – – 80.1 72.7 –
YOLOv8s (MS) [40] 78.7 72.5 84.9 – – –
YOLOv8s [13] (UD) 79.27 72.78 85.75 79.03 74.01 0.764
YOLOv8s [13] (BT) 79.53 73.18 85.89 78.29 74.33 0.762
YOLOv8l [13] (UD) 79.64 73.33 85.96 79.99 74.71 0.772
YOLOv8l [13] (BT) 80.48 74.66 86.3 80.25 74.32 0.772

YOLOv10s [14] (UD) 79.06 72.79 85.32 80.11 72.97 0.763
YOLOv10s [14] (BT) 79.27 72.94 85.61 79.94 73.39 0.765
YOLOv10l [14] (UD) 79.2 72.79 85.61 80.47 73.28 0.767
YOLOv10l [14] (BT) 79.83 73.2 86.47 79.61 75.03 0.772

Note: aThis work used 10% of the D-Fire dataset through an arbitrary split, while other methods utilized the
official test set, which constitutes 20% of the dataset.

Furthermore, Table 3, validated by the ASO test, confirms the findings from Table 1, indicating that
YOLOv8 models consistently outperform their YOLOv10 counterparts in terms of mAP50 under identical
hyperparameter selection strategies. For instance, YOLOv8s (UD) achieved an mAP50 of 79.27, exceeding
YOLOv10s (UD) at 79.06. Similarly, YOLOv8l (BT) attained an mAP50 of 80.48, surpassing YOLOv10l (BT)
by 0.65.

Table 3: Comparison of mAP50 and F1 scores for YOLOv8 and YOLOv10. The notation εA→B indicates the ASO test
results for assessing whether model A is superior to model B based on the selected metrics. mAP50/F1 Diff. denotes the
difference in mAP50/F1 score between model A and model B (A−B)

Model (A) Baseline (B) mAP50 ASO
Test

mAP50 Diff. F1 ASO Test F1 Diff.

YOLOv8s
(UD)

YOLOv10s
(UD)

εA→B = 0.2833 0.21 εA→B = 0.8287,
εB→A = 1

–

YOLOv8s
(BT)

YOLOv10s (BT) εA→B = 0.4141 0.26 εB→A = 0.3987 (−0.003)

YOLOv8l
(UD)

YOLOv10l
(UD)

εA→B = 0.0703 0.44 εA→B = 0.0045 0.005

YOLOv8l
(BT)

YOLOv10l (BT) εA→B = 0 0.65 εA→B = 1,
εB→A = 0.7664

–
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Performance Comparison between Model Variants: Larger models within the same YOLO version
(L variants) generally outperform their smaller counterparts (S variants) regarding mAP50 and F1-score,
as expected due to their higher number of parameters enabling better handling of complex scenarios. For
instance, YOLOv8l (UD) achieved the mAP50 of 79.64 compared to YOLOv8s (UD) at 79.27, representing
an improvement of 0.37 (ASO test = 0.0085). Similarly, when considering models using Bayesian Tuning,
YOLOv10l (BT) got 79.83 compared to YOLOv10s (BT) at 79.27, representing an improvement of 0.14 (ASO
test= 0.07165). Furthermore, both YOLOv8l and YOLOv10l demonstrated higher F1-scores than their smaller
counterparts (YOLOv8s and YOLOv10s) when using the same hyperparameter selection strategies, with a
slight improvement of less than 0.01 (all ASO tests < 0.011).

Effectiveness of Bayesian Hyperparameter Tuning: Bayesian tuning (BT) demonstrated superior per-
formance in terms of mAP50 compared to the MS and UD hyperparameter selection strategies, particularly
for larger models. This finding is statistically confirmed by the results presented in Table 4.

