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ABSTRACT: Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.
This study purposes a bronchoscopic lumen feature matching network (BLFM-Net) based on deep learning to address
the challenges of image noise, anatomical complexity, and the stringent real-time requirements. The BLFM-Net
enhances bronchoscopic image processing by integrating several functional modules. The FFA-Net preprocessing
module mitigates image fogging and improves visual clarity for subsequent processing. The feature extraction module
derives multi-dimensional features, such as centroids, area, and shape descriptors, from dehazed images. The Faster R-
CNN Object detection module detects bronchial regions of interest and generates bounding boxes to localize key areas.
The feature matching module accelerates the process by combining detection boxes, extracted features, and a KD-Tree
(K-Dimensional Tree)-based algorithm, ensuring efficient and accurate regional feature associations. The BLFM-Net
was evaluated on 5212 bronchoscopic images, demonstrating superior performance compared to traditional and other
deep learning-based image matching methods. It achieved real-time matching with an average frame time of 6 ms,
with a matching accuracy of over 96%. The method remained robust under challenging conditions including frame
dropping (0, 5, 10, 20), shadowed regions, and variable lighting, maintaining accuracy of above 94% even with the frame
dropping of 20. This study presents BLFM-Net, a deep learning-based matching network designed to enhance and
match bronchial features in bronchoscopic images. The BLFM-Net shows improved accuracy, real-time performance,
and reliability, making a valuable tool for bronchoscopic surgeries.

KEYWORDS: Bronchial region feature matching; bronchoscopic tracking; real-time processing; bronchial texture
features; bronchial texture features; deep learning; medical image dehazing

1 Introduction
The bronchoscopic surgery is crucial for the diagnosis and treatment of pulmonary diseases. Surgeons

use bronchoscopes to navigate the complex bronchial tree structure to locate lesions accurately and per-
form therapeutic interventions. However, the complex anatomy of the bronchial tree presents significant
challenges for real-time tracking and precise localization during the surgery. To improve surgical precision
and patient safety, image matching techniques are developed for bronchoscopic navigation systems to aid
pathway tracking and navigation [1].

Some existing image matching algorithms have been widely used in bronchoscopic navigation for
their robustness and efficiency. SIFT (Scale-Invariant Feature Transform) excels in feature extraction under
varying conditions, whose application is limited due to its high computational complexity [2]. SURF
(Speeded-Up Robust Features) improves processing speed but struggles in complex regions [3], and ORB
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enhances real-time performance at the expense of higher computational demands [4]. Methods like MSER
and KAZE achieve better precision in specific scenarios but are less effective at capturing the complexity of
bronchial branching and edge features [5–7]. Optical flow performs motion estimation between frames but is
prone to errors caused by occlusion and large displacements, especially in intricate structures like bronchial
bifurcations [8]. As analyzed above, the traditional image matching methods face ongoing challenges in
handling complex bronchial environments, highlighting the need for more robust and adaptable solutions.

Recently, deep learning-based matching techniques have achieved significant breakthroughs and found
pioneering applications in medical image matching and navigation. DeTone et al. [9] proposed a SuperPoint
model for keypoint detection and description, enabling efficient and robust matching. Building on this
foundation, Sarlin et al. [10] introduced SuperGlue, which optimizes local feature descriptors and geometric
relationships to improve inter-frame matching success rates and estimation accuracy. Liu et al. [11] developed
a spatially geometric-aware depth estimation network that integrates depth map features with normal vectors
and gradient losses, enhancing both matching efficiency and global consistency. Acar et al. [12] applied Super-
Point and SuperGlue to address sparse feature matching challenges in complex endoscopic scenes. Wang
et al. [13] presented a 2.5D bronchoscopic tracking method using geometric depth map features to reduce
intraoperative noise, but its real-time performance remains limited. Shen et al. [14] proposed a consecutive
frame registration loss for bronchoscopic navigation, which incorporates pose, depth map, and temporal
consistency constraints, further improving inter-frame matching. Wang et al. [15] employed visual SLAM
with restricted 3D point search ranges to improve inter-frame matching accuracy in bronchoscopic scenarios.
Liu et al. [16] introduced a joint depth and motion estimation approach for monocular endoscopic image
sequences, using a multi-loss framework to enhance feature matching by integrating epipolar constraints
and feature descriptor learning, improving robustness in surgical tissue regions with the improved SIFT.
However, it relies on high-quality image preprocessing, which can be limiting in poor lighting conditions.
Liu et al. [17] also proposed a feature matching method for texture-less endoscopy images, using adaptive
gradient-preserving techniques and super pixel-based motion consistency to improve matching accuracy
and 3D reconstruction. Yet, the added computational complexity may impact real-time performance in
clinical environments. Chu et al. [18] introduced a motion consensus-based feature matching method,
combining motion smoothing with affine bilateral regression to refine feature matches and improve 3D
reconstruction quality. This method is particularly effective in endoscopic images with specular reflections
and deformations, although its computational complexity may limit real-time applicability. Farhat et al. [19]
proposed a self-supervised feature matching method for endoscopic images using CNNs and GNNs to model
spatial relationships between keypoints, improving matching precision but with potential limitations in real-
time applicability due to computational complexity. Lu et al. [20] proposed S2P-Matching, a self-supervised
patch-based matching method using Transformers to handle weak textures and large rotations in capsule
endoscopic images, improving matching accuracy but with increased computational complexity that may
limit real-time performance. Nanehkaran et al. [21] presented a density-based unsupervised approach to the
diagnosis of abnormalities in heart patients. In this method, the basic features in the dataset are first selected
based on the filter-based feature selection approach. the accuracy of the proposed method for predicting
heart patients is approximately 95%, which has improved in comparison with previous methods.

