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ABSTRACT: In permanent magnet synchronous motor (PMSM) control, the jitter problem affects the system perfor-
mance, so a novel reaching law is proposed to construct a non-singular fast terminal sliding mode controller (NFTSMC)
to reduce the jitter. To enhance the immunity of the system, a disturbance observer is designed to observe and
compensate for the disturbance to the sliding mode controller. In addition, considering that the controller parameters
are difficult to adjust, and the traditional zebra optimization algorithm (ZOA) is prone to converge prematurely and fall
into local optimum when solving the optimal solution, the improved zebra optimization algorithm (IZOA) is proposed,
and the ability of the IZOA in practical applications is verified by using international standard test functions. To verify
the performance of IZOA, firstly, the adjustment time of IZOA is reduced by 71.67% compared with ZOA through
the step response, and secondly, the tracking error of IZOA is reduced by 51.52% compared with ZOA through the
sinusoidal signal following. To verify the performance of the designed controller based on disturbance observer, the
designed controller reduces the speed overshoot from 2.5% to 0.63% compared with the traditional NFTSMC in the
speed mutation experiment, which is a performance improvement of 70.8%, and the designed controller outperforms
the traditional NFTSMC in the load mutation experiment, which is a performance improvement of 60.0% in the case
of sudden load addition, and a performance improvement of 90.0% in the case of load release, which verifies that the
designed controller outperforms the traditional NFTSMC.
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1 Introduction
Due to its advantages of high efficiency and compact structure, permanent magnet synchronous motor

(PMSM) is widely used in many fields with high-performance requirements such as exoskeleton robots
and aerospace [1]. However, in actual operation, PMSM systems often suffer from performance degradation
and jitter due to parameter changes and external interference. To enhance the system’s robustness and
improve the dynamic response-ability, it is essential to conduct in-depth research on the control strategy [2].
At present, common control strategies include PI control [3], robust control [4], predictive control [5],
adaptive control [6], and sliding mode control [7]. For example, literature [8] designed a fractional order PID
controller based on sigmoid function for the design of a voltage regulation system, and literature [9] based on
the use of adaptive Neuro-Fuzzy control for intelligent path planning of vehicles in dynamic environments,
these control methods have certain advantages in solving specific problems with characteristics. However,
when it is applied to PMSM control, it will face complex controller design, and it is difficult to achieve the ideal
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effect due to the specific rules of the algorithm. As a nonlinear control method, sliding mode control is widely
used in PMSM control because of its simple design and significant advantages in the face of uncertainty and
strong disturbance [10].

A hybrid adaptive iterative learning sliding mode control (AILS) method is proposed in [11]. The
iterative learning sliding mode control (ILSMC) strategy is used to reduce the effect of periodic interference
in the system but AILS is designed as a hybrid superposition of two controllers with relatively many
parameters, and the proportion of nonlinear interference factors in the seeker coordination system is large, so
the parameter design is more complicated and cumbersome. To solve the problems of slow convergence time
and unknown disturbance in sliding mode control, a new non-singular fast terminal sliding mode control
(NFTSMC) based on super torsional sliding mode observer (STA-STO) was designed in literature [12], but
the system buffeting suppression was not significant enough.

To reduce the torque pulsation and improve dynamic response, literature [13] proposes an improved
approach law combined with a disturbance sliding mode observer to estimate disturbances online and
improve the robustness of the system. However, unknown disturbances are not sufficiently considered. In
literature [14], sensorless control driven by PMSM is realized through the generalized proportional integral
observer and Kalman filter, but the design of the observer is complicated, which will have a certain impact
on the system response. Literature [15] proposes a sensorless control method based on fractal-order terminal
sliding mode observer to suppress high-frequency harmonics, but the real-time performance of the method
has not been thoroughly analyzed and optimized, especially under high speed and high dynamic changes, to
verify the response speed and control accuracy of the method. In reference [16], an interference observer is
designed for feedback compensation for PMSM with matching and mismatch interference, but the designed
sliding mode controller is not obvious enough to suppress the chattering phenomenon of the system, and
the principle analysis of higher-order sliding mode differentiator is not deep enough. This study will also
design the interference observer based on the principle of high-order sliding mode differentiator and further
analyze the principle of differentiator combined with PMSM to further simplify the design and improve the
observation effect.