Table 4: Comparison of F1 and mAP50 scores for YOLO models utilizing the BT hyperparameter selection strategy
vs. those employing the UD hyperparameter selection strategy, as evaluated through ASO testing. The notation εA→B
indicates the ASO test results for assessing whether model A is superior to model B based on the selected metrics. An
increase in mAP50 (↑mAP50/F1) denotes the improvement in mAP50/F1 of model A compared to model B

Model (A) Baseline (B) mAP50 ASO Test ↑mAP50 F1 ASO Test ↑ F1
YOLOv8s (BT) YOLOv8s (UD) εA→B = 0.0933 ↑ 0.26 εA→B = 1, εB→A = 0.5516 –
YOLOv8l (BT) YOLOv8l (UD) εA→B = 0 ↑ 0.84 εA→B = 1, εB→A = 0.5515 –

YOLOv10s (BT) YOLOv10s (UD) εA→B = 0.4384 ↑ 0.21 εA→B = 0.4384 ↑ 0.002
YOLOv10l (BT) YOLOv10l (UD) εA→B = 0.0009 ↑ 0.63 εA→B = 0.0009 ↑ 0.005

For instance, YOLOv8s (BT) achieved an mAP50 of 79.53, outperforming YOLOv8s (MS) at 78.70 and
YOLOv8s (UD) at 79.27. Similarly, YOLOv8l (BT) reached a mAP50 of 80.48, representing an improvement
of 0.84 over YOLOv8l (UD) at 79.64. Larger models showed more significant gains, with YOLOv8l (BT) and
YOLOv10l (BT) achieving improvements of 0.84 and 0.63, respectively, compared to their UD counterparts.
Smaller models, such as YOLOv8s (BT) and YOLOv10s (BT), also demonstrated improvements, with mAP50
increases of 0.26 and 0.21, respectively, although these gains were less substantial. These results demonstrate
the effectiveness of Bayesian tuning, particularly for optimizing larger models. Besides, the BT approach
led to a trade-off between precision and recall. For example, in the case of YOLOv8l (BT) compared to
YOLOv8l (UD), precision improved while recall slightly declined. Similarly, when comparing YOLOv10l
(BT) with YOLOv10l (UD), precision decreased but recall increased. Despite these variations, the F1-score
exhibited only marginal changes, remaining nearly constant across both the Bayesian tuning (BT) and
uniform distribution (UD) hyperparameter selection strategies.

Trade Off between Detection Speed and Accuracy: As mentioned before, larger models (L variants)
give better performance but come with a higher computational cost compared to smaller models (S variants).
For instance, YOLOv8l (UD) achieved an mAP50 of 79.64, exceeding YOLOv8s (UD) at 79.27 by 0.37, while
requiring 126.30 GFLOPs–nearly six times the computational cost of YOLOv8s (UD) at 28.40 GFLOPs.
This trade-off between performance and computational cost is a key consideration when selecting a model
for real-world application deployment. To gain a deeper understanding of this trade-off, we assessed the
performance metrics, inference speeds, model sizes, and GPU memory utilization of YOLOv8 and YOLOv10
models, as presented in Table 5. The trained models were converted to the Open Neural Network Exchange
(ONNX) format–a standard for model deployment, then evaluated on an NVIDIA RTX 3090 GPU. As shown
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in Table 5, larger models (YOLOv8s, YOLOv10s) achieve higher performance but experience a reduction of
over 40% in inference speed compared to smaller models (YOLOv8l, YOLOv10l). Additionally, larger models
require significantly more disk storage, which may pose challenges for deployment on edge devices with
limited storage capacity. Notably, YOLOv10 models achieve marginally higher inference speeds than their
YOLOv8 counterparts while also reducing GPU memory consumption. The choice of model depends on the
specific application requirements, including detection accuracy and available computational resources.