Despite these advancements, the existing methods still face challenges for image matching in broncho-
scopic surgery, including insufficient real-time performance, limited robustness in complex bronchial and
airway scenarios, and sensitivity to lighting variations. To address these issues, this study introduces BLFM-
Net for bronchoscopic surgery, a novel bronchoscopic image matching network that integrates regional
feature matching with the FASTER-RCNN object detection framework. Our BLFM-Net introduces key
advancements in the following areas.
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1. Accurate regional localization: The object detection module is integrated to isolate bronchial tubes and
exclude irrelevant areas, significantly improving matching reliability.

2. Optimized regional feature matching: Key regions are emphasized to enhance robustness in complex
branching structures, particularly under varying lighting and noise conditions.

3. Improved real-time performance: The regional matching strategy reduces computational cost, making
the system suitable for surgical real-time requirements.

In brief, this approach offers a new solution to bronchoscopic navigation challenges, and balances
matching accuracy, robustness, and real-time applicability.

2 Methods

2.1 Overall Structure of BLFM-Net
Fig. 1 shows the overall architecture of the BLFM-Net, which is composed of four key modules: the

FFA-Net preprocessing module, the Faster R-CNN object detection module, the feature extraction module,
and the feature matching module. The FFA-Net preprocessing module (A) is responsible for improving the
quality of bronchoscopic video frames by removing haze and segmenting regions of interest. This ensures
that the subsequent steps work with clearer and more distinct features. The Faster R-CNN object detection
module (B) detects and localizes the bronchial lumen regions. It uses convolutional layers to extract feature
maps, which are then processed by the Region Proposal Network (RPN) to identify candidate regions of
interest (ROIs) for further analysis. After haze removal and region localization, the feature extraction module
(C) extracts important regional features such as center points (f c), area (f a), and Hu moments (f h) from the
haze-free frames. These features serve as the foundation for matching across consecutive frames. Finally,
the feature matching module (D) computes matching scores by comparing extracted features from different
frames. This module first performs detection box matching by using the detection boxes obtained from
the Faster R-CNN module and matching them between adjacent frames based on the Intersection over
Union (IoU) metric. Once the detection boxes are matched, the module proceeds with feature matching by
comparing the region-specific features (such as centroids, areas, and Hu moments) from the matched boxes.
The final matching score is computed by evaluating the similarity of these features. This process ensures
accurate and efficient feature matching, achieving precise inter-frame alignment.

2.2 Preprocessing Module
The preprocessing module in our method employs a simplified version of the Feature Fusion Attention

Network (FFA-Net) [22], a deep learning-based, end-to-end image dehazing network designed specifically
for single-image dehazing tasks. This network is chosen for its ability to address the prevalent haze effect in
bronchoscopic images, which can obscure critical details and pose significant challenges in feature extraction
and subsequent analysis. Bronchoscopic images often suffer from haze caused by scattering light, especially
in poorly lit or cloudy environments, which reduces the clarity of key anatomical features [23].

To improve the quality of these images, we use a simplified version of FFA-Net, integrating a Channel
Attention (CA) module. This integration helps the network focus more effectively on critical channel
information—specifically, the features most relevant to enhancing image clarity. The CA module works by
applying attention to different feature channels within the network, selectively amplifying those that contain
useful information for dehazing and reducing noise in other areas. This adaptation of the original FFA-
Net improves its dehazing performance in bronchoscopic images, which often contain subtle and important
anatomical details that need to be preserved. The network is trained by minimizing the loss between the
dehazed output and the ground truth. The training process involves optimizing the network to remove haze
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while retaining the fine details of the bronchial structures, ensuring that critical features are enhanced rather
than smoothed out. The output from the network is a dehazed image with improved clarity, which is then
passed to subsequent modules for feature extraction and matching.

Figure 1: BLFM-Net architecture: (A) FFA-Net preprocessing module, (B) Faster R-CNN object detection module,
(C) feature extraction module, and (D) feature matching module. The gray dashed box illustrates the matching process
of the detection boxes between adjacent inter-frames

The preprocessing workflow, as shown in Fig. 2, operates as follows: The original bronchoscopic images
are input into the network, which processes them through the dehazing pipeline. The final result is a set of
dehazed images that exhibit improved contrast and clarity, crucial for the accurate extraction of key features
needed for the downstream analysis and tracking tasks in bronchoscopic navigation.