Because whether the parameters of the controller match directly affects the performance of the system,
to avoid repeated trial-and-error of parameters and shorten the development cycle, common intelligent
algorithms include particle swarm algorithm [17], genetic algorithm [18], gray Wolf algorithm [19] and Zebra
algorithm [20]. In addition, some other intelligent algorithms are also common. For example, literature [21]
is used to adjust the neuroendocrine-PID controller based on the improved Marine predator algorithm,
but the algorithm design is complicated, and the scalability is poor. To optimize the key parameters of the
controller, an improved particle swarm optimization algorithm (IPSO) was designed based on chaos theory
in literature [22]. However, in the optimization process, there was a risk of continuous loss of population
diversity, which reduced the accuracy of parameter adjustment. Particle swarm optimization (PSO) and
gray wolf optimization (GWO) algorithms are used to optimize the sliding mode control (SMC) gain of the
double-fed induction generator (DFIG) system in the literature [23]. It is used to enhance reference tracking,
but the overall computational complexity is increased, and the PSO is prone to premature convergence to
the local optimal solution, resulting in parametric dependence. Compared with the above algorithms, the
zebra optimization algorithm (ZOA) has the characteristics of simple structure, fewer control parameters,
fast convergence speed, ease of implementation, etc., has been applied to many intelligent control fields, and
is still suitable for the motor field.

The ZOA is a relatively new meta-heuristic algorithm, proposed in literature [24] in 2022. Its core idea
is to imitate zebra’s foraging behavior and defense behavior against predators. In literature [25], a controller
combining fuzzy proportional-integral (PI) and fractional proportional-fractional filtering derivatives is
proposed, and the ZOA is used to optimize the controller parameters. Literature [26] proposes to adjust
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the parameters of the PID controller based on the ZOA to improve the transient response of the system. In
literature [27], the ZOA is combined with the variable step size perturbation method to reduce the probability
of falling into the local optimal value, reduce the energy loss in the oscillation process, and improve the
convergence speed.

In summary, to solve the jitter problem of the PMSM system, this study proposes an improved non-
singular fast terminal sliding mode controller (INFTSMC) and designs a disturbance observer based on
the principle of higher-order sliding mode differentiator to observe the disturbance in real time and
compensate the sliding mode controller. Due to the defects of premature convergence and local optimization
in traditional ZOA, an improved zebra optimization algorithm (IZOA) is proposed to be applied to PMSM
for parameter tuning. The improved method includes using chaotic mapping to initialize the population,
introducing random disturbance, and adjusting the disturbance frequency adaptively, to improve the global
search ability of the algorithm.

The organizational structure of this paper is as follows: Section 2 establishes the mathematical model
of PMSM, Section 3 describes the design of the interference observer, Section 4 describes the design
of the controller, Section 5 carries out the design of IZOA algorithm, Section 6 analyzes the simulation
results, Section 7 verifies the experiment, and Section 8 gives the conclusion.

2 PMSM Mathematical Model
To simplify the analysis, core saturation, hysteresis, and eddy current losses are not taken into account,

and the effects due to friction of the rotor shaft and stator slot irregularities are neglected, and the
mathematical model in the axial coordinate system is [28]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ud = Rs id + Ld i̇d − ωe Lq iq
uq = Rs iq + Lq i̇q − ωe (Ld id + ψ f )
θ̇m = ωm
Jω̇m = Te − TL − Bωm

(1)

where ud and id , uq and iq denote the voltage and current in the d − q axis coordinate system, respectively;
Ld and Lq denote the inductance in the axial coordinate system, respectively; Rs is the stator resistance; ψd
and ψq denote the d − q axis magnetic chain, respectively; ψ f is the magnetic chain of the permanent magnet;
Pn is the number of motor pole pairs; ωe is the electrical angular velocity; ωm is the mechanical angular
velocity; θm is the mechanical angle of the motor; J is the rotational moment of inertia; TL is the torque of
the load; B is the friction coefficient. Since the d − q axis inductance of the surface-mounted PMSM is equal,
the electromagnetic torque equation is Te = 1.5Pn iqψ f .

3 Disturbance Observer Design
The state variables for designing the PMSM system are shown below:

{x1 = e = ωre f − ωm
x2 = ė = ẋ1 = ω̇re f − ω̇m

(2)

where ωm is the mechanical angular speed, ωre f is the set mechanical angular speed of the motor, e is the
speed error, x1 and x2 are the system state variables.

Due to the existence of parameter errors in the actual system, the nominal value parameters of the
PMSM: rotational inertia Jn , magnetic chain ψ f , friction coefficient Bn , and load torque TLn may change,
and these nominal value parameters are expressed as follows: J = Jn + ΔJ, B = Bn + ΔB, TL = TLn + ΔTL and
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ψ = ψ f + Δψ, where ΔJ , ΔB, ΔTL , Δψ are the system perturbation, to obtain the equation of motion of the
permanent magnet synchronous motor for the non-ideal case as:

ω̇m =
3

2 (Jn + ΔJ) pn (ψ f + Δψ) iq −
TL

Jn + ΔJ
− Bn + ΔB

Jn + ΔJ
ω (3)

The equation of state ẋ1 of its system is organized into the form of an ideal model with a perturbation
term as follows:

ẋ1 = ω̇re f − ω̇m = ω̇ref −
3 (ψ f n + Δψ f )

