
echT PressScience

Doi:10.32604/cmc.2025.063308

ARTICLE

Real-Time Identification Technology for Encrypted DNS Traffic with Privacy
Protection

Zhipeng Qin1,2,*, Hanbing Yan3 , Biyang Zhang2 , Peng Wang2 and Yitao Li3

1School of Computer Science and Engineering, Beihang University, Beijing, 100191, China
2National Computer Network Emergency Response Technical Team/Coordination Center of China Shanxi Branch, Taiyuan, 030001,
China
3National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, 100029, China
*Corresponding Author: Zhipeng Qin. Email: qinzp@buaa.edu.cn
Received: 10 January 2025; Accepted: 19 March 2025; Published: 19 May 2025

ABSTRACT: With the widespread adoption of encrypted Domain Name System (DNS) technologies such as DNS
over Hyper Text Transfer Protocol Secure (HTTPS), traditional port and protocol-based traffic analysis methods
have become ineffective. Although encrypted DNS enhances user privacy protection, it also provides concealed
communication channels for malicious software, compelling detection technologies to shift towards statistical feature-
based and machine learning approaches. However, these methods still face challenges in real-time performance and
privacy protection. This paper proposes a real-time identification technology for encrypted DNS traffic with privacy
protection. Firstly, a hierarchical architecture of cloud-edge-end collaboration is designed, incorporating task offloading
strategies to balance privacy protection and identification efficiency. Secondly, a privacy-preserving federated learning
mechanism based on Federated Robust Aggregation (FedRA) is proposed, utilizing Medoid aggregation and differential
privacy techniques to ensure data privacy and enhance identification accuracy. Finally, an edge offloading strategy
based on a dynamic priority scheduling algorithm (DPSA) is designed to alleviate terminal burden and reduce
latency. Simulation results demonstrate that the proposed technology significantly improves the accuracy and real-
time performance of encrypted DNS traffic identification while protecting privacy, making it suitable for various
network environments.

KEYWORDS: Encrypted DNS; edge computing; federated learning; real-time detection; privacy protection

1 Introduction
With the increasing demand for internet privacy protection, encrypted DNS technologies such as DNS

over HTTPS (DoH) and DNS over Transport Layer Security (DoT) have become essential means for ensuring
DNS traffic security. Encrypted DNS encapsulates DNS requests within HTTPS or Transport Layer Security
(TLS) channels, encrypting DNS query content and effectively preventing traffic monitoring and tampering
by hiding transmission ports and protocol characteristics [1,2]. The widespread application of this technology
enhances user privacy protection but also introduces new security challenges, particularly in the detection
and identification of encrypted DNS traffic [3].

The main challenge in encrypted DNS traffic identification is distinguishing this traffic from other
types of encrypted or normal traffic, while also detecting potential malicious activities [4]. Encrypted DNS
identification has a wide range of applications, including detecting abnormal communications in enterprise
networks, identifying attack traffic in public Wi-Fi environments, and uncovering hidden botnet activities

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063308
https://www.techscience.com/doi/10.32604/cmc.2025.063308
mailto:qinzp@buaa.edu.cn

5812 Comput Mater Contin. 2025;83(3)

in cloud services [5]. These applications require precise and efficient detection technologies that balance
real-time monitoring with privacy protection.

Current methods for identifying encrypted DNS traffic typically rely on analyzing traffic features,
such as packet size, latency, and traffic patterns to differentiate encrypted DNS from other encrypted
traffic [6,7]. These methods often employ machine learning or statistical models to classify traffic based
on these features. However, they face significant challenges. First, real-time detection requires a balance
between high system accuracy and efficiency, but the dynamic nature and increasing diversity of encrypted
DNS protocols introduce considerable complexity into model training and reduce their generalizability [8,9].
Second, the need for large-scale data collection to train these models can lead to privacy concerns, as
the analysis of user traffic may inadvertently expose sensitive information. Moreover, as encrypted DNS
protocols evolve rapidly, many existing models struggle to adapt to new and emerging protocols, further
diminishing their effectiveness.

Thus, while current approaches have made progress, they still face limitations in both accuracy and
adaptability, and they often fail to fully address privacy issues. Achieving efficient, scalable, and privacy-
preserving identification of encrypted DNS traffic remains a critical challenge in this field.