Figure 2: The structure of the preprocessing module in BLFM-Net, integrating FFA-Net with a channel attention (CA)
mechanism to enhance haze removal by refining critical channel information

2.3 Object Detection Module
Accurate detection of bronchial lumens is essential for bronchoscopic tracking and localization. Here,

the Faster R-CNN model is employed for the object detection module due to its precision and robustness
in lumen detection tasks [24]. Fig. 3 presents structure of the object detection module. For the detection of
lumens, convolutional layers extract feature maps from the input haze-free images, and the Region Proposal
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Network (RPN) identifies candidate regions, which are then resized using ROI Pooling to output refined
images. These proposals are classified, and their boundaries are refined. Custom anchor box scales and aspect
ratios are calibrated to typical bronchial opening sizes, improving detection accuracy and ensuring reliable
inputs for feature extraction and matching.

Figure 3: The structure of the object detection module in BLFM-Net, with haze-free images as input and refined
detection of bronchial lumens as output

2.4 Feature Extraction Module
To ensure stable and continuous tracking during bronchoscopic procedures, the proposed BLFM-Net

employs a region-based feature extraction method to establish correspondences between consecutive frames
for the same bronchial lumen region, thereby maintaining temporal consistency in tracking. Let nt and nt+1
represent the number of bronchial lumen regions detected in frames t and t + 1, respectively, and these lumen
regions are denoted as {Rt

i}
nt
i=1 and{Rt+1

j }
nt+1

j=1
. The extraction task involves determining a mapping M: {Rt

i}→

{Rt+1
j }, which associates regions Rt

i in frame t with regions Rt+1
j in frame t + 1. The feature extraction process

is introduced in detail below.
Following the preprocessing for image dehazing, bronchial lumen characteristics are extracted using

threshold-based segmentation. Each lumen region Rt
i is represented by a multi-dimensional feature vector

F t
i = [ fc , fa , fh], which consists of three features defined as follows.

2.4.1 Center Point Feature ( fc)
The center point feature fc represents the geometric center of the specific lumen region. It can be

calculated with the geometric moments of the region, which are defined as weighted sums of pixel intensities:

Mpq = ∑
x
∑

y
x p yqI(x , y), (1)

where Mpq denotes represents the (p, q)-order moment of the image, x and y are the horizontal and vertical
coordinates of a pixel in the image, p and q are non-negative integer parameters that define the order of the
moment, I (x , y) is the intensity value of the pixel at coordinates (x, y), which represents the pixel’s brightness
or color information.
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Then the centroid (cx, cy) of the region is computed as:

cx = M10

M00
, c y = M01

M00
, (2)

where M00 represents the area of the region, also known as the zero-order moment (with p = 0 and q = 0
in Eq. (1)), which is equivalent to the sum of pixel intensities within the region, The M10 corresponds to the
first-order moment along the x-direction (with p = 1 and q = 0 in Eq. (1)) and represents the weighted sum
of pixel positions along the x-axis. Similarly, M01 is the first-order moment along the y-direction (with p = 0
and q = 1 in Eq. (1)) and represents the weighted sum of pixel positions along the y-axis.

2.4.2 Area Feature ( fa)
The area feature fa corresponds to the area of the bronchial lumen region, which is a basic descriptor of

its size, expressed as:

fa = M00. (3)

2.4.3 Shape Descriptor ( fh)
The shape descriptor fh characterizes the shape of the bronchial lumen region using Hu moments [25],

which are invariant to translation, rotation, and scaling. The central moment for a specific image can be
calculated as:

μpq = ∑
x
∑

y
(x − cx)p (y − c y)q I(x , y), (4)

where μpq is the central moment of the image, the values p and q correspond to the degree of the moment
and define the spatial distribution of pixel intensities in the x and y directions. The terms x and y refer to the
coordinates of each pixel, while cx and cy represent the centroid coordinates of the region. The I (x , y) is the
intensity value of the pixel at coordinates (x, y).

The normalized central moment ηpq can be defined as:

ηpq =
μpq

u00
, (5)

where ηpq represents the normalized central moment, which is used to make the moment invariant to
translation, scaling, and rotation. μpq is the central moment of the region, capturing the spatial distribution
of pixel intensities relative to the centroid. u00 is the zero-order moment, representing the total pixel intensity
or the area of the region.

The first two Hu moments, Hu1 and Hu2, are computed as:

Hu1 = η20 + η02, (6)

Hu2 = (η20 − η02)2 + 4η2
11 , (7)

where η20 (with p = 2 and q = 0 in Eq. (5)) and η02 (with p = 0 and q = 2 in Eq. (5)) describe the
distribution of the lumen region along the x- and y-axes, η11 (with p = 1 and q = 1 in Eq. (5)) describes
cross-distribution characteristics, Hu1 represents translation invariance, and Hu2 captures symmetry and
orientation properties.
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These extracted features serve as the foundation for robust and efficient feature matching across
consecutive bronchoscopic frames, ensuring the continuity and stability of tracking.

2.5 Feature Matching Module
A hierarchical region matching strategy is proposed to achieve efficient and robust feature matching,

mainly comprising three stages: box matching, KD-tree-based matching acceleration, and fine-grained
candidate region matching.