2 (Jn + ΔJ) pn iq +
TL

(Jn + ΔJ) +
(Bn + ΔB)
(Jn + ΔJ) ωm

= ω̇re f −
3Pn iqψ f n

2Jn
+ TL

Jn
+ Bnωm

Jn
− −

3pn iq (Δψ f Jn − ψ f n ΔJ) + 2TLΔJ − 2ΔJωm (ΔB − Bn)
2 (Jn + ΔJ) Jn

= x2 −
3pn iq (Δψ f Jn − ψ f nΔJ) + 2TLΔJ − 2ΔJω (ΔB − Bn)

2 (Jn + ΔJ) Jn

= x2 + F1

(4)

where F1 is the perturbation term. Similarly, the state of the system ẋ2 is represented as an ideal model with
a perturbation term of the form.

ẋ2 = ω̈re f − ω̈m = ω̈re f −
3pn i̇q (ψ f n + Δψ f )

2 (Jn + ΔJ) + ṪL

(Jn + ΔJ) +
(Bn + ΔB)
(Jn + ΔJ) ω̇m

= ω̈re f +
(Bn + ΔB)
(Jn + ΔJ)

(ωre f − x2) −
3pn i̇qψ f n

2Jn
−

3pn i̇q (Δψ f Jn − ψ f n ΔJn)
2 (Jn + ΔJ) Jn

+ ṪL

Jn + ΔJ
+ (Bn + ΔB)
(Jn + ΔJ) ωre f

= −Bn

Jn
x2 −

3pnψ f n

2Jn
i̇q + ω̈re f +

(Bn + ΔB)
(Jn + ΔJ) ωre f −

3pn i̇q (Δψ f Jn − ψ f n ΔJn)
2 (Jn + ΔJ) Jn

+ ṪL

Jn + ΔJ
+ (Bn + ΔB)
(Jn + ΔJ) ωre f

= −Dn x2 − En i̇q + F2

(5)

where Dn = Bn
Jn

, En =
3pn ψ f n

2Jn
, F2 is the corresponding perturbation term, and in summary, the state equation

of the PMSM is given by:

{ẋ1 = x2 + F1
ẋ2 = −Dn x2 − En i̇q + F2

(6)

Based on the system model in Eq. (6), the disturbance observer based on the principle of higher order
sliding mode differentiator is designed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 = x2 + y1
y1 = −r1∣x̂1 − x1∣3/4 ⋅ sgn (x̂1 − x1) + F̂1
˙̂F1 = −r2∣F̂1 − y1∣1/3 ⋅ sgn (F̂1 − y1)
˙̂x2 = −Dn x2 − En i̇q + y2
y2 = −r3∣x̂2 − x2∣3/4 ⋅ sgn (x̂2 − x2) + F̂2
˙̂F2 = −r4∣F̂2 − y2∣1/3 ⋅ sgn (F̂2 − y2)

(7)

where ˙̂x1 is the estimate of the systematic velocity error, ˙̂x2 is the estimate of the derivative of the systematic
velocity error, sgn (x) is the sign function, y1 and y2 are the intermediate variables, F̂1 and F̂2 are the
disturbance estimates, and r1∼4 are the strictly positive gain parameters of the disturbance observer.
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As shown in Fig. 1, the control principle block diagram of the simplified interference observer shows,
that when calculating the intermediate variables y1 and y2, the disturbance estimates F̂1 and F̂2 participate
in the calculation, respectively. This connection mode makes the intermediate variables y1 and y2 contain
disturbance information, which provides a basis for the subsequent state estimation and disturbance update.
In a real system, when the system is disturbed to cause changes in x1 and x2, F̂1 and F̂2 can adjust the values
of y1 and y2 in time, thus affecting the state estimation and control signals.

Figure 1: Disturbance observer control block diagram

In the state estimation module, calculating ˙̂x1 requires the value of y1, while y1 contains the information
of F̂1; calculation ˙̂x2 depends on y2, and y2 contains F̂2. Therefore, the perturbation estimate indirectly affects
the system state estimate by affecting the intermediate variable. When the motor is disturbed by the load,
changes in F̂1 and F̂2 cause ˙̂x1 and ˙̂x2 to adjust, resulting in a more accurate estimate of the system state.

In addition, the disturbance estimation module has its own feedback adjustment mechanism. In the case
of F̂1, calculating ˙̂F1 relies on the difference between F̂1 and y1, which, after a series of operations, is used to
update F̂1. The F̂2 update is a similar principle. With this feedback adjustment, F̂1 and F̂2 can be continuously
optimized to provide more accurate disturbance information for system control.