Edge computing and federated learning have been proposed to improve both real-time performance
and privacy protection. Edge computing reduces detection latency by offloading computational tasks to
nodes closer to the data source, easing the load on central servers and supporting real-time detection [10].
Federated learning enables distributed model training, allowing local model updates at nodes and sharing
results without exposing sensitive user data [11]. By combining the low-latency benefits of edge computing
with the privacy-preserving properties of federated learning, we propose a novel privacy protection layered
detection framework for encrypted DNS traffic identification. The framework combines cloud-edge-end col-
laboration, Federated learning, and differential privacy technologies to enable both real-time identification
and privacy protection. By introducing edge computing, the framework achieves edge offloading of training
and detection tasks, reducing latency while protecting user data privacy. This combination of technologies
improves the accuracy and efficiency of encrypted DNS traffic identification and avoids the privacy risks that
may be present in traditional centralized approaches.

The main contributions of this paper are as follows:

1. Privacy-Preserving Real-Time Encrypted DNS Traffic Identification Framework: We propose a
cloud-edge-end collaborative framework for encrypted DNS traffic identification. The framework,
organized into terminal, edge, and cloud layers, resolves the conflict between privacy protection and
real-time detection through edge-end collaboration and task offloading mechanisms.

2. Privacy-Preserving Hierarchical Federated Learning Training Mechanism: We introduce a hierar-
chical Federated Learning mechanism based on FedRA. This mechanism ensures that user-sensitive
data are not exposed during model training across multiple edge nodes and the cloud.

3. Encrypted DNS Identification with Dynamic Priority Edge Offloading: A dynamic priority schedul-
ing algorithm is introduced to intelligently offload computation tasks to edge nodes. By leveraging
edge computing, this approach reduces the computational burden on terminal devices, decreases
identification latency, and enhances the real-time efficiency of encrypted DNS traffic identification.

The structure of this paper is as follows. Section 2 presents related technologies and research in the
field of encrypted DNS traffic identification and privacy protection. Section 3 describes the proposed
privacy-preserving real-time encrypted DNS identification framework in detail. In Section 4, we discuss
the privacy-preserving FedRA hierarchical federated learning training mechanism. Section 5 presents the

Comput Mater Contin. 2025;83(3) 5813

technology of encrypted DNS identification based on dynamic priority edge offloading. Section 6 outlines
the simulation setup and results. Finally, Section 7 concludes the paper and discusses future work.

2 Related Technologies and Research

2.1 Application of Edge Computing Technology in Traffic Identification
Edge computing involves shifting computational and storage tasks from central servers to edge devices

or nodes located closer to the data source. This reduces data transmission latency and enhances system
response times [12]. Given the complexity of encrypted DNS traffic and the need for quick adaptation to
changing network environments, edge computing enables fast data preprocessing, feature extraction, and
traffic identification, significantly enhancing real-time performance [13].

Edge computing has been widely utilized for traffic identification and real-time monitoring in various
studies. For example, Kim et al. proposed a network traffic classification scheme based on deep recurrent
neural networks (RNNs) implemented within an edge computing framework, which significantly improved
classification accuracy and real-time performance [14]. Song et al. explored an edge computing-enhanced
online traffic prediction method for autonomous driving and vehicular networks. Their approach achieved
precise predictions of vehicle behavior through real-time traffic data analysis, enhancing traffic management
efficiency [15]. Additionally, Modupe et al. designed a cloud/edge computing-based system for network
traffic monitoring and threat detection. This system processes preliminary data at edge nodes, enabling rapid
responses to network security incidents and ensuring stable network operations [16].

2.2 Application of Federated Learning Technology in Privacy Protection
Federated learning is a distributed machine learning approach that allows multiple participants to

collaboratively train a global model by sharing model updates instead of raw data [17,18]. The key advantage
of federated learning in this context is that it enables local data processing and model training, thereby
eliminating the need to upload raw traffic data to central servers. Distributed training not only improves the
generalization of the identification model but also ensures privacy, making federated learning well-suited for
large-scale traffic analysis involving sensitive information [19].