2.5.1 Box Matching
In the box matching stage, a region-of-interest (ROI)-based strategy is employed to enhance matching

efficiency and reduce computational cost. For two consecutive frames t and t + 1, the area of detected
bounding boxes are denoted as At

i and At+1
j , respectively. The matching process relies on the Intersection

over Union (IoU) metric, defined as:

IoU (At
i , At+1

j ) =
(At

i ∩ At+1
j )

(At
i ∪ At+1

j )
, (8)

where At
i and At+1

j represent the areas of the detection boxes at time t and time t + 1, indexed by i and j,
respectively. The notation (At

i ∩ At+1
j ) and (At

i ∪ At+1
j ) represent the area of the intersection and union areas

of the two boxes.
For each At

i , the box in At+1
j with the highest IoU value is selected as the matching box. This strategy

reduces computational complexity while maintaining matching reliability, providing effective support for
subsequent stages.

2.5.2 KD-Tree Matching Acceleration
A KD-tree is utilized to speed up feature point matching within matching boxes, which is a data structure

for efficient multi-dimensional searches. Feature points from frames t and t + 1 are organized into array
points 1 and points 2 based on their centroid coordinates (cx, cy). The KD-tree is constructed for points 2 to
enable fast approximate nearest-neighbor searches, matching each point in points 1 with its closest neighbor
in points 2. This approach reduces computational complexity and improves matching efficiency.

Fig. 4 illustrates the impact of box matching strategy and KD-tree-based matching acceleration on
the real-time performance. The figure compares the processing time across consecutive frames for the two
methods: the original region-based matching (purple curve) and the optimized BLFM-Net with KD-tree
(red curve).

Compared to the original Region-based Matching, the optimized BLFM-Net with KD-tree shows a
faster processing time, with a markedly smoother and more stable curve. This improvement highlights the
effectiveness of the acceleration strategy in reducing computational cost, promoting both speed and stability
for real-time feature matching in complex bronchoscopic environments.
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Figure 4: Processing time before and after region matching acceleration

2.5.3 Fine-Grained Candidate Region Matching
For each of the matched feature point pairs, a region similarity score (Score) is calculated based on the

geometric properties of centroid, area, and shape, expressed as:

Score = wc ⋅ dc +wa ⋅ da +wh ⋅ dh , (9)

where,

dc =
√
(cx − cxi)2 + (c y − c yi)2, (10)

where dc represents the distance between the centroids of two detected regions or boxes. cx and c y represent
the centroid coordinates of the first region or box (at time t). cxi and c yi represent the centroid coordinates
of the second region or box (at time t + 1).

da = ∣ f j
a − f i

a ∣ , (11)

where da represents the absolute difference in the area between two features, f j
a represents the the area of

the region at time t + 1, denoted as j. f i
a represents the the area of the region at time t, denoted as i.

dh =
7
∑
k=1
( f i

h [k] − f j
h [k])

2
, (12)

where f i
h [k] and f j

h [k] represent the values of the feature fh at index k for the regions at times t (indexed by
i) and t + 1 (indexed by j), respectively. dh denoting the squared difference of Hu moment descriptors and
reflecting shape similarity.

In addition, the weights wc , wa and wh adjust the contribution of centroid, area, and shape differ-
ence, respectively. This hierarchical matching strategy ensures efficient and robust feature correspondence,
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enabling accurate bronchoscopic navigation across consecutive frames. The overall matching process is
shown in Algorithm 1.

Algorithm 1: The feature extraction and matching algorithm of the BLFM-Net
Input: Bronchoscopic image datasets D, the dataset R preprocessed by FFA-Net, the dataset A with
detection boxes after the Faster R-CNN object detection module
1. # Feature Extraction Module
2. for Rt from R do
3. Calculate the geometric moments by Eq. (1)
4. Get center point feature with Eq. (2)
5. Get area feature with Eq. (3)
6. Get shape descriptor fh by Eqs. (4)–(7)
7. Obtain F t

i = [ fc , fa , fh]
8. end for
9. # Feature Matching Mudule
10. minScore ← +∞ #Initialize minimum score to a very large value
11. for At from A do
12. Calculate IoU by Eq. (8)
13. Get matching detection box{At

i , At+1
j }

14. for {F t
i ,F t+1

j } from {At
i , At+1

j } do
15. Get center error by calculate Eq. (10)
16. Get area error by calculate Eq. (11)
17. Get shape error by calculate Eq. (12)
18. Get Score with Eq. (9)
19. if Score <minScore then
20. minScore = Score
21. BestmatchFeature = {F t

i ,F t+1
j }

22. end if
23. end for
24. end for
Output = BestmatchFeature

3 Experiments

3.1 Experiment Settings
In this study, two groups of experiments were designed to verify the stability of the proposed BLFM-

Net. The first experiment evaluated feature matching accuracy and real-time performance of BLFM-Net
through the comparison with the traditional methods of SURF, ORB, and optical flow, as well as some
deep learning-based methods. The second experiment assessed the performance in challenging scenarios of
frame dropping.

