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ABSTRACT: This study presents a groundbreaking method named Expo-GAN (Exposition-Generative Adversarial
Network) for style transfer in exhibition hall design, using a refined version of the Cycle Generative Adversarial Network
(CycleGAN). The primary goal is to enhance the transformation of image styles while maintaining visual consistency,
an area where current CycleGAN models often fall short. These traditional models typically face difficulties in accurately
capturing expansive features as well as the intricate stylistic details necessary for high-quality image transformation. To
address these limitations, the research introduces several key modifications to the CycleGAN architecture. Enhance-
ments to the generator involve integrating U-net with SpecTransformer modules. This integration incorporates the
use of Fourier transform techniques coupled with multi-head self-attention mechanisms, which collectively improve
the generator’s ability to depict both large-scale structural patterns and minute elements meticulously in the generated
images. This enhancement allows the generator to achieve a more detailed and coherent fusion of styles, essential for
exhibition hall designs where both broad aesthetic strokes and detailed nuances matter significantly. The study also
proposes innovative changes to the discriminator by employing dilated convolution and global attention mechanisms.
These are derived using the Differentiable Architecture Search (DARTS) Neural Architecture Search framework to
expand the receptive field, which is crucial for recognizing comprehensive artistically styled images. By broadening
the ability to discern complex artistic features, the model avoids previous pitfalls associated with style inconsistency
and missing detailed features. Moreover, the traditional cyde-consistency loss function is replaced with the Learned
Perceptual Image Patch Similarity (LPIPS) metric. This shift aims to significantly enhance the perceptual quality of
the resultant images by prioritizing human-perceived similarities, which aligns better with user expectations and
professional standards in design aesthetics. The experimental phase of this research demonstrates that this novel
approach consistently outperforms the conventional CycleGAN across a broad range of datasets. Complementary
ablation studies and qualitative assessments underscore its superiority, particularly in maintaining detail fidelity and
style continuity. This is critical for creating a visually harmonious exhibition hall design where every detail contributes to
the overall aesthetic appeal. The results illustrate that this refined approach effectively bridges the gap between technical
capability and artistic necessity, marking a significant advancement in computational design methodologies.

KEYWORDS: Exhibition hall design; CycleGAN; SpecTransformer; DARTS neural architecture search; LPIPS loss
function

1 Introduction
Exhibition hall design is an interdisciplinary field that combines knowledge from art, science, psychol-

ogy, and engineering to create engaging and functional environments for exhibitions, displays, or educational
activities. With the development of technology, especially utilizing artificial intelligence (AI) technology, the
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field of exhibition hall design is undergoing transformative changes. These advancements not only improve
design efficiency but also enable the creation of more personalized and dynamic exhibition experiences.
Understanding the definition, significance, and importance of exhibition hall design is crucial for fostering
innovation and development in this domain [1–4].

The concept of Generative Adversarial Networks (GANs), initially introduced by Ian Goodfellow and
his colleagues in 2014 [5], are a class of deep learning models capable of generating realistic images, audio,
and text data through adversarial training between a generator and a discriminator. In exhibition hall
design, GANs can effectively perform style transfer, enhancing artistic expression and diversity in design.
By stylizing exhibition hall images and incorporating specific artistic styles into original designs, GANs can
make exhibition layouts more aligned with thematic or aesthetic preferences.

Over the years, GANs have been refined into various architectures based on their frameworks, including:
(1) Vanilla GAN-Based Architecture
Vanilla GAN represents the original framework of generative adversarial networks (GANs) [5,6],

consisting of two neural networks, namely a Generator and a Discriminator, GANs work on a competitive
basis. The Generator’s goal is to create samples that resemble the actual data distribution, whereas the
Discriminator strives to differentiate between genuine and generated samples. Both networks are trained in
an adversarial manner: the Generator continuously refines its skills to deceive the Discriminator, while the
Discriminator sharpens its ability to detect fake samples. This competitive training process allows GANs to
produce realistic outputs, including images, audio, and text.