4 Controller Design

4.1 INFTSMC Design
To improve the convergence speed and robustness of the system, the following non-singular fast

terminal sliding mode surface is selected:

s = x2 + β1x1 + β2x p/q
1 (8)

where p, q are odd and p > q > 0, β1 and β2 are positive integral gains.
The convergence speed of the sliding mode controller is directly affected by the convergence law, the

traditional convergence law control is not effective, to improve the convergence speed and reduce the jitter,
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a new type of convergence law is proposed as follows:

ṡ = − k1 tanh (s)
α + (1 + 1/δ∣x1∣ − α) σ−m∣s∣ − k2s (9)

where tanh (s) is the hyperbolic tangent function; the system state variable x1 satisfies: lim
t→t0

x1 = 0; k1, k2, α,
δ, σ and m is the parameter to be designed, and satisfies k1 > 0, k2 > 0, m > 0, 0 < α < 1, 0 < δ < 1 and σ > 1.

Derivation of the sliding mode surface Eq. (8) and combining Eqs. (6) and (7) yields:

ṡ = −Dn x2 − En i̇q + F̂2 + β1 (x2 + F̂1) +
β2 p

q
x

p
q −1

1 (x2 + F̂1) (10)

Combined with Eq. (9), the system control law can be obtained as:

i̇q =
1

En

⎡⎢⎢⎢⎢⎢⎣
−Dn x2 + F̂2 + (β1 +

β2 p
q

x
p
q −1)(x2 + F̂1) +

k1 tanh (s)
α + (1 + 1

δ∣x1 ∣ − α) σ−m∣s∣
+ k2s
⎞
⎟
⎠

(11)

4.2 Convergence Law Comparison and System Stability Analysis
The new convergence law proposed in this paper is compared and analyzed with the classical isotropic

convergence law ṡ = −εsign(s), exponential convergence law ṡ = εsign (s) − qs, and idempotent convergence
law ṡ = −q ∣s∣α sign (s). The phase trajectory diagrams and convergence times are shown in Fig. 2.

(a) (b)
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Figure 2: (a) Comparison of phase trajectories of the reaching law. (b) Comparison of convergence times for
reaching law

As shown in Fig. 2a, from the phase trajectory diagram of the sliding mold movement, it can be
intuitively seen that the new convergence law has a faster convergence process, and takes the lead in arriving
at the sliding mold surface. From the time required for the convergence process in Fig. 2b, it can be seen
that the convergence time of the new convergence law is 8 × 10−4 s, which is faster than that of the isotropic
convergence law by 1.22 × 10−2 s, and the convergence time is shortened by 93.85%; it is faster than that of
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the idempotent convergence law by 7.2 × 10−3 s, and the time is shortened by 90%; and it is faster than that
of the exponential convergence law by 4.2 × 10−3 s, and the time is shortened by 84%.

In order to verify the stability of the new reaching law proposed in this paper, the Lyapunov function is
chosen: V = 0.5s2. From the Lyapunov principle, the system is stable when V̇ is semi-negative timing, which
leads to:

V̇ = sṡ = − sk1 tanh (s)
α + (1 + 1/δ∣x1∣ − α) σ−m∣s∣ − k2s2 (12)

According to the design parameters k1, k2 and m are greater than 0, so k2s2 > 0. α and δ are greater
than 0 and less than 1, σ is greater than 1, and the hyperbolic tangent function and s have the same
positive and negative can be known: σ−m∣s∣ > 0 1 + 1/δ ∣x1∣ − α > 0, so the first numerator expression meets
sk1 tanh (s) > 0, denominator expression meets α + (1 + 1/δ ∣x1∣ − α) σ−m∣s∣ > 0. In summary V̇ ≤ 0, the
control system is asymptotically stable.

5 ZOA Design
It is well known that the traditional manual parameter tuning method is not only a tedious and

inefficient process, but also difficult to achieve the optimal configuration. To address this problem, this paper
improves the ZOA for complex parameter tuning by improving it and verifying it by test functions.

5.1 Traditional ZOA
In the foraging strategy, the best-performing individual is regarded as the lead zebra, guiding the other

group members toward their position in the exploration space. The positional update during the foraging
phase can be represented as:

Xnew ,P1
i , j = Xi , j + r (PZ j − IXi , j) (13)

Xi = {
Xnew ,P1

i , Fnew ,P1
i < Fi

Xi , el se (14)

where Xnew ,P1
i , j denotes the new position of the individual zebra in the foraging phase, r is a random number

between [0, 1], PZ j denotes the optimal pioneer zebra, I is a random value of the set {1, 2}, and Fi denotes
the value of the objective function for the i-th zebra.

In response to a predator threat, the zebra chooses either a defense or an attack strategy. When attacked,
the zebra will avoid the attack near its location, and this strategy can be represented by S1 in Eq. (15). When
a zebra chooses an attack strategy, the other zebras in the herd will approach the attacked zebra and try
to intimidate or confuse the predator by establishing a defense structure, which can be represented by S2
in Eq. (15). The value of Ps is used in the procedure to select either S1 or S2 computational strategy.