The dataset for the experiments consists of 5212 bronchoscopic video frames with a resolution of 1920 ×
1080, captured by an Olympus endoscope (model: Olympus ESG-400) from the bronchi of a human phantom
lung. The preprocessing workflow involves dehazing with the FFA-Net to enhance the features of bronchial
lumen regions. The dehazing results are illustrated in Fig. 5.
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Figure 5: The dehazing results after applying the FFA-Net on bronchoscopic video frames. The top row shows the
original frames, while the bottom row displays the dehazed frames. For each frame, the right-side image represents the
extracted feature mask

Altogether 521 frames (about 10%) were randomly extracted from all dehazed video frames and then
labeled with Labelme, which were taken as the training dataset to evaluate the performance of the object
detection module in BLFM-Net. This dataset was used to train the Faster R-CNN network for lumen
detection, in an environment with Windows 10, Python 3.11.8, PyTorch 2.2.1, OpenCV 4.9.0, and CUDA
11.8. The network parameters were set as follows: batch size = 4, and epochs = 100. The loss curve in Fig. 6
shows a reduction in both training and validation losses, with no overfitting observed, indicating effective
network training.

Figure 6: Loss curve for lumen region detection

3.2 Matching Results and Hypersensitive Analysis
After the dehazing of the video frames and lumen detection, regional feature extraction and matching

shall be performed to complete the feature matching. To validate the effectiveness of BLFM-Net, two
consecutive frames were randomly selected from the whole dataset (5212 bronchoscopic video frames) for
feature matching. The matching results obtained by BLFM-Net are presented in Fig. 7.

The lighting condition can vary significantly in bronchoscopic examinations, especially when the
camera enters darker regions or when the camera angle changes, leading to insufficient or uneven lighting
in some areas. These changes can degrade the accuracy of feature matching and hinder tracking, as weak
or inconsistent lighting makes it difficult to maintain reliable target detection. Despite these challenges,
the proposed method effectively maintains accurate feature matching under variable lighting conditions.
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As shown in Fig. 8, the proposed method effectively maintains accurate feature matching even in dimly lit
regions, as demonstrated by the successful detection and correspondence of key points between Frame1850
and Frame1854. The highlighted region (enclosed in the rectangular box) shows the preserved continuity of
the shadowed bronchial passage, ensuring precise and robust matching results. This validates the capability
of the algorithm to overcome the limitations posed by uneven lighting conditions.

Figure 7: (a) BLFM-Net inter-frame matching results. (b) Feature mask from the matching results

Figure 8: Feature matching results the under uneven lighting condition in bronchial passage

BLFM-Net is highly sensitive to variations in image quality and lighting conditions, which are common
challenges in bronchoscopic procedures due to factors like haze, blur, low resolution, and dynamic lighting
changes. Image clarity, which fluctuates due to environmental factors or equipment limitations, directly
impacts the method’s accuracy. However, BLFM-Net addresses this by incorporating a preprocessing module
(FFA-Net) that removes haze and enhances bronchial features, maintaining accurate feature matching even
in degraded images. Additionally, the method adapts to lighting variations, ensuring reliable performance
in poorly lit areas or when the camera moves into darker regions, making it highly effective for real-time
bronchoscopic navigation under unpredictable conditions, as shown in Fig. 8.

Similarly, BLFM-Net is sensitive to frame skipping and camera movements, which are common in
real-time procedures. Frame loss, caused by device limitations or sudden camera shifts, can disrupt feature
matching. Nonetheless, BLFM-Net remains resilient, maintaining feature matching accuracy even with
dropped frames or motion blur. This capability ensures stable tracking in dynamic environments, which is
crucial for successful outcomes in bronchoscopic procedures.

Lastly, BLFM-Net is sensitive to complex anatomical structures, such as intricate bronchial branches and
texture-less regions, which make feature extraction challenging for traditional methods. However, its design,
incorporating multi-dimensional features like centroids, areas, and Hu moments, allows it to accurately
match features even in these challenging regions, ensuring continuous and reliable tracking in complex
anatomical environments.

In conclusion, while BLFM-Net demonstrates sensitivity to several factors encountered in bron-
choscopic navigation—such as image quality, lighting, frame skipping, camera movement, and complex
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anatomical structures—its advanced preprocessing and feature matching techniques enable it to overcome
these challenges, making it a robust solution for real-time bronchoscopic navigation.

3.3 Comparison of Matching Methods
The proposed BLFM-Net was further compared with ORB [4], Optical Flow [8], and SURF [3] to

evaluate its matching accuracy and real-time performance. Seven consecutive image frames were selected
for feature point matching, and the results of different methods are illustrated in Fig. 9. In the figure, the
red points denote feature points in the first frame, the green points indicate feature points in the second
frame, and the blue lines represent the matches identified by each method. The matching accuracy of the
methods for each frame is summarized in Table 1. The accuracy is presented by the ratio of correctly matched
feature points to the feature number, and the ground truth values were obtained through manual calibration.
A match is considered correct if the angle deviation between the matched line and the manually calibrated
ground truth line is within ±5 degrees. Notably, the proposed method consistently achieves an accuracy
above 97%, and the number of extracted feature points significantly surpasses those of other methods.