(2) Architectures for Generating 3D Data from 2D Inputs
These architectures use 2D images as input to acquire transformations from two-dimensional images

to three-dimensional representations of volumetric data, finding applications in medical imaging and 3D
reconstruction. Typically, the generator comprises a two-dimensional encoder and a three-dimensional
decoder. The encoder translates the two-dimensional images into compact feature vectors with reduced
dimensionality, while the 3D decoder reconstructs these vectors into 3D volumetric data. Meanwhile,
the Discriminator, often a 3D convolutional network, evaluates the authenticity of the 3D data. Notable
examples include Multi-Projection Generative Adversarial Networks (MP-GAN) by Li et al. [7]: This
approach generates 3D volumes using multiple 2D projection views instead of a single view. This allows the
Generator to learn richer 3D structural information, producing higher-quality 3D volumes. Each projection
view is evaluated by a separate Discriminator, improving training stability and reducing the risk of mode
collapse. GAN2D to 3D by Sciazko et al. [8]: This method slices the generated 3D volumes into multiple 2D
images, using a single Discriminator to assess their authenticity. By leveraging existing 2D image processing
techniques, this architecture ensures higher realism and visual quality through cycle consistency, content,
and style losses. SliceGAN by Kench et al. [9]: This architecture uses content and style losses to ensure the
generated 3D volumes are consistent with the original 2D images in terms of content and style. The resulting
3D volumes exhibit superior visual quality and are particularly well-suited for applications requiring high
visual fidelity.

(3) Conditional GAN (cGAN)-Based Architectures
Conditional GAN (cGAN) is an enhanced GAN architecture that enables the creation of artificial

data that incorporates specific characteristics defined by the user. Unlike vanilla GAN, cGAN incorporates
an additional conditional vector containing information about the desired features, such as class labels,
position, or size. The Generator uses this vector to create synthetic data with the specified features, while the
Discriminator evaluates the authenticity of the data in conjunction with the condition vector. Representative
works include Bidirectional Mapping GAN (BMGAN) by Hu et al. [10]: BMGAN employs the conditional
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vector to guide the Generator in creating data with specific characteristics and uses an encoder to map the
generated data back to the conditional vector space. This ensures consistency between the generated data
and the condition vector. A Kullback-Leibler (KL) divergence metric assesses the discrepancy between the
distributions of the encoded vectors and their original conditional counterparts, guiding Generator training.
BMGAN can also use unsupervised learning to train the encoder, reducing the reliance on labeled data
and making it highly applicable in medical image analysis. Depth-preserving Latent GAN (DLGAN) by Liu
et al. [11]: DLGAN conceptualizes 3D volumetric data as a depth map, where each pixel value represents its
depth in the volume. This architecture employs a cGAN framework in which the encoder maps 2.5D views
to latent vectors, and the decoder reconstructs 3D volumes from the latent space. An autoencoder further
aids in learning how to reconstruct real 3D volumes, enhancing the Generator’s representation capabilities
in the latent space and producing more realistic 3D data.

(4) CycleGAN-Based Architectures
CycleGAN excels in translating images from one domain to another without the need for paired

datasets, enabling the conversion of images across different domains. Its architecture includes four networks:
Generator A: Converts images from Domain A into images belonging to Domain B. Generator B: Converts
images from Domain B back into images that belong to Domain A. Discriminator A: Distinguishes between
real Domain A images and those generated by Generator B. Discriminator B: Distinguishes between real
Domain B images and those generated by Generator A. The training objective ensures that Discriminators A
and B cannot differentiate between real and generated images in their respective domains. Prominent studies
include Zhang et al. [12,13]: This work applied CycleGAN to convert cardiac MRI images into CT images,
enhancing data availability for multi-class cardiac segmentation. Experiments on BraTS17 and LIVER100
datasets demonstrated that the CT images produced by CycleGAN closely resemble the appearance of the
real CT images and significantly improve segmentation performance. FGAN by Pan et al. [14]: This approach
transforms MRI images into PET images using a disease-specific neural network (DSNN) to extract features
and compute differences between real and synthetic images, ensuring the generated PET images accurately
reflect disease-specific features.

Recent advancements in neural architecture search (NAS) further enhance the adaptability of GAN
frameworks. For instance, Xue et al. [15] proposed a gradient-guided evolutionary NAS to optimize network
topologies by synergizing gradient information and evolutionary algorithms, achieving efficient architecture
exploration. Similarly, Xue et al. [16] introduced a self-adaptive weight mechanism based on dual attention
to dynamically prioritize critical operations in differentiable NAS. Our work inherits the philosophy of
automated architecture optimization but tailors it to style transfer tasks by integrating spectral analysis and
global attention, ensuring domain-specific efficacy in exhibition hall design.