Xnew ,P2
i , j = { S1∶Xi , j + R (2r − 1) (1 − t/Tmax)Xi , j , Ps ≤ 0.5

S2∶Xi , j + r (AZ j − IXi , j) , el se (15)

Xi = {
Xnew ,P2

i , Fnew ,P2
i < Fi

Xi , el se (16)
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where Xnew ,P2
i , j denotes the new position of the zebra individual in the attack or defense phase, R = 0.01,

Ps ∈ [0, 1] denote the probability of choosing attack or defense when a threat is received, Tmax denotes the
maximum number of iterations, and AZ j denotes the state of the zebra when threatened.

5.2 IZOA Design
5.2.1 Iterative Chaotic Map

The traditional initialization method often generates the initial solution randomly, which may cause
the distribution of the initial solution of the algorithm to be uneven, and affect the convergence speed and
solution quality of the algorithm. Using the Iterative chaotic map with ergo and randomness to initiate the
Iterative chaotic map can make the initial solutions more evenly distributed in the search space, increase the
search diversity, and help the algorithm avoid falling into the local optimal solution. Using iterative chaotic
mapping to initialize the population can be obtained:

Zi , j = lb j + (ub j − lb j) sin( π
2Xi , j
) (17)

where Zi , j is the initialized population individual, lb j is the lower bound of the optimal value and ub j is the
upper bound of the optimal value.

5.2.2 Stochastic Perturbation Mechanism
The IZOA algorithm introduces a random disturbance mechanism. In the foraging behavior stage and

defense strategy stage, the current solution is randomly disturbed according to the comparison of random
number and disturbance frequency. This mechanism increases the search diversity of the algorithm and helps
the algorithm to jump out of the local optimal solution. The position update in the foraging phase can be
expressed as:

Xi = {
Xnew ,P1

i + r (1 − t/Tmax) ,
Xnew ,P1

i ,
r < Fper
el se (18)

where t denotes the number of iterations, Tmax is the maximum number of iterations, and Fper is the adaptive
perturbation frequency threshold, which is expressed as:

Fper = h (1 − t/Tmax) (19)

where h is a constant indicating the adaptive initial value, which is 0.3. In the early stages of the algorithm,
the frequency threshold is high to encourage individuals to explore, and the threshold is gradually lowered
in the later stages to promote convergence.

Similarly, in the defense strategy phase, the value of Ps is used in the procedure to select a computational
strategy of S1 or S2, and the values of r and Fper are used to determine whether to add a perturbation strategy.
The positional updates of S1 and S2 can be represented as, respectively:

Xnew ,P2
i , j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1∶Xi , j + R (2r − 1) (1 − t/Tmax)Xi , j
+ r (1 − t/Tmax) ,

S1∶Xi , j + R (2r − 1) (1 − t/Tmax)Xi , j ,

r < Fper
el se (20)

Xnew ,P2
i , j = { S2∶Xi , j + r(AZ j − IXi , j + 1 − t/Tmax) r < Fper

S2∶Xi , j + r (AZ j − IXi , j) el se (21)



Comput Mater Contin. 2025;83(3) 5287

5.2.3 IZOA Pseudo-Code
The implementation steps of the algorithm are as follows (Algorithm 1):

Algorithm 1: Start IZOA
1 Input: Optimization of target information
2 Set the total number of clusters (N), the maximum number of iterations (Tmax), the lower bound

of the optimal value lb j, the upper bound of the optimal value ub j
3 Initialization of the zebra population using Eq. (17)
4 Setting the initial disturbance frequency threshold h
5 for t = 1∶Tmax
6 Calculate the fitness value and update the global optimal solution (PZ j)
7 for i = 1∶N
8 PHASE1: Foraging
9 Update zebra individual status using Eq. (18).
10 if r < Fper
11 Random perturbation of zebra positions
12 End if
13 Update Xi , j and PZ j
14 PHASE2: Defense strategy
15 if Ps < 0.5
16 Using the computational strategy for S1 in Eq. (20).
17 Judging whether to add a perturbation strategy based on the values of r and Fper
18 end if
19 if Ps ≥ 0.5
20 S2 calculation strategy using Eq. (21)
21 Determine whether to add a perturbation strategy based on the values of r and Fper
22 end if
23 Update Xi , j and PZ j
24 end for i = 1∶N
25 Maintaining the current optimum
26 Update the adaptive perturbation threshold according to Eq. (19)
27 end for t = 1∶Tmax
28 Output: Optimal fitness value, Optimal position, Convergence curve
End IZOA