Figure 9: Comparison of feature point matching results among ORB, optical flow, surf, and the BLFM-Net

Table 1: Matching accuracy of ORB, optical flow, surf, and the proposed BLFM-Net across different matching tasks.
The accuracy represents the ratio of correctly matched feature points and the feature number (correct matches/feature
number)

Method Feature number Accuracy Time (ms)
ORB [4] 44 34.33% 10.68

Optical [8] 68 66.67% 2.28
SURF [3] 17 49.93% 264.8

BLFM-Net 253 97.33% 6.33

To validate the real-time performance and robustness of the proposed algorithm, two frames, Frame2301
and Frame2305, were selected randomly for feature extraction and matching. The results are compared
with those of several state-of-the-art deep learning-based image matching methods, including LoFTR
(Local Feature Transformer) [26], XoFTR (Cross-Modal Feature Transformer) [27], LightGlue (Lightweight
SuperGlue) [28], SuperGlue (SuperPoint+Graph Neural Network) [10], and D2-Net (Dual Disentanglement
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Network for Brain Tumor Segmentation with Missing Modalities) [29]. Fig. 10 illustrates the matching effect
of these methods, highlighting the differences in the number of matches and the visual alignment of feature
points. The comparative data are summarized in Table 2.

Figure 10: Feature matching results for the proposed BLFM-Net and several other deep learning-based methods.
(a) LoFTR [26]; (b) XoFTR [27]; (c) LightrGlue [28]; (d) SuperGlue [10]; (e) D2-Net [29]; (f) BLFM-Net

Table 2: Performance comparison of the deep learning-based feature matching methods

Method Matches MAE Accuracy Time (s)
LoFTR [26] 576 248.91 81.43% 0.2862
XoFTR [27] 44 73.65 90.91% 0.0072

Light_glue [28] 64 121.87 32.84% 1.1085
Super_glue [10] 13 98.36 79.82% 0.0980

D2-Net [29] 40 115.28 86.25% 0.2187
BLFM-Net 259 61.04 96.63% 0.0064

The results in Table 2 demonstrate the superior performance of BLFM-Net compared to other state-of-
the-art deep learning-based image matching methods. BLFM-Net achieved the highest accuracy of 96.63%,
outperforming all other methods in this comparison, including XoFTR (90.91%) and others, highlighting its
precision in feature matching.

Additionally, BLFM-Net demonstrated excellent real-time performance, processing each frame in just
0.0064 s. In comparison, while XoFTR achieved a similar processing time (0.0072 s), its lower accuracy
underscores BLFM-Net’s ability to maintain real-time processing without sacrificing precision. In terms of
robustness, BLFM-Net showed a significantly low Mean Absolute Error (MAE) of 61.04, indicating reliable
and consistent feature matching. Other methods, such as LoFTR (MAE = 248.91) and LightGlue (MAE =
121.87), had notably higher MAE values, suggesting lower robustness, especially in challenging conditions.
XoFTR, while competitive with a MAE of 73.65, matched far fewer features (44) compared to BLFM-Net,
which successfully matched 259 features. This demonstrates that BLFM-Net not only provides more accurate
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matches but also captures more relevant features, which is crucial for improving navigation quality in real-
time applications.

These results emphasize the optimal balance BLFM-Net achieves between accuracy, computational
efficiency, and robustness. While methods like LoFTR, XoFTR, and LightGlue may excel in one aspect,
BLFM-Net combines all three, making it particularly well-suited for the dynamic and demanding environ-
ments of real-time bronchoscopic navigation. Its ability to consistently achieve high accuracy, handle large
numbers of features, and operate in real-time under varying conditions positions BLFM-Net as a leading
solution for deep learning-based image matching in medical applications.

3.4 Robustness Evaluation under Frame Dropping Conditions
A frame-dropping experiment was conducted to evaluate the robustness of the proposed method

under frame dropping conditions. Frame dropping is genrally caused by interruptions, device vibrations,
or lens movement, which often leads to data loss and discontinuities in image sequences, posing significant
challenges for feature point matching and tracking. In the experiment, 100 consecutive frames (Frame1000
to Frame1100) were selected, and frame-dropping scenarios were simulated by removing 5, 10, and 20 frames,
respectively. The original continuous frames (with 0 dropping frame) served as a control group. Fig. 11
shows the matching results at various dropping intervals, while Fig. 11 presents the number of matched
feature points. Even with increased dropping intervals, the proposed method maintains effective feature
point extraction and matching, as highlighted by a magnified view for frames 36–44 in Fig. 12.