This study develops a style transfer algorithm for exhibition hall design based on the CycleGAN
framework. However, the original CycleGAN algorithm has several limitations that affect its performance
in this domain: (1) CycleGAN employs an auto-encoder architecture with downsampling, upsampling, and
residual networks to enhance feature extraction while preventing network degradation. However, this design
restricts feature extraction to a single scale within a local range, which constrains the network’s overall
learning potential. (2) The CycleGAN Discriminator utilizes a PatchGAN structure, which is limited to
capturing features within the local receptive field of convolutional operations. This impairs its ability to
process global image information, reducing its effectiveness in distinguishing real from generated images.
(3) CycleGAN adopts the L2 norm as the loss function to enhance structural similarity between generated
and real images. However, the L2 norm measures similarity pixel by pixel without accounting for the holistic
structural features of an image. This makes it insufficient for complex tasks like style transfer, where overall
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coherence is critical. Moreover, L2-based evaluations often fail to align with human visual perception, making
it suboptimal for style transfer tasks in exhibition hall design.

To address these issues, this study introduces several enhancements to the CycleGAN framework, which
are also our main contributions:

(1) Enhanced Generator Network: The Generator is improved by integrating the Transformer architec-
ture into a U-net framework. This hybrid design leverages the Transformer’s ability to model sequential data
and global dependencies, addressing U-net’s limitations in capturing long-range feature correlations. Addi-
tionally, a SpecTransformer layer is introduced, utilizing Fourier transforms to extract spectral information.
This enhancement improves the Generator’s capability to capture and represent global features and stylistic
elements of images, producing outputs that maintain high-resolution details while exhibiting a more natural
and coherent global structure.

(2) Enhanced Discriminator Network: To mitigate the Discriminator’s limited focus on global features
and stylistic information, dilated convolutions and a global attention mechanism based on DARTS Neural
Architecture Search are incorporated. Dilated convolutions expand the receptive field, enabling the Discrim-
inator to capture broader contextual features, while the global attention mechanism based on DARTS Neural
Architecture Search extracts holistic stylistic and structural information. These improvements empower the
Discriminator to learn and transfer stylistic attributes effectively, making it more adept at style transfer tasks
specific to exhibition hall design.

(3) Improved Loss Function: The paper replaces the original cycle consistency loss with the Learned
Perceptual Image Patch Similarity (LPIPS) loss function. LPIPS is highly aligned with human visual
perception and serves as an effective metric for measuring image similarity. By employing LPIPS, the model
learns image features that better match human aesthetic judgments during training. This adjustment guides
the Generator to produce images that not only align with human preferences but are also more suitable for
the style transfer requirements in exhibition hall design.

This paper enhances the CycleGAN framework for exhibition hall design style transfer by integrating a
SpecTransformer module with U-net in the generator, employing dilated convolutions and global attention
in the discriminator, and using LPIPS instead of cycle-consistency loss for improved image quality.

2 Methods

2.1 Overall Framework
This study enhances the conventional CycleGAN algorithm to address its limitations in capturing

global image features and style information. The improvements focus on three main aspects: the generator,
discriminator, and loss function. The proposed method’s overall structure, depicted in Fig. 1, includes two
generators (G and F) and two discriminators (DX and DY).

(1) The U-net architecture is integrated with a SpecTransformer module to enhance the generator’s
ability to understand and express global image features and style information.

(2) Dilated convolutions and a global attention mechanism based on DARTS Neural Architecture Search
are introduced to improve the discriminator’s global discriminative capabilities.

(3) The traditional cycle-consistency loss is replaced with the Learned Perceptual Image Patch Similarity
(LPIPS) loss, which aligns better with human perception. This substitution ensures the generated images
meet the style transfer demands in exhibition hall design across different domains.
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Figure 1: Overall framework of the proposed method, G and F are generators, DX and DY are discriminators, and
LPIPS replaces the cycle-consistency loss

2.2 Generator Network
To address the limitations of CycleGAN’s generator network, this study incorporates a Transformer

architecture into the U-net generator. This strategy leverages the Transformer’s superior capability to handle
sequential data and global dependencies, addressing U-net’s constraints in capturing long-range feature
relationships. To enhance the generator’s ability to understand global features and style information, we
introduce the Transformer architecture and combine it with U-net. This combination leverages the Trans-
former’s advantages in handling sequential data and global dependencies, addressing U-net’s limitations
in capturing long-range feature correlations. By incorporating the Transformer, the generator can produce
images with high-resolution details while maintaining coherence and naturalness in the global structure. The
performance of CycleGAN in exhibition hall style transfer tasks is thus significantly improved.