5.2.4 IZOA Performance Comparison
To confirm the performance of IZOA, this study compares it with the standard ZOA, Whale Opti-

mization Algorithm (WOA), Grey Wolf Optimization algorithm (GWO) and Sparrow Search Algorithm
(SSA). They were tested using national standard benchmark functions, including single-peak and multi-peak
functions as shown in Table 1. Each algorithm was set to run independently 30 times with a population size of
50 and 500 iterations. The default values of the original algorithms were used for the remaining parameters,
and the results are shown in Fig. 3.
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Table 1: National standard baseline test functions

Test function Dim Search scope

F2 (x) =
n
∑
i=1
∣xi ∣ +

n
∏
i=1
∣xi ∣ 30 [−10, 10]

F3 (x) =
n
∑
i=1
(

i
∑
j=1

x j)
2

30 [−100, 100]

F4 (x) =max {∣xi ∣, 1 ≤ i ≤ n} 30 [−100, 100]
F9 (x) =

30
∑
i=1
[xi

2 − 10 cos (2πxi) + 10]
30 [−5.12, 5.12]

F10 (x) =

−20 exp
⎛
⎝
−0.2
√

1/30
30
∑
i=1

xi 2⎞
⎠
−

exp(1/30
30
∑
i=1

cos 2πxi) + 20 + c

30 [−32, 32]

F11 (x) =
1/4000

30
∑
i=1

xi
2 −

30
∏
i=1

cos ( xi√
i
) + 1

30 [−600, 600]

(a) F2 (b) F3 (c) F4

(d) F9 (e) F10 (f) F11
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Figure 3: Comparison of algorithms

From Fig. 3, it can be seen that IZOA has a clear advantage in solving single-peak and multi-peak
problems with faster convergence and lower fitness values.
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Finally, the controller parameters are preliminarily adjusted by IZOA, as shown in Table 2. It is worth
noting that if the parameters need to be fine-tuned, the following suggestions are given: The choice of
exponential parameter p/q has an important impact on the convergence speed and stability of the system,
and the recommended range is 1 < p/q < 2. In addition, a larger value of r1 , r2, r3, r4 can significantly
improve the performance of the observer, but too large a value will cause system chattering. Therefore, it is
recommended to consider these two factors at the same time and appropriately select the value of the gain
parameter according to the actual situation. The remaining parameters should also meet the basic conditions
required by the formula above. In addition, the current loop adopts PI control, with Ki = 6, Kp = 1916.

Table 2: Controller parameter reference

Parameter name Reference value Parameter name Reference value
p 27 δ 0.5
q 22 σ 5
β1 1 m 2
β2 3 r1 65
k1 100 r2 4000
k2 2000 r3 80
α 0.5 r4 8800

6 Analysis of Simulation Results

6.1 Model Construction
To test the effectiveness of the improved non-singular fast terminal sliding mode controller with

disturbance observer (DO-INFTSMC) and the practical applicability of IZOA, a vector control system for a
tabletop permanent magnet synchronous motor is constructed in MATLAB/Simulink. The overall control
structure of the control system is shown in Fig. 4.

Figure 4: Block diagram of the vector control structure of PMSM

The parameters of the PMSM model used in the simulation are shown in Table 3 below.
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Table 3: PMSM specific parameters

Parameter name Parameter value
Stator resistance/Ω 0.985

Stator inductance/mH 3
Permanent magnetic chain/Wb 0.1827

Moment of inertia/(kg ⋅m2) 0.008
Coefficient of friction/(N ⋅m ⋅ s) 0.008

Polar logarithm/Pn 4

6.2 IZOA Verification
In order to verify the practical application ability of IZOA, it is made to regulate the controller

parameters with ZOA, WOA, GWO, and SSA, respectively. To compare the simulation results, the current
loop parameters are kept unchanged, and the optimization of the controller parameters is carried out using
the above-mentioned intelligent algorithms, respectively, the parameters include: p, q, β1, β2, k1, k2, α, δ,
σ , m, r1 , r2, r3, r4.

6.2.1 Step Response Simulation Experiment
The position is set to 1 rad, and a 5 N ⋅ m load is added at 1.5 s to perform the step simulation. The

simulation results are shown in Fig. 5. From Fig. 5b, it can be seen that the parameters adjusted by these five
methods can make the PMSM follow the step signal quickly, but the parameters adjusted by GWO converge
slower, and the adjustment time (Settling Time) is 0.875 s; the adjustment times of WOA, SSA, and ZOA
are 0.75, 0.63, and 0.60 s, respectively; while the parameters adjusted by IZOA have faster adjustment speed
when approaching the target position, and their adjustment times are 0.75, 0.63, and 0.60 s. The parameter
has a faster adjustment speed when approaching the target position, and its adjustment time is 0.17 s. The
adjustment time of IZOA is 71.67%, 73.02%, 77.33%, and 80.60% shorter than that of ZOA, SSA, WOA, and
GWO, respectively.
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Figure 5: Step response experiment

When the load disturbance is increased, it can be seen from Fig. 5c that the parameters regulated by SSA
have limited adaptability to the load, and the position fluctuation is 0.041 rad; the position fluctuations of
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GWO, WOA, and ZOA are 0.031 rad, 0.016 rad, and 0.014 rad, respectively; whereas, the parameters regulated
by IZOA have a stronger anti-disturbance ability, and the position fluctuation is only 0.004 rad, and the
recovery time is shorter.