Figure 11: Matching results under different frame-dropping scenarios (0, 5, 10, and 20 dropping frames)

Building on the frame-dropping experiment, tracking accuracy was further evaluated to assess the
robustness of the proposed method in maintaining consistent feature matching. Specifically, tracking
accuracy is defined as the Euclidean distance between the tracked trajectory and the ground truth, and the
ground truth was obtained through manual calibration. Fig. 13 shows the tracking accuracy of BLFM-Net at
various dropping frames, where the red dashed lines present values of the ground truth.
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Figure 12: The number of matched feature points under different dropping frames (0, 5, 10, and 20)

Figure 13: Box plot comparison of matching line lengths at different dropping frames (a): 5 dropping frames, (b): 10
dropping frames, (c): 20 dropping frames. The red dashed lines represent the ground truth values
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With 5 dropping frames, the method achieved a median error of approximately 962.76, with a 95%
confidence interval of [929.64, 998.32], and a matching accuracy of 99.84%. All ground truth values fell
within the confidence interval, indicating exceptional performance. With 10 dropping frames, the median
error slightly increased to approximately 955.58, with a confidence interval of [920.47, 1012.44], and matching
accuracy reduced to 98.19%. With 20 dropping frames, the median error rose to approximately 970, the
confidence interval expanded to [917.34, 1036.58], and the matching accuracy decreased to 94.71%, with only
25% of ground truth values falling within the interval.

According to the above results, the tracking performance of the proposed method diminishes as the
dropping frame increases, but it still exhibits significant robustness even with 20 dropping frames. Among
all scenarios, the case with 5 dropping frames witnessed the best performance of the method, showing both
high accuracy and stable tracking. The videos used in this study were recorded at a frame rate of 50 frames
per second, and the findings suggest that our method is also well-suited for lower frame rates. Notably, the
proposed approach can reliably handle videos with frame rates as low as 5 frames per second, maintaining
robust and accurate tracking despite the reduced temporal resolution.

3.5 Evaluation on Simulation of a Fine Transformation
In bronchoscopic scenes, visual feature points are often sparse and unevenly distributed, particularly

in texture-less regions of the bronchial tree. In clinical surgery, camera movement and tissue deformation
will reduce the number of matches and affect the accuracy of matches. Therefore, we simulated the image
scene transformation that might be encountered in clinical surgery to verify the robustness of the proposed
method. As shown in Fig. 14, we use the TPS (Thin Plate Spline) image warping method to simulate
endoscopic images with general affine transformations. Specifically, three kinds of transformation are
included: scale changing (Fig. 14a2), where the scaling transform coefficient is 1.5; contrarotating for 45○
(Fig. 14b2); and a random affine transformation (Fig. 14c2). Fig. 14 is an example of the simulations on
bronchoscopic image dataset, and the original image is shown in (Fig. 14a1).

Figure 14: Evaluation results of the simulated datasets. On the top left (a1) is the original image. Each row shows an
example of the deformation

In addition we evaluated the matching ability of the proposed method for the simulated dataset using
different matching methods. The ground truth for the exact pixel corresponding to each matching pair
is obtained from a known transformation of the simulated dataset. Fig. 14(3) demonstrates the matching
results on the paired images. We set the threshold of pixel distance as 10 to distinguish true and false
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matches. As shown in Table 3, in addition to the number of matches and times obtained from algorithms,
we computed the recall, accuracy, precision and F1-score for a general evaluation of their performance.
The random sample consensus (RANSAC) [30] and the vector field consensus (VFC) [31] has absolute
advantages in the number of matches; however, it exhibits a long matching time. The bilateral functions for
global motion modeling (BF) [32] has a short time but exhibits low precision. Our method achieves the
highest recall, accuracy, precision and F1-score, which are 90.04%, 0.9584, 0.9370 and 0.9476, respectively.
The comprehensive analysis showed that our method has good matching ability in simulated datasets.

Table 3: Comparison of different feature matching methods on the simulated datasets of affine transformation

Algorithm Matches Times (s) Accuracy Recall Precision F1-score
BF [32] 102 0.125 62.20% 0.5953 0.6037 0.6083

RANSAC [30] 461 0.171 81.69% 0.9062 0.8923 0.8992
VFC [31] 290 0.216 86.26% 0.9357 0.9169 0.9262

BLFM-Net 219 0.012 90.04% 0.9584 0.9370 0.9476

The comparison of each matching methods with respect to different indexes is in Fig. 15. There are
four groups of evaluation indexes: accuracy, recall, precision and F1-Score. The boxplots indicate the data
distribution of each index. Noticeable, although the performance of our method is close to VFC in Table 3,
it is more concentrative and reliable. The results also imply that our method is adaptable to different scenes
and robust to outliers.

Figure 15: Comparison of different matching methods respect to different index. Each group shows the boxplot of four
different methods. The asterisks were the maximums and minimums of each method. In the middle of the boxes, yellow
lines marked the median

3.6 Experiments on Clinical Endoscopic Images
We also evaluate the matching ability of the proposed method on clinical endoscopic datasets. In this

experiment, we used real-time clinical endoscopic videos of pig bronchi. The clinical data was recorded by
the Tianjin University team on 14 April 2024, during a clinical procedure. A full ethical statement is included
at the end of the paper. The matching results of the clinical data are shown in Fig. 16. The ground truth was
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obtained through manual calibration. The average processing time for matching was 0.041 s, and compared
to the ground truth, the accuracy for pixel distance errors within 10 pixels reached 97.62%. The number of
correctly matched points accounted for 94.44% of the total extracted feature points. These results validate
the reliability of the proposed method in clinical applications.