The modified generator network, as shown in Fig. 2, is an enhanced version of the traditional U-
net structure. Inspired by reference [17], a SpecTransformer layer is introduced into the network’s skip
connections. The SpecTransformer module, or spectrum transformer module, utilizes Fourier Transform to
extract spectral information, thereby enhancing the model’s capability in understanding and representing
image features.

The network structure of SpecTransformer, illustrated in Fig. 3, represents an enhancement of the
conventional Transformer model. It incorporates a spectral layer and integrates it with multi-head self-
attention layers to better capture image features and improve performance. Initially, the input feature
map undergoes processing through a Patch Embedding Layer, which segments the image into fixed-
length sequences and applies linear projections to generate patch embeddings. Subsequently, a Positional
Embedding Layer is employed to encode positional information, enabling the model to interpret features
from different spatial positions within the image. The processed embeddings are then passed through
12 consecutive Transformer Blocks, each comprising multiple Attention Blocks and Spectral Blocks. This
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architecture effectively leverages attention mechanisms and spectral analysis to enhance the understanding
and representation of image features, resulting in superior performance in image processing tasks.

Figure 2: Architecture of the proposed generator network

Figure 3: The network framework of SpecTransformer. An MLP (Multi-Layer Perceptron) is used for channel infor-
mation mixing; FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform) are used for the extraction
and transformation of spectral information
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The Attention Block aggregates and mixes features across image patches, consisting of a Normalization
Layer, Multi-Headed Self-Attention (MHSA), and Multilayer Perceptron (MLP).

The Spectral Block utilizes the Fourier transform to capture the spectral information of images, thereby
enhancing the model’s ability to understand and represent image features. The Fourier transform shifts
the image from the physical domain to the frequency domain, decomposing it into various frequency
components. By learning adjustable weighting parameters, the Spectral Block can control the significance of
different frequency components, highlighting crucial local features such as lines, edges, and textures.

Compared to traditional convolutional neural networks, the Spectral Block requires fewer parameters
to extract image features, which reduces model complexity and computational demands. Additionally, it
enables global feature extraction, offering a better understanding of an image’s overall structure.

The network structure of the Spectral Block comprises several key components:
(1) Fast Fourier Transform (FFT) Layer: Transforms the input feature map from the spatial representa-

tion to a frequency-based representation. (2) Weighted Gating Layer: Applies learnable weighting parameters
to control the importance of various frequency components, effectively capturing critical frequency infor-
mation such as edges and lines. (3) Inverse Fast Fourier Transform (IFFT) Layer: Transforms the weighted
frequency-domain feature map back into the spatial domain. (4) Layer Normalization: Normalizes the
output from the IFFT layer to stabilize the training process. (5) Multilayer Perceptron (MLP): Mixes channel
information to further extract and combine features.

This combination of spectral and spatial processing enables the Spectral Block to obtain a more
streamlined and comprehensive depiction of image features, improving overall model performance while
maintaining computational efficiency.

2.3 Discriminator Network
The conventional CycleGAN employs PatchGAN as its discriminator, mapping the input image into an

N×N matrix (patch), where each matrix element represents the probability of a patch at a given location being
a true sample. By averaging this matrix, the final output of the discriminator is obtained. However, when
applied to style transfer tasks in exhibition hall design, using PatchGAN as the discriminator presents several
drawbacks: (1) By segmenting the image into numerous overlapping sections and making independent
judgments for each patch, PatchGAN places more emphasis on local features, while neglecting the overall
layout and meaningful content of the image. This results in good performance in local detail but issues in
preserving the overall layout and meaningful coherence of the produced images. (2) PatchGAN struggles to
effectively learn and transfer image style information to the generated images, as it primarily focuses on local
features, overlooking style-specific characteristics.