Several studies highlight the effectiveness of federated learning in preserving privacy. For example,
Mateus et al. proposed a federated learning-based solution for Distributed Denial of Service (DDoS) detec-
tion in software-defined networks (SDN), which identified and mitigated DDoS attacks while protecting
network data privacy through distributed model training [20]. Doriguzzi-Corin et al. developed FLAD, an
adaptive federated learning method for DDoS detection that maintains high accuracy in dynamic network
environments while safeguarding user data [21]. de Caldas Filho et al. proposed a federated learning-
based botnet detection and mitigation model for IoT networks. This approach enabled effective botnet
identification and defense through collaboration among distributed devices, while preserving the privacy of
sensitive data on each device [22].

2.3 Edge Computing-Assisted Federated Learning Technology
The integration of edge computing and federated learning offers a powerful solution for efficient

encrypted DNS traffic identification while ensuring privacy protection [23]. In this framework, edge
computing nodes perform local data processing and traffic analysis, while also contributing to distributed
model training. This collaborative approach reduces transmission latency, enhances real-time identification
capabilities, and avoids centralized storage and sharing of sensitive data [24].

5814 Comput Mater Contin. 2025;83(3)

Research combining edge computing with federated learning has shown promising results across
various domains. For instance, Jarwan et al. proposed an edge-based federated deep reinforcement learning
approach for IoT traffic management. Their method deployed intelligent agents on edge nodes to achieve
efficient traffic scheduling and resource allocation while ensuring data privacy [25]. Liu et al. addressed the
issue of privacy-preserving traffic prediction by proposing a federated learning-based model that performs
local training and updates on edge devices. This approach achieved high-accuracy predictions while
protecting user data privacy [26]. Wang et al. developed a federated semi-supervised learning method for
network traffic classification, leveraging edge computing to efficiently classify large-scale network traffic and
improve the performance and generalization of classification models, all while preserving data privacy [27].

Compared to traditional centralized processing methods, frameworks that combine edge computing
and federated learning demonstrate greater flexibility and adaptability when dealing with large-scale,
dynamically changing network environments. This technical architecture can not only cope with the
growing volume of encrypted DNS traffic, but also meet the needs of real-time monitoring and rapid
response, especially in the case of a high degree of privacy protection, providing a more reliable solution. In
addition, references [28,29] have verified the feasibility of edge computing technology and federated learning
technology in encrypted DNS traffic identification, and the combination of the two technologies can provide
a feasible solution for encrypted DNS traffic identification.

3 Privacy-Preserving Real-Time Encrypted DNS Identification Framework
The extensive use of encrypted DNS protocols like DoH and DoT has created major hurdles for

traditional port and protocol-based traffic analysis methods. Because communication content is encrypted
and encrypted DNS traffic is stealthy, conventional traffic analysis techniques often fail. To tackle these issues,
we suggest a Privacy-Preserving Real-Time Encrypted DNS Identification Framework. This framework
boosts the accuracy and efficiency of encrypted DNS traffic identification while protecting user privacy.
As shown in Fig. 1, it uses a cloud-edge-end collaborative structure and combines federated learning,
differential privacy, and Temporal Convolutional Networks (TCN). Through multi-layer task allocation and
collaboration, it accomplishes efficient and secure encrypted DNS traffic identification.

Figure 1: Privacy-preserving real-time encrypted DNS identification framework

Comput Mater Contin. 2025;83(3) 5815

The framework has three layers: terminal, edge, and cloud, each with specific roles to ensure data privacy
and boost identification accuracy.

The terminal layer gathers data, extracts features, and does initial identification. It pulls key features
from encrypted DNS traffic, such as IP addresses, port numbers, packet sizes, and DNS queries. Lightweight
models like TCN handle preliminary identification. For privacy, sensitive data is encrypted before transmis-
sion, and differential privacy is added to model parameters before uploading. Non-sensitive data goes to the
edge layer for more processing.

The edge layer manages computation offloading, model aggregation, and training. It dynamically adjusts
offloading strategies based on resources and network conditions. Using federated learning, it aggregates
encrypted model parameters from terminals to ensure privacy. The edge layer also optimizes resource use
and cuts latency.

The cloud layer gets encrypted model parameters from multiple edge nodes and aggregates them into
a global model via federated learning. This process only uses encrypted parameters, so raw traffic data
isn’t exposed. The cloud layer then sends the global model back to edge nodes, improving the model’s
performance, identification accuracy, and generalization.

In the federated learning setup, data is split using horizontal partitioning. Devices train the model locally
and only share model updates with the edge or cloud layers, not raw data. This keeps user data private while
allowing collaborative global model training.