6.2.2 Sinusoidal Signal Following Experiment
In the actual working conditions, the PMSM needs to rotate at different angles according to the

instructions. To verify the controller’s robustness to external interference, y1 = π/3 sin (4πt) is selected as
the position tracking reference curve, y2 = π/4 sin (4πt) is selected as the load change curve, and the motor
is started with the load. The controller parameters are also adjusted using the above five methods, and the
position following the curve is shown in Fig. 6.
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Figure 6: Sinusoidal signal following experiment

From Fig. 6a, it can be seen that the various methods can make the motor follow the reference curve
effectively, but the SSA-based method has obvious errors with lagging, caused by the SSA method appearing
to converge prematurely and easily falling into the local optimum. Fig. 6b demonstrates a local zoomed-
in view of the following effect, it can be concluded that the parameters regulated by IZOA have a better
following effect, thanks to the perturbation strategy that makes the algorithm jump out of the local optimum
solution. Fig. 6c shows the following error curves, the SSA-adjusted parameter produces a large following
error of 0.160 rad for the PMSM; the maximum following errors of 0.115 rad, 0.079 rad, and 0.033 rad for the
GWO, WOA, and ZOA, respectively, and the maximum following error of 0.016 rad for the IZOA, which is
90% lower than that of 0.016 rad for the SSA, GWO, WOA, and ZOA, respectively, and ZOA are reduced by
90%, 86.09%, 79.75%, and 51.52%, respectively.

6.3 DO-INFTSMC Verification
To verify the anti-disturbance capability of the DO-INFTSMC designed in this paper, a time-varying

load is used to verify the robustness of the control system, which is compared with the traditional NFTSMC,
the improved INFTSMC, and the disturbance observer-based DO-INFTSMC, respectively. Firstly, a load of
10 N.m is applied abruptly to the PMSM system at 0.2 s, and the load is released at 0.4 s to set the rotational
speed. The response curves of the PMSM system are shown in Fig. 7a,b. Fig. 7c shows the observation error
of the disturbance observer on the disturbed parts F1 and F2.
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Figure 7: (a) Interference suppression capability verification curve. (b) q-axis current response curve. (c) Observation
error of interference observer

From Fig. 7a, it can be seen that the proposed INFTSMC has a faster response speed and a smaller
instantaneous landing of the rotational speed compared with the traditional NFTSMC when a load of
10 N.m is applied abruptly at 0.2 s. The proposed DO-INFTSMC has a significant effect on the system jitter.
The proposed DO-INFTSMC not only has a faster response speed and a smaller instantaneous speed drop
compared with the previous two control strategies but also has an obvious effect on the vibration of the
system. Similarly, after releasing the load at 0.4 s, the response of the proposed INFTSMC is better than that
of the NFTSMC, while the proposed DO-INFTSMC can recover the rotational speed to 800 r/min the fastest,
and the system vibration suppression ability is significant.

From Fig. 7b, it can be seen that at the initial moment, the q-axis current response of INFTSMC is
better than that of NFTSMC, while the proposed DO-INFTSMC is able to respond the fastest, and at the
same time, the overshoot is the smallest when the load is applied suddenly at 0.2 s, and the current is able to
respond faster to the recovery after releasing the load at 0.4 s, and since the q-axis current is proportional to
the torque, it indicates that the system is more resistant to the interference.

It can be seen from Fig. 7c that the observation error of the disturbance F1 is within the range
of 1 × 10−3 N ⋅m and the observation error of the disturbance F2 is within the range of 1.5 × 10−3 N ⋅m,
indicating that the designed interference observer can perform a good error estimation and further verify
the anti-interference capability of the designed DO-INFTSMC.

7 Experimental Validation and Analysis
In order to further verify the actual performance of the DO-INFTSMC proposed in this paper, the

experimental platform shown in Fig. 8 is set up, and the TMS320F28379 is selected as the main control unit
for the experiments, and three control strategies, namely, NFTSMC, INFTSMC, and DO-INFTSMC, are
adopted, respectively. In the experimental setup, the motor parameters include: rated speed ω = 3000 r/min,
frequency 50 HZ, rated voltage UDC = 36 V, number of pole pairs Pn = 4, stator resistance Rs = 0.523 Ω,
and winding interphase inductance Ls = 0.554 mH. This experiment is to verify the dynamic response
performance of the PMSM under sudden speed change and load change conditions, so as to confirm the
effectiveness and practicality of the proposed scheme.
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Figure 8: Experimental platforms