To enhance the discriminator’s ability to capture global features and style information, we introduced
Atrous Convolution (AC) and a global attention mechanism based on Differentiable Architecture Search
(DARTS). Atrous Convolution enlarges the discriminator’s receptive field by increasing the sampling rate
of the convolutional kernels, enabling it to capture more extensive feature details. The global attention
mechanism determines the specific configuration of convolutional layers and attention weights through
neural architecture search, thereby extracting global style and structural information, as shown in Fig. 4.

Atrous Convolution differs from conventional convolution mainly in its sampling rate. While standard
convolution uses a sampling rate of 1, where all weights of a convolution kernel are involved in the
computation, atrous convolution increases the sampling rate to greater than 1. This involves inserting “holes”
between the weights of the kernel, allowing it to compute only a subset of the input feature map, as illustrated
in Fig. 5. The advantages of this approach include: (1) Expanded Receptive Field: Atrous convolution expands
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the discriminator’s receptive field, allowing the kernel to gather a wider variety of feature details, thus
enabling the model to enhance its concentration on overall features and style information. (2) Efficient
Feature Extraction: Atrous convolution controls the resolution of the discriminator’s feature map, enabling
denser feature extraction without increasing the model’s parameter count.

Figure 4: The proposed discriminator network framework. This framework expands the receptive field using dilated
convolution and employs a global attention mechanism to extract global style information, thereby enhancing the
performance of the discriminator

Figure 5: Atrous convolution, where “holes” are inserted into the conventional convolution operation, thereby
increasing the convolution’s field of view

The Global Attention Module based on DARTS Neural Architecture Search, as shown in Algorithm 1, is
incorporated into the discriminator to extract global features and style information, thereby improving the
discriminator’s performance. This module works by performing a weighted sum of visual features from all
positions, where the weights are determined by a shared attention mechanism. This mechanism focuses on
global information rather than specific local queries. Fig. 6 illustrates the architecture of the Global Attention
Module. The process is as follows: (1) Identify convolution used in the Global Attention Module through
neural architecture search. (2) The visual feature map F from all positions is multiplied by a convolution layer
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and the weights W1 are obtained via a Softmax function. (3) The feature map F is then multiplied by W1, and
the result is summed to produce the global contextual features W2. (4) W2 undergoes transformation through
two additional convolution layers and a regularization layer to identify the relationships among channels.
(5) Finally, the transformed global context features are added to the visual features of each position using
element-wise addition.

Algorithm 1: Pseudocode for global attention mechanism

Step 1: Identify
convolution layers

through neural
architecture search

Step 2:
Compute

weights via
Softmax

Step 3:
Compute

global
contextual

features

Step 4: Transform
global features

through additional
layers

Step 5: Add
transformed

features to the
original feature

map
conv_layers = neu-

ral_architecture
_search()

weights = soft-
max(conv_layers
(feature_map))

global_features
= sum(feature

_map *
weights)

transformed_features
= additional_conv

_layers(global
_features)

enhanced_features
= feature_map +

transformed_
features

Conv 1×1

Conv 3×3

Conv 5×5

Softmax

Conv 1×1

Conv 3×3

Conv 5×5

Norm Layer

Conv 1×1

Conv 3×3

Conv 5×5

Block1 Block2 Block3

Neural Architecture Search based on DARTSFeature Maps

C×H×W

Figure 6: The network structure of a global attention module based on DARTS Neural Architecture Search. The symbol
⊗ represents matrix multiplication and ⊕ represents element-wise addition

2.4 Loss Function
This paper introduces Learned Perceptual Image Patch Similarity (LPIPS) [18] as a loss function,

replacing the traditional cyde-consistency loss. LPIPS processes two images through a pre-trained deep
learning model and calculates the L2 distance between their feature maps at multiple convolutional layers,
resulting in a measure of perceptual difference between the two images. This loss function aligns closely with
human visual perception, better guiding the model to learn image features and generate images that conform
more closely to human aesthetic judgments.

The computation of LPIPS involves passing two images, whose similarity is to be measured, through a
pre-trained deep learning model. These images are processed through multiple convolutional layers, followed
by normalization, weighting, and L2 distance calculation, resulting in a value that quantifies the perceptual
difference between the two images. The calculation of the LPIPS loss function is shown in Formula (1).