As shown in Fig. 2, the training process follows a multi-step procedure. Terminal devices collect and
extract features from encrypted DNS traffic, keeping sensitive features local. Non-sensitive features are sent
to the edge layer, where federated learning aggregates model parameters. These encrypted parameters are
uploaded to the cloud, where a global model is created. This model is then sent back to the terminal and edge
layers for improved identification performance.

Figure 2: The training process of encrypted DNS within the cloud-edge-end collaborative architecture

During real-time encrypted DNS traffic identification, terminal devices extract features from traffic
data and perform preliminary identification using local models. For less complex tasks, terminal devices
directly use local models for inference. For computationally intensive tasks, some of non-sensitive workload
is offloaded to edge nodes.

5816 Comput Mater Contin. 2025;83(3)

4 Privacy-Preserving FedRA Hierarchical Federated Learning Training Mechanism
Within the cloud-edge-end architecture, achieving high identification accuracy for encrypted DNS

traffic recognition while ensuring user privacy through a distributed training framework is a pressing
issue. To address this, this chapter introduces a Privacy-Preserving FedRA Hierarchical Federated Learning
Training Mechanism. This method enhances model updates and improves identification accuracy through
a hierarchical aggregation mechanism. By incorporating differential privacy techniques, it enables efficient
encrypted DNS traffic identification without sharing raw data, effectively safeguarding user privacy.

4.1 Data Input and Standardization Processing
Terminal devices generate raw data by capturing DNS requests and responses, which include multiple

features such as timestamps, request types, response types, request sizes, response sizes, and Time to Live
(TTL). Since different features have varying units and ranges, directly inputting raw data into the model may
lead to instability during training and slow convergence. Therefore, data standardization becomes a necessary
preprocessing step.

The goal of standardization is to adjust each feature to the same scale, achieving zero mean and unit
variance. The specific standardization formula is as follows:

x′i , j =
xi , j − μ j

σ j
(1)

where xi , j represents the value of the j-th feature for the i-th sample, μ j and σj are the mean and standard
deviation of the j-th feature across all samples, respectively, and x′i , j is the standardized feature value. The
formulas for calculating the mean and standard deviation are:

μ j =
1
N

N
∑
i=1

xi , j , σj =

�
��� 1

N

N
∑
i=1
(xi , j − μ j)

2 (2)

where N is the number of samples. Through standardization, the feature matrix X ∈ RT×D (where T is
the time step and D is the number of features) generated by terminal devices eliminates dimensional
discrepancies, better accommodating subsequent model training processes. This ensures that the model can
effectively capture the temporal characteristics and patterns within encrypted DNS traffic.

4.2 Training Method for Encrypted DNS Identification Model Based on FedRA Federated Learning
Algorithm
Encrypted DNS traffic varies widely due to diverse network environments, device types, and user

behaviors. This variability challenges traditional single-model training methods in effectively capturing its
features. Although TCN can model traffic data’s temporal characteristics to improve identification accuracy
and robustness, single terminal devices often have limited DNS traffic data, struggling to support traditional
machine learning model training, especially with significant data distribution differences.

To solve this, federated learning enables multiple devices to jointly train models without raw data
sharing, fully utilizing the heterogeneous data across devices. The proposed FedRA algorithm uses the
Medoid aggregation strategy to select the most representative local model updates, reducing the impact of
abnormal or outlier updates on the global model. Unlike FedAvg, FedRA enhances robustness by lessening
the effect of malicious or faulty updates, which is crucial in highly variable data environments. Moreover,
FedRA, combined with differential privacy, ensures data privacy without raw data sharing. Below is the
specific application of the FedRA algorithm in encrypted DNS recognition.

Comput Mater Contin. 2025;83(3) 5817

In addition to FedRA, we also conduct comparative experiments with other robust aggregation
methods, such as Krum and Trimmed Mean, to validate the advantages of our approach in terms of
model robustness and accuracy. These experiments demonstrate that FedRA consistently outperforms other
methods, particularly in scenarios with noisy or incomplete data.

FedRA is employed at both the edge layer and the cloud layer in federated learning to ensure the accuracy
and privacy of the global model. The specific process is as follows.

4.2.1 Terminal Layer Training
At the Terminal Layer, we use incremental learning to process the local data of the terminal device.