Table 5: Comparative analysis of performance, speed and resource usage of ONNX versions of YOLOv8 and YOLOv10
models. Frame per Second (FPS) represents the average number of frames processed per second. GPU memory usage
and ONNX model size are measured in megabytes (mB)

Model mAP50 a (%) FPS b GPU memory usage (mB) ONNX model size (mB)
YOLOv8s 79.53 68.38 865 43.67
YOLOv8l 80.48 46.23 1379 170.58

YOLOv10s 79.27 69.11 613 28.43
YOLOv10l 79.83 48.48 871 95.25

Note: a: The mAP50 values presented are derived from Table 2, obtained from models optimized
using Bayesian Tuning. b: FPS was quantified by executing ONNX models on the D-Fire dataset test
set and computing the mean. FPS varies with hardware and software configurations. Measurements
were conducted using an RTX 3090 GPU, Intel Core i9-12900K CPU, 64 GB RAM, on Windows
10 Pro 64-bit (21H2), with Python 3.9.12, PyTorch 2.1.0+cu118, Ultralytics 8.2.74, ONNX 1.16.1, and
ONNXRuntime-GPU 1.18.0.

Generalization Capability: To assess the generalization capability of our trained models, we evaluate
them on a dataset with different characteristics. Specifically, we utilize YOLOv8s (BT) trained on the D-Fire
dataset and test it on the Unmanned Aerial Vehicles (UAVs)-based forest fire database (UAVs-FFDB) [43].
The D-Fire dataset primarily consists of outdoor images captured from a fixed camera viewpoint, whereas
the UAVs-FFDB dataset contains images acquired from Unmanned Aerial Vehicles (UAVs) in forested
areas, exhibiting a distinct data distribution. The UAVs-FFDB comprises 15,560 images categorized into four
classes: Fire Incident in Evening, Fire Incident in Pre-Evening, Forest Evening without Fire, and Forest Pre-
Evening without Fire. Following [44], we allocate 10% of the dataset for testing, resulting in 389 images per
class. A new test set is constructed by merging images from the fire-related classes into a unified ”Fire” class
and grouping the remaining classes into a “Non-Fire” category, resulting in 778 images per class.

Inference is performed using YOLOv8s (BT) on the new test set. An image is classified as ‘fire’ if at least
one fire-class bounding box is detected; otherwise, it is categorized as ‘non-fire.’ The accuracy, Fire Detection
Rate (FDR), and F1-score are computed as in [44]. The results are presented in Table 6. Our YOLOv8s (BT)
achieves accuracy and FDR of approximately 90%, with an F1-score around 0.9. Although these metrics
are lower than those reported in [44], they are nonetheless promising, given that our models were trained
exclusively on the D-Fire dataset without exposure to the UAVs-FFDB. In contrast, the study in [44] utilized
the UAVs-FFDB training set, comprising 80% of the total images. This highlights the model’s ability to
generalize for fire detection in previously unseen environments.

Detection Visualizations: As shown in Table 2, YOLOv8 models outperform their YOLOv10 counter-
parts. Consequently, we focus our visual analysis exclusively on YOLOv8s and YOLOv8l to evaluate their
effectiveness in fire and smoke detection. Specifically, we present the detection results of these models on
some challenging scenes selected from the D-Fire image test set, as shown in Fig. 7. The first three rows
display scenes that could be confused with fire or smoke; however, both YOLOv8s and YOLOv8l effectively
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ignore these, not predicting them as fire or smoke. The fourth row presents a low-resolution image of smoke
situated far from the camera, which both models successfully detect, with YOLOv8l achieving a higher
confidence score. The last two rows depict scenes containing smoke and multiple fire sources. The second
last row indicates that YOLOv8l provides better predictions for fires. In the final row, YOLOv8s incorrectly
identify the fire sources near a car as smoke, whereas YOLOv8l accurately detected these fire sources.
However, both models mistakenly classified a distant yellow light, likely multiple incandescent streetlights
from a city, as fire. These observations suggest that further improvements are needed to enhance the models’
performance across various scenarios.

Table 6: Comparison of fire detection performance on the UAVs-FFDB dataset [43] between our YOLOv8s (BT) model,
which was trained exclusively on the D-Fire dataset without exposure to UAVs-FFDB, and the AHMHCNN-mCBAM
method [44], which was trained on the UAVs-FFDB training set

Method Accuracy (%) Fire detection rate (%) F1-score
YOLOv8s (BT)–ours 88 87.9 0.88

AHMHCNN-mCBAM [44] 100 100 1

Detection Failure Analysis: As illustrated in Fig. 7, our trained YOLO models occasionally produce
incorrect predictions. To investigate the underlying causes of these errors, we analyze two trained models,
YOLOv8l and YOLOv10l, using the D-Fire test set. We identify failure cases and visualize the results using
FiftyOne [21]. Our analysis focuses on two primary failure types: false positives (FP) and false negatives (FN).
False positives occur when the model incorrectly detects fire or smoke, while false negatives arise when the
model fails to detect actual fire or smoke. Representative failure cases are depicted in Fig. 8.