LossLPIPS(x , x0) = ∑l
1

Hl Wl
∑h ,w ∥wl ⊙ (yl

hw − yl
0hw)∥

2
(1)
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Here, x, xo depict the two images whose similarity is being evaluated, l denotes the index of the
convolutional layers in the network, Hl, Wl refer to the dimensions (height and width) of the feature map at
a specific layer l, h, w are the pixel position indices within the feature map, wl is the channel weight vector
of the l-th layer, and ⊙ denotes the Hadamard product, which indicates element-wise multiplication. yl

hw
represents the normalized feature at position (h, w) in the l-th layer’s feature map, and ∣∣⋅ ∣∣ represents the
L2 norm.

3 Experimental Results

3.1 Dataset
The datasets used in this study include CelebA-HQ [19] and AFHQ [20], both of which are widely

adopted in this field. The CelebA-HQ dataset is utilized for image style transfer tasks between males and
females, while the AFHQ dataset is used for style transfer between cats and dogs.

In addition to public datasets, a dedicated dataset named ExpoArchive has been constructed specifically
for exhibition hall design tasks. Currently, the ExpoArchive dataset consists of 7000 images, each annotated
with detailed information covering various types of exhibition halls, including those focused on science and
technology, history, ecology, culture, folklore, and intangible cultural heritage.

3.2 Quantitative Metrics
This study uses two widely recognized quantitative metrics—Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index Measure (SSIM) [21]—to compare the proposed algorithm with other methods.
PSNR, a metric for evaluating image quality, involves calculating the mean squared error (MSE) between two
images and then determining the logarithm of the reciprocal of this MSE value. The higher the PSNR value,
the more similar the two images are. SSIM, on the other hand, evaluates image quality by considering not
only pixel differences but also structural information. This metric assesses the degree of similarity between
images based on their luminance, contrast, and structural characteristics, with scores ranging from 0 to 1. A
score nearer to 1 suggests a higher degree of similarity and improved image quality.

3.3 Experimental Hardware and Software
The experiments were conducted on a hardware platform running Ubuntu 20.04 with Pycharm as the

software environment. The system features an Intel Core i9-10900K CPU running at 3.70 GHz, an NVIDIA
GeForce RTX 3090 GPU, and 64 GB of RAM. The algorithm was developed using Python version 3.8,
utilizing the Pytorch framework for the rapid development of convolutional neural networks. Additionally,
GPU parallel computing techniques were used to expedite the training of the neural network model.

3.4 Quantitative Comparison with State-of-the-Art Methods
This section presents a quantitative comparison of the proposed method with other state-of-the-art

image generation methods. The selected comparison methods include CUT [22], ILVR [23], SDEdit [24],
EGSDE [25], CycleGAN [26], UVCGAN [27] and UVCGAN v2 [28].

The Expo-GAN algorithm proposed in this paper demonstrates significant advantages across multiple
datasets, particularly in terms of detail preservation, style consistency, and overall visual quality, as shown
in Table 1. For instance, on the ExpoArchive dataset, Expo-GAN achieves a PSNR of 20.88 and an SSIM
of 0.711, which are notably higher than those of other methods, such as CycleGAN, which has a PSNR of
18.35 and an SSIM of 0.593. This advantage is mainly attributed to the introduction of the SpecTransformer
module in the generator, which, through Fourier Transform and a multi-head self-attention mechanism,
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better captures global features and style information of images. Additionally, the dilated convolution and
global attention mechanism in the discriminator further enhance the model’s ability to recognize global style
information, thereby improving the quality of the generated images.

Table 1: Quantitative comparison between the proposed method and other state-of-the-art methods

Methods ExpoArchive CelebA-HQ AFHQ

PSNR SSIM PSNR SSIM PSNR SSIM
CUT 17.65 0.683 19.87 0.740 17.48 0.601
ILVR 17.89 0.552 18.59 0.510 17.77 0.363

SDEdit 19.47 0.570 20.03 0.572 19.19 0.423
EGSDE 20.01 0.510 20.35 0.574 19.31 0.415

CycleGAN 18.35 0.593 20.78 0.611 18.25 0.660
UVCGAN 19.08 0.621 19.30 0.753 18.36 0.683

UVCGAN v2 19.43 0.667 19.44 0.681 15.55 0.562
Expo-GAN (Ours) 20.88 0.711 21.39 0.766 20.34 0.688

3.5 Ablation Study
In the ablation study, CycleGAN was used as the backbone, and the three proposed improvements were

introduced incrementally: (1) the incorporation of SpecTransFormer in the generator, (2) the inclusion of
dilated convolution (AC) and global attention mechanisms in the discriminator, and (3) the use of LPIPS in
the loss function. The quantitative metrics PSNR and SSIM were evaluated on the ExpoArchive dataset, with
results shown in Table 2.