Different from traditional batch learning, incremental learning does not need to load the entire data set
at once, but processes the data step by step to reduce calculation and storage costs. Each terminal device
performs incremental training locally, using only its local data and uploading updated model parameters,
which both protects privacy and improves training efficiency. The incremental training process includes the
following steps:

1. Local Data Standardization: Terminal devices standardize the received encrypted DNS traffic data,
generating the standardized feature matrix X′.

2. Model Forward Propagation and Loss Calculation: Based on the standardized data, terminal devices
perform forward propagation using the current model parameters θt , calculating the predicted values
Ŷ and the loss function L :

L (θt) =
1

M

M
∑
i=1

L (ŷi , yi) (3)

where M is the number of samples in the local dataset, ŷi is the model’s prediction for the i-th sample,
and yi is the actual label.

3. Gradient Calculation and Privacy Protection: Compute the gradient of the loss function with respect
to the model parameters ∇Llocal(θt), and add Gaussian noise to the gradient to achieve differential
privacy protection:

∇̂Llocal(θt) = ∇Llocal(θt) +N (0, σ 2I) (4)

where N (0, σ 2I) represents Gaussian noise with mean 0 and variance σ 2, and I is the identity matrix.
The standard deviation σ controls the strength of privacy protection.

4. Uploading Noisy Gradient: Terminal devices upload the noisy gradient ∇̂Llocal(θt) to the edge server,
ensuring participation in global model updates without exposing raw data.

4.2.2 Edge Layer Aggregation
The edge layer is responsible for receiving noisy gradients from multiple terminal devices and

aggregating them using the FedRA algorithm. The specific steps are as follows:

1. Receiving Local Updates: The edge server receives noisy local gradient updates from N terminal
devices:

{∇̂Llocal, i(θ)}
N
i=1 (5)

where ∇̂Llocal, i(θ) represents the noisy gradient uploaded by the i-th terminal device.

5818 Comput Mater Contin. 2025;83(3)

2. Calculating Gradient Distances: The edge server calculates the Euclidean distance between each pair
of local updates:

d (∇̂Llocal, i(θ), ∇̂Llocal, j(θ)) = ∣∇̂Llocal, i(θ) − ∇̂Llocal, j(θ)∣ (6)

where d represents the distance metric function.
3. Selecting Medoid Updates: Using the Medoid aggregation strategy, the edge server selects the most

representative local update as the aggregation result. Specifically, the edge server selects a local update
∇Lmedoid(θ) that minimizes the total distance to all other local updates:

∇Lmedoid(θ) = arg min
i

N
∑
j=1
j≠i

d (∇̂Llocal, i(θ), ∇̂Llocal, j(θ)) (7)

This strategy effectively filters out anomalous or deviating gradient updates, ensuring that the aggrega-
tion result is more representative and robust.

4. Adding Differential Privacy Noise: Further add Gaussian noise to the Medoid aggregation result to
enhance privacy protection:

∇L′medoid(θ) = ∇Lmedoid(θ) +N (0, σ 2
edge) (8)

where σedge is the standard deviation of the noise added at the edge layer, controlling the strength of
privacy protection.

5. Uploading Aggregated Results: The edge server uploads the noisy Medoid update∇L′medoid(θ) to the
cloud layer, serving as the basis for global model updates.

4.2.3 Cloud Layer Aggregation and Update
The cloud layer is responsible for receiving aggregated updates from multiple edge layers and further

integrating them using the FedRA algorithm to maintain the global model. The specific steps are as follows:
1. Receiving Aggregated Updates: The cloud server receives aggregated updates from M edge servers:

{∇L′medoid(θ)}
M
m=1 (9)

2. Calculating Global Update: The cloud server computes the weighted average of all received aggregated
updates to generate the global model update:

∇Lglobal(θ) =
1

M

M
∑
m=1
∇L′medoid(θ)m (10)

3. Model Update: The cloud server updates the global model parameters θ using the global update
∇Lglobal(θ) and distributes the new model parameters to all edge servers and terminal devices,
completing one federated learning training cycle.
The FedRA mechanism addresses this by using the Medoid aggregation strategy, which selects the

most representative local updates. This approach better accommodates variations in data distribution and
effectively filters out anomalous or malicious gradient updates. As a result, it enhances the stability and
accuracy of the global model, which is crucial for detecting abnormal traffic and malicious requests within
encrypted DNS traffic.

At each level of aggregation, FedRA integrates differential privacy techniques by adding noise to local
updates and aggregation results. This ensures that the privacy of individual terminal device data is preserved.