7.1 Sudden Change of Rotational Speed under No Load
In order to verify the no-load stability and response characteristics of the designed DO-INFTSMC, the

rotational speed is abruptly changed from 800 to 1600 r/min under no-load condition of the PMSM, and the
experimental results are shown in Figs. 9–11.
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Figure 9: Nr response to sudden changes in rotational speed

As can be seen from Fig. 9, when three control strategies are respectively adopted, DO-INFTSMC
control strategy not only has faster speed response characteristics, but also has better speed stability. In
addition, at the 3 s speed change, the NFTSMC control strategy has an overshoot of 2.5%, INFTSMC has an
overshoot of 1.88%, and DO-INFTSMC only has an overshoot of 0.63%, which improves the performance
by about 74.8% compared with NFTSMC.
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Figure 10: ia response to sudden changes in rotational speed
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Figure 11: iq response to sudden changes in rotational speed

From Fig. 10, when the speed changes rapidly, the maximum value of ia reaches 10 A when NFTSMC
is used, and the maximum value of ia when INFTSMC is used reaches 7 A. When DO-INFTSMC is used,
the maximum value of ia is about 6 A, and ia has better response characteristics than NFTSMC. With DO-
INFTSMC, ia is less volatile and improves performance by about 40% compared to NFTSMC.

From Fig. 11, when the speed changes rapidly, the maximum value of iq reaches 5.5 A when NFTSMC
is used, and the maximum value of iq when INFTSMC is used reaches 3 A. When DO-INFTSMC is used,
the maximum value of iq is about 2 A, and compared with NFTSMC, iq has better response characteristics.
Similarly, DO-INFTSMC showed less volatility, with a performance improvement of approximately 63.64%
compared to NFTSMC.

7.2 Sudden Load and Load Release Test
To verify the robustness and anti-interference capability of the designed DO-INFTSMC with load, a

load of 5 N ⋅ m is added abruptly at 2 s at a given speed of 800 r/min, and the load is reduced to no-load
operation after 3 s, and the experimental results are shown in Figs. 12–14.
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Figure 12: Nr response to sudden load changes
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Figure 13: ia response to sudden load changes

From Fig. 12, when the load is suddenly applied for 2 s, the speed decrease percentage is about 15.63%
when NFTSMC is used, about 12.5% when INFTSMC is used, and about 6.25% when DO INFTSMC is used,
indicating a significant speed response effect. After the 3 s load release, the overshoot percentage was 31.25%
under NFTSMC control, 9.38% under INFTSMC control, and only 3.13% under DO-INFTSMC control. It
can be seen that DO-INFTSMC has obvious advantages in overshoot control after load release, which can
effectively reduce the overshoot and improve the stability and dynamic performance of the system.

From Fig. 13 that when the load changes, the maximum value of ia is about 8 A when NFTSMC is
used, and the maximum value of ia when INFTSMC is used is about 7 A. When DO-INFTSMC is used,
the maximum value of ia is about 6 A. Compared with NFTSMC, ia has better response characteristics, and
the fluctuation of ia is less when DO-INFTSMC is used, and the performance is improved by about 25%
compared with NFTSMC.
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Figure 14: iq response to sudden load changes

From Fig. 14, when the load is suddenly applied, the overshoot of iq under NFTSMC control is the
largest, about 7.2 A; overshoot under NFTSMC control is about 6.5 A; overshoot is about 6 A when DO-
INFTSMC is used, and the performance is improved by about 16.67%. When the load is released at the
3 s, the NFTSMC current drop is about 1 A and INFTSMC current drop is about 0.2 A, which is A great
improvement, while the current drop is about 0.05 A when using DO-INFTSMC control, which is also less
volatile, and the performance is improved by about 95% compared with NFTSMC.

8 Conclusion
To improve the PMSM control performance, this study has designed an improved non-singular fast

terminal sliding mode controller with a disturbance observer. Firstly, a novel reaching law and disturbance
observer are introduced to reduce the system jitter and improve the disturbance immunity effectively.
Secondly, IZOA is proposed for parameter tuning, and the practicality of IZOA is demonstrated by the test
function, and a step response simulation test is set up to verify that the tuning time of IZOA is shortened
by 71.67%, 73.02%, 77.33%, and 80.60% compared with that of ZOA, SSA, WOA, and GWO, respectively.
Setting up the sinusoidal signal following the test verifies that the maximum following error of IZOA is
reduced by 90%, 86.09%, 79.75%, and 51.52% compared to SSA, GWO, WOA, and ZOA, respectively. Finally,
the effectiveness of the designed DO-INFTSMC control strategy is further verified in the experimental part
using the speed-abrupt and load-abrupt conditions, respectively. In addition, despite the advantages of the
controller designed in this paper, there is still a certain amount of overshooting of the rotational speed in
real working conditions, and the controller can be further optimized in future work.
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