Table 2: Quantitative comparison of ablation study on the ExpoArchive dataset

Method PSNR SSIM
Backbone 18.35 0.593

Backbone + SpecTransFormer 18.69 0.604
Backbone + AC + Attention 20.71 0.655

Backbone + LPIPS 18.70 0.614
Backbone + SpecTransFormer + AC + Attention + LPIPS 20.88 0.711

By combining the U-net and SpecTransFormer modules, the generator demonstrated an improved
understanding and representation of global features and style information in the images. SpecTransFormer,
which uses Fourier Transform and multi-head self-attention mechanisms, was more effective in capturing
spectral information from the images. As a result, the generated images exhibited more coherent global
structures while preserving high-resolution details. In the experiments, the PSNR increased from 18.35
to 18.69, and the SSIM improved from 0.593 to 0.604, demonstrating significant improvements in detail
retention and image naturalness.

The use of dilated convolutions enhanced the scope of the discriminator’s receptive field, allowing it to
identify a wider array of overall characteristics, thereby enhancing its attention to overall image structure
and style information. The global attention mechanism further enhanced the discriminator’s ability to
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distinguish global features by establishing dependencies across all spatial locations. These improvements
led to a significant increase in PSNR to 20.71 and SSIM to 0.655, indicating a strengthened ability of the
discriminator to capture global structure and style consistency.

LPIPS, as a replacement for the cycle-consistency loss, provides a similarity metric that aligns more
closely with human perception. This enables the model to capture image features that are more consistent
with human visual judgment. The use of the LPIPS loss resulted in improved image quality in the style transfer
process, with the PSNR increasing from 18.35 to 18.70 and the SSIM improving from 0.593 to 0.614. These
results demonstrate that LPIPS better preserves the structural and stylistic consistency of the images.

Finally, when SpecTransFormer, dilated convolution, global attention, and LPIPS were all integrated into
the CycleGAN framework, the style transfer performance was further enhanced. The fully improved version
achieved PSNR and SSIM values of 20.88 and 0.711 respectively showing the best performance in exhibition
hall design style transfer. This demonstrates the synergistic effects between the modules, optimizing the
extraction and generation of global features and style information by both the generator and discriminator.

3.6 Qualitative Results
In this section, we present visual comparisons of the created images to further affirm the efficacy of our

proposed approach in the exhibition hall design style transfer task. We compare the image generation perfor-
mance of the original CycleGAN with the proposed method across multiple datasets, as shown in Figs. 7–9.
In the qualitative results, the images generated by the proposed method on the ExpoArchive, CelebA-HQ,
and AFHQ datasets show significant improvements compared to the traditional CycleGAN algorithm.

First, the introduction of the SpecTransFormer module in the generator enables the proposed method
to maintain better global structural consistency in the generated images. SpecTransFormer, which combines
Fourier Transform and multi-head self-attention mechanisms, effectively captures spectral information and
global features, thereby improving the overall coherence of the images. For instance, in the exhibition hall
design task, the generated images exhibit more complete layouts and contours, avoiding issues of local
incoherence or distortion that may arise in images generated by CycleGAN.

In the CelebA-HQ and AFHQ datasets, the images generated by the proposed method appear more
realistic and natural in terms of detail representation. The spectral capture mechanism of SpecTransFormer
enhances the clarity of high-frequency details, such as textures and edges, particularly in complex patterns
like facial features or animal fur. In contrast, traditional CycleGAN often produces blurry or indistinct
textures, failing to accurately convey the stylistic details of the target domain.

The proposed method also incorporates dilated convolutions and a global attention mechanism into
the discriminator, which enhances the model’s focus on global style information, enabling the generated
images to more accurately match the target domain style. Dilated convolutions expand the receptive field,
allowing the discriminator to capture the overall style of the image, while the global attention mechanism
helps maintain stylistic consistency and naturalness during the generation process. As a result, the generated
images exhibit a higher degree of consistency with the target domain’s overall style, avoiding the instability
or abrupt local style mismatches commonly observed in CycleGAN.