Comput Mater Contin. 2025;83(3) 5819

4.3 Privacy Protection Mechanism for Encrypted DNS Identification Based on Differential Privacy
In the FedRA algorithm, Differential Privacy (DP) techniques are integrated into every aggregation

step at the terminal layer, edge layer, and cloud layer, ensuring the privacy of data throughout the model
training process. Differential privacy aims to make the model’s output independent of any single user’s data
by adding noise, thereby preventing the leakage of sensitive information. Differential privacy is quantified
using a privacy budget (ε, δ), which measures the strength of privacy protection:

Pr [M (D) ∈ S] ≤ eε Pr [M (D′) ∈ S] + δ (11)

where M represents the model, D and D′ are two adjacent datasets, S is the set of possible outputs of the
model, ε controls the risk of privacy leakage, and δ is a small probability that allows the model output to
violate the inequality in extreme cases.

Terminal devices add Gaussian noise to the gradient updates after local training to achieve differential
privacy protection:

∇̂Llocal(θt) = ∇Llocal(θt) +N (0, σ 2I) (12)

where N (0, σ 2I) represents Gaussian noise with mean 0 and variance σ 2, and I is the identity matrix. The
standard deviation σ is adjusted based on the required privacy budget ε and δ to ensure the desired level of
privacy protection.

At the edge layer, after selecting the Medoid aggregation result, additional Gaussian noise is added to
further enhance privacy protection:

∇L′medoid(θ) = ∇Lmedoid(θ) +N (0, σ 2
edge) (13)

where σedge is the standard deviation of the noise added at the edge layer, controlling the strength of privacy
protection. This approach ensures that even if an edge server is compromised during the aggregation process,
it cannot recover individual terminal devices’ private data from the aggregated results.

Upon receiving the aggregated updates from the edge layer, the cloud server continues to apply
differential privacy techniques to further protect the global model’s privacy:

∇L′global(θ) = ∇Lglobal(θ) +N (0, σ 2
cloud) (14)

where σcloud is the standard deviation of the noise added at the cloud layer, ensuring that the global model
update process does not leak any sensitive information from terminal devices.

The choice of privacy budget (ε, δ) directly affects the overall performance of encrypted DNS traffic
identification. Specifically, ε will increase the noise added to the gradient, and a smaller ε will affect the
training speed and accuracy of the model; Larger ones may reduce the ability to protect privacy. Therefore,
the choice of privacy budget should consider the trade-off between utility and privacy protection. In this
study, we propose a hierarchical privacy budget allocation method to reasonably manage the privacy budget
of each layer.

εtotal = εterminal + εedge + εcloud (15)

where εtotal is the overall privacy budget, and εterminal, εedge, and εcloud are the privacy budgets allocated
to the terminal layer, edge layer, and cloud layer. A higher εterminal ensures that the terminal layer retains
higher privacy protection while improving the accuracy of local model updates. However, excessive εedge and
εcloud can lead to the risk of privacy breaches in the aggregation step, so different levels of privacy need to be

5820 Comput Mater Contin. 2025;83(3)

balanced. The terminal layer typically handles the most sensitive user data and therefore allocates a higher
privacy budget; The privacy budget of the edge layer and cloud layer is appropriately reduced to balance
privacy protection and computing efficiency. In practice, the privacy budget can be adjusted according to
specific scenarios.

5 Encrypted DNS Identification Technology Based on Dynamic Priority Edge Offloading
The challenge of encrypted DNS traffic identification lies in its high computational load and low latency

requirements. When terminals employ complex algorithms such as machine learning or operate in high-
frequency identification scenarios, the computational capabilities of terminal devices are often insufficient to
meet real-time demands. Therefore, this section proposes an edge offloading strategy based on the Dynamic
Priority Scheduling Algorithm (DPSA). The goal is to optimize task offloading decisions to reduce the
computational burden on terminal devices, decrease latency, and ensure identification accuracy.