Figure 16: Matches of BLFM-Net on clinical image. (a) Matching result of frame 2486. (b) Matching result of frame
3129

4 Conclusion and Discussion
This paper introduces an innovative method named BLFM-Net, which combines the FASTER-RCNN

object detection network with regional feature matching, offering significant improvements in accuracy,
robustness, and real-time performance for bronchoscopic navigation. By leveraging precise bounding boxes,
Hu moments, and KD-Tree-based matching, BLFM-Net efficiently captures both local and global region
features while maintaining stable performance under challenging conditions such as complex movements
and lighting variations.

For further validation of the effectiveness, BLFM-Net is compared with some traditional image
processing methods, such as SURF, ORB, and Optical Flow, and the state-of-the-art deep learning-based
approaches, including LoFTR, XoFTR, LightGlue, and SuperGlue. The results demonstrate that BLFM-
Net achieves superior accuracy, extracts 2–3 times more feature points than traditional methods, and
maintains robustness under complex conditions. Compared to other deep learning-based methods, BLFM-
Net achieves a matching accuracy of 96.63% and a processing speed of 0.006 s per frame, showcasing its
outstanding balance of accuracy, robustness, and real-time performance. Furthermore, the method remained
robust under challenging conditions including frame skipping (0, 5, 10, 20), maintaining accuracy of above
94% even with the frame skipping of 20. Additionally, BLFM-Net was tested in two critical experiments. First,
the model was evaluated under simulated affine transformations, including scale changes, counter-rotation,
and random affine transformations. The results demonstrated high accuracy and robustness, with a recall rate
of 90.04%, accuracy of 0.9584, and F1-score of 0.9476, surpassing methods like RANSAC and VFC in both
accuracy and processing time. Second, real-time clinical endoscopic videos of pig bronchi, recorded by the
Tianjin University team on 14 April 2024, were used for evaluation. The clinical data showed that BLFM-Net
achieved an average processing time of 0.041 s, with 97.62% accuracy for pixel distances within 10 pixels, and
94.44% of the extracted feature points were correctly matched. In conclusion, BLFM-Net offers a robust and
efficient solution for real-time bronchoscopic navigation. It excels in navigation and tracking, especially in
challenging scenarios involving smooth, textureless regions of the bronchial tree, demonstrating outstanding
robustness even in these complex conditions.

The main contributions of this work can be summarized as follows. First, BLFM-Net introduces a
novel approach that integrates Faster R-CNN for precise object detection with advanced regional feature
matching techniques, enabling accurate and efficient feature extraction. Second, our method demonstrates
exceptional real-time performance, processing each frame in just 0.006 s while maintaining 96.63% matching
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accuracy, making it highly suitable for dynamic and time-sensitive surgical environments. Third, BLFM-Net
is robust under challenging conditions such as frame skipping, lighting variations, and complex bronchial
structures, maintaining accuracy above 94% even in extreme scenarios. Finally, this method contributes to
the advancement of deep learning-based medical image processing, offering a practical and reliable solution
for real-time bronchoscopic navigation in clinical applications, thereby improving the precision and safety
of bronchoscopic surgeries.

However, BLFM-Net also faces certain limitations. One key limitation is its sensitivity to rapid
endoscopic movements, which can lead to a loss of visual information and hinder the accuracy of feature
matching. Another challenge is maintaining robustness in environments where there are significant vari-
ations in lighting or when the bronchial tree has smooth, textureless regions, which can make it difficult
to extract reliable features. Future research can improve the accuracy and robustness of BLFM-Net by
integrating endoscopic motion estimation and compensation. Endoscopic movements, such as rapid shifts in
camera orientation, often lead to loss of visual information. By incorporating motion estimation, the system
can better account for these movements and maintain accurate tracking. This can be achieved by integrating
kinematic modeling, which describes the endoscope’s physical motion, with visual features extracted from
bronchoscopic images. This fusion of kinematic data and visual information will help mitigate motion blur
and frame disruptions, ultimately enhancing the reliability of the navigation system.

In the future, BLFM-Net can be further refined and expanded to enhance its performance and adapt-
ability in clinical applications. The method’s robustness could be improved to address lighting variations,
which are common in clinical environments. Enhancing the preprocessing step with techniques such as
illumination normalization, light source compensation, or adaptive histogram equalization would increase
the system’s resilience under varying lighting conditions. To improve spatial awareness, BLFM-Net could
be integrated with 3D imaging technologies or combined with other modalities, such as CT or MRI scans,
enabling more accurate navigation through complex 3D bronchial structures. Additionally, integrating
BLFM-Net with robotic surgery systems could enhance its capabilities in guiding semi-autonomous or fully
autonomous bronchoscopic surgeries, providing more precise real-time interventions. Lastly, incorporating
autonomous learning techniques, such as active learning or reinforcement learning, would allow BLFM-Net
to continuously improve its performance in real time, reducing the need for manual intervention and making
the system more adaptable to various clinical environments. These advancements could enable BLFM-Net
to become an even more powerful and versatile tool for real-time bronchoscopic navigation, ultimately
improving the precision, safety, and efficiency of bronchoscopic surgeries.
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