Furthermore, by replacing the cycle-consistency loss with the LPIPS loss function, the generated images
align more closely with human visual perception. LPIPS, which learns perceptual similarity between image
features, enables the model to generate images that better conform to human aesthetic judgment. Results on
the exhibition hall design dataset (ExpoArchive) demonstrate that the style-transferred images generated by
the proposed method exhibit greater similarity to the original style in terms of spatial layout, style coherence,
and detail representation, making the final output more suitable for real-world design applications.
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In summary, compared to the original CycleGAN, the proposed improved model not only achieves
higher fidelity in image detail representation but also more accurately captures the style features across
different domains, ensuring the quality of the generated results in terms of overall structure, semantic
consistency, and style restoration.

Figure 7: Demonstrates the image generation results for the “cat-to-dog” task on the AFHQ dataset. (a) Original
images, (b) the proposed method, (c) CycleGAN
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Figure 8: Demonstrates the image generation results for the “male-to-female” task on the CelebA-HQ dataset.
(a) Original images, (b) the proposed method, (c) CycleGAN
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Figure 9: Demonstrates the image generation results for the “adding snow scene to exhibition hall design” task on the
ExpoArchive dataset. (a) Original images, (b) the proposed method, (c) CycleGAN

3.7 Computational Efficiency
To evaluate computational efficiency, we compared the training time, inference speed, and GPU

memory consumption of Expo-GAN with CycleGAN on the ExpoArchive dataset. As shown in Table 3,
Expo-GAN requires 18% more training time per epoch compared to CycleGAN while achieving 12% faster



4772 Comput Mater Contin. 2025;83(3)

inference speed due to optimized parallelization. The model size increased by 22% (from 98 MB to 120 MB),
but the LPIPS loss reduced training convergence time by 30%.

Table 3: Training time, inference speed, and GPU memory consumption of Expo-GAN with CycleGAN

Model Train time Inference time Model size
CycleGAN 45 min 0.25 s 98 MB
Expo-GAN 53 min 0.22 s 120 MB

To dissect the computational impact of individual components, we measured the FLOPs (Floating Point
Operations) for each module. The SpecTransformer contributed 38% of total FLOPs, while DARTS-based
global attention accounted for 25%. Future work may explore lightweight attention mechanisms to reduce
computational load.

3.8 Generalization of the Proposed Model
To assess generalization, we tested Expo-GAN on other datasets, including the IDD dataset [29] and

DeepFashion [30]. Expo-GAN successfully transferred styles between indoor and driving environments
(IDD) and casual/formal clothing (DeepFashion). Quantitative metrics (PSNR: 19.8/SSIM: 0.69 on IDD)
demonstrate competitive performance. The architecture’s core components (global attention, LPIPS) remain
effective, but domain-specific fine-tuning may further enhance results.

4 Conclusion
This paper presents a novel and optimized CycleGAN approach specifically designed for exhibition

hall design style transfer. By introducing the SpecTransFormer module, dilated convolutions, global atten-
tion mechanisms, and the LPIPS loss function, the proposed method significantly enhances CycleGAN’s
performance in this task. The SpecTransFormer module combines Fourier Transform with multi-headed
self-attention mechanisms, which enhances the model’s ability to capture and represent global image features
and spectral information. This allows generated images to maintain detailed fidelity while achieving a
more coherent global structure. In the discriminator, the integration of dilated convolutions and a global
attention mechanism effectively expands the receptive field and improves the extraction of global style
information, thus enhancing the style consistency and overall coherence of the generated images. By using
the LPIPS loss function instead of the traditional cycle-consistency loss, the model’s output better aligns
with human visual perception, further optimizing the quality and visual appeal of the generated images.
Through ablation experiments and both qualitative and quantitative analyses, the proposed method has been
shown to outperform the conventional CycleGAN on datasets such as CelebA-HQ, AFHQ, and ExpoArchive.
The generated images are not only more natural and fluid in terms of structure and detail but also exhibit
higher visual consistency in style transfer. This research provides a more practical and aesthetically valuable
solution for style transfer tasks in exhibition hall design. Future research will focus on enhancing the model’s
computational efficiency to handle larger-scale design tasks and exploring its application potential in other
design style transfer domains.
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