5.1 Edge Offloading Task Model
The overall latency Dtotal of encrypted DNS identification tasks consists of data transmission latency

Dtrans, edge computing latency Dedge, and local computation latency Dlocal:

Dtotal = Dtrans + Dedge + Dlocal (16)

where Dtrans refers to the time required for terminal devices to upload feature data to edge nodes. Specifically,
Dtrans is calculated as:

Dtrans =
Dtask

Bnet
+ Dnet (17)

Here, Dtask represents the size of the task data, Bnet is the network bandwidth, and Dnet is the network
latency. Dedge is the time required for edge nodes to perform model inference on the uploaded feature data.
It is given by:

Dedge =
Ttask

Cedge
(18)

where Ttask denotes the computational complexity of the task, and Cedge is the computational capability of the
edge node. Dlocal is the time required for terminal devices to perform feature extraction and model inference
locally:

Dlocal =
Ttask

Clocal
(19)

where Clocal represents the computational capability of the terminal device. In encrypted DNS traffic
identification, the key to edge offloading strategies is the dynamic decision of whether to offload feature
extraction or model inference tasks to edge nodes. The objective of this strategy is to minimize the total task
latency while balancing the trade-off between latency and identification accuracy. To optimize offloading
decisions, we model it as an optimization problem with the following mathematical formulation:

min
N
∑
i=1

Mi

∑
j=1
[xi j ⋅ (Dtrans, i j + Dedge, i j) + (1 − xi j) ⋅ Dlocal, i j] (20)

Comput Mater Contin. 2025;83(3) 5821

where xi j is the decision variable, with xi j = 1 indicating that task j of terminal i is offloaded to the edge
node. The model constraints are as follows:

Edge Node Load Constraint: The computational load on edge nodes must not exceed their maximum
load Lmax:

N
∑
i=1

Mi

∑
j=1

xi j ⋅
Ttask, i j

Cedge
≤ Lmax (21)

Latency Requirement Constraint: The total latency of each task must be less than its maximum
tolerated latency Dmax, i j:

xi j ⋅ (Dtrans, i j + Dedge, i j) + (1 − xi j) ⋅ Dlocal, i j ≤ Dmax, i j , ∀i , j (22)

5.2 Edge Offloading Strategy Based on Dynamic Priority Scheduling Algorithm
To optimize task offloading decisions in encrypted DNS traffic identification, this paper proposes

an edge offloading strategy based on the Dynamic Priority Scheduling Algorithm (DPSA). This strategy
dynamically schedules and optimizes task offloading schemes to ensure minimal system latency. The specific
strategy is as follows:

1. Assigning Priority to Each Task: Based on the task’s latency tolerance Dmax, i j and computational
complexity Ttask, i j, assign a priority to each task:

priority i j = (
Dmax, i j

Ttask, i j
) × α + (1

Dnetwork, i j
) × β (23)

where α and β are weight coefficients used to balance the impact of latency tolerance and network
conditions on priority. The values of the two parameters can be adjusted based on different scenarios and
task requirements. For example, applications with high real-time requirements can increase the weight
of α, and in environments with unstable network conditions, tasks with better network conditions can
be prioritized by increasing the β value.

2. Calculating Local and Edge Latencies:

Dlocal, i j =
Ttask, i j

Clocal
(24)

Dedge, i j =
Dtask, i j

Bnet
+ Dnet +

Ttask, i j

Cedge
(25)

3. Offloading Condition Judgment: Let θ be the priority threshold. If the latency of offloading the task to
the edge node Dedge, i j is less than the local processing latency Dlocal, i j, the edge node’s load Ledge does
not exceed its maximum load Lmax, and the task’s priority priority i j exceeds a preset threshold θ, then
the task is offloaded to the edge node:

xi j =
⎧⎪⎪⎨⎪⎪⎩

1, if Dedge, i j < Dlocal, i j and Ledge + Ttask, i j
Cedge

≤ Lmax and priority i j > θ
0, otherwise

(26)

4. Updating Edge Node Load:

Ledge ← Ledge +
Ttask, i j

Cedge
if xi j = 1 (27)

5822 Comput Mater Contin. 2025;83(3)

5. Dynamically Adjusting Load Threshold: Adjust the load threshold Lmax(t) based on the current edge
node load and a load ratio coefficient γ:

Lmax(t) = γ ⋅ Cedge (28)

Through the above design and optimization, DPSA can dynamically adjust task offloading decisions
based on the task’s latency tolerance, computational complexity, and network conditions. This enables a
low-latency and low-load offloading strategy for encrypted DNS traffic identification tasks, meeting the
requirements for real-time performance and stability.