False Positive Analysis: FP cases may result from localization errors or environmental complexities. In
FP Case 1, both YOLOv8l and YOLOv10l detect smoke, but the predicted bounding box is significantly
smaller than the ground truth. This discrepancy arises because smoke can gradually disperse over a large
area with fading intensity, making accurate boundary prediction challenging. Environmental factors also
contribute to false positives. In FP Case 2, intense car headlights near an actual fire region mislead the model,
causing incorrect predictions. Similarly, in FP Case 3, distant areas with a certain level of gray coloration are
mistakenly identified as smoke.

False Negative Analysis: FN cases often occur due to low image resolution or when the size of the
fire/smoke is too small relative to the entire image. Again, complex environmental conditions can lead to
false predictions. For example, in FN Case 2, two small smoke plumes are partially occluded by trees and
blend into the background, making detection difficult. In FN Case 3, a large smoke area blends with the white
sky, making it challenging for the model to detect.

To mitigate detection failures, potential strategies include enhancing the model’s architecture to better
process complex scenes and developing larger, more diverse, and challenging training datasets. Further
details on these strategies are discussed in Section 5 as future research directions.



4112 Comput Mater Contin. 2025;83(3)

Figure 7: Predictions of YOLOv8l on the D-Fire image test set, demonstrating its ability to ignore challenging scenes
that could be confused with fire or smoke, such as sunsets and incandescent streetlights. Left column: the ground truth,
middle column: YOLOv8s predictions; right column: YOLOv8l predictions
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Figure 8: Representative failure cases of YOLOv8 and YOLOv10 models on the D-Fire dataset test set

5 Conclusion
This study proposes a Bayesian hyperparameter optimization method for selecting optimal training

parameters for YOLOv8 and YOLOv10 models, employing the Optuna library for effective hyperparam-
eter search. The models, trained with their optimal hyperparameters on the large-scale D-Fire dataset,
demonstrated improved performance compared to configurations using manually selected or default hyper-
parameters. Our analysis demonstrates that YOLOv8 models outperform their YOLOv10 counterparts in fire
and smoke detection.

However, the proposed approach has certain limitations. First, while the BT method effectively enhances
YOLO model performance, it demands substantial computational resources and extensive time to optimize
hyperparameters, particularly when employing 5-fold cross-validation. Additionally, this study did not
include an ablation analysis to evaluate the impact of individual hyperparameters on model performance
due to constraints in computational resources and time. Such an analysis could offer valuable insights into
hyperparameter significance and inform future optimization strategies. Second, since the underlying archi-
tecture of the YOLO models remains unmodified, performance is inherently constrained by architectural
limitations, such as difficulty in detecting small objects and complex scenes. Nevertheless, a key strength of
the proposed hyperparameter tuning technique is its universality, allowing it to be applied across various
YOLO model architectures.

As presented in Section 4, the best-performing YOLOv8 model (YOLOv8l) achieved an mAP50 of
approximately 80%, indicating potential for further enhancement. Future improvements may be attained
through architectural modifications and data augmentation, possibly in conjunction with hyperparameter
tuning. Architectural enhancements could involve the integration of attention mechanisms and the design
of specific layers to detect small objects, as suggested by [45]. Data augmentation is particularly promising,
given that fire and smoke events are rare. Future research could explore the use of generative adversarial
networks (GANs) [46] to produce synthetic fire and smoke images, as shown in [47], or incorporate adverse
weather conditions–such as haze, fog, and nighttime settings–into the dataset, as demonstrated in [48], to
increase its complexity and enhance model robustness.
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