5.3 Edge-Endpoint Collaborative Real-Time Encrypted DNS Identification Strategy
After implementing the edge offloading strategy, the feature extraction process for tasks can be

divided into two parts: terminal devices are responsible for extracting privacy-sensitive features, while edge
nodes handle non-sensitive intermediate features. Through this collaborative mechanism, sensitive data are
retained on terminal devices to prevent leakage, while low-privacy-risk features are uploaded to edge nodes
for further processing.

ftotal = flocal + fedge (29)

where flocal represents the local sensitive features extracted by terminal devices, and fedge represents the non-
sensitive intermediate features extracted and uploaded to edge nodes by terminal devices. Terminal devices
use the DPSA offloading strategy to offload fedge to edge nodes. Edge nodes employ Principal Component
Analysis (PCA) to process the uploaded features, reducing redundancy and enhancing feature representation
capabilities. PCA is applied to the feature set received from terminal devices in order to identify the most
informative dimensions and discard those that contribute little to the model’s predictive power:

fenhance = PCA(fedge) (30)

Terminal devices receive the processed results fenhance from edge nodes and combine them with locally
extracted sensitive features flocal for model inference:

ffinal = fenhance ⊕ flocal (31)

In the edge computing architecture, model inference tasks are divided into two parts: the first k layers are
processed by terminal devices, and the subsequent layers are handled by edge nodes. This effectively reduces
the computational burden on terminal devices while fully leveraging the computational capabilities of edge
nodes. The specific hierarchical processing procedure is as follows: Edge nodes first perform convolutional
computations on the input features for the first k layers, obtaining intermediate results h(k)

edge. The output
of each layer undergoes a nonlinear transformation through the activation function σ(⋅). The computation
formulas for the first k layers are:

h(k)
local = σ (W(k)

local ∗ ffinal + b(k)
local) (32)

where W(k)
local and b(k)

local are the convolutional kernels and biases of the k-th layer, ∗ denotes the convolution
operation, and σ is the ReLU activation function.

After processing the first k layers, terminal devices upload the intermediate results h(k)
edge to edge

nodes and continue processing the remaining L − k layers. The terminal devices combine the intermediate

Comput Mater Contin. 2025;83(3) 5823

results returned by edge nodes with their local features to perform inference in the subsequent layers. The
computation formulas for the remaining layers are as follows:

h(k+1)
edge = σ (W(k+1)

edge ∗ h(k)
local + b(k+1)

edge) my = softmax (Woutput ∗ hfinal + boutput) (33)

where Woutput and boutput are the weights and biases of the output layer, and softmax(⋅) denotes the softmax
function. The output y represents the classification label for encrypted DNS traffic.

Under different load conditions, the effect of edge unloading strategy will vary. When the load is light,
tasks are evenly distributed, computing resources of terminal devices and edge nodes are fully utilized, and
edge nodes can quickly respond to tasks, improving system delay performance. However, when the load
is high, fluctuation in network bandwidth and a shortage of edge node computing resources can cause an
increased delay in uninstallation tasks. In this case, DPSA adjusts the task uninstallation decision to optimize
the network status and load of the node, avoid the overload of the edge nodes, and improve system stability.
At the same time, the separation strategy of sensitive and nonsensitive data still plays an important role in
the case of high load. Terminal devices process simple local feature extraction, and complex non-sensitive
features are unloaded to edge nodes for processing, reducing the burden on terminal devices and improving
the overall system processing efficiency.

By combining the Dynamic Priority Edge Offloading Algorithm with a collaborative edge-end phased
identification strategy, this chapter effectively optimizes task offloading decisions, reduces the computational
burden on terminal devices, and improves overall system latency. Additionally, the collaborative privacy
protection mechanism ensures the efficiency and security of encrypted DNS traffic identification, providing
reliable technical support for real-time traffic analysis and security protection.

6 Simulation

6.1 Dataset and Simulation Environment
The DNS traffic data set published by the Canadian Internet Registration Authority (CIRA), CIRA-CIC-

DohBRW-2020, was used as the basis of the experiment. The dataset comprises 269,643 DoH traffic samples
and 897,493 non-DoH traffic samples. Among the DoH traffic, 18,807 samples are benign DoH traffic, and
249,836 samples are malicious DoH traffic. The original dataset contains 34 feature dimensions, primarily
including source IP, destination IP, port numbers, packet sizes.

In the data preprocessing phase, we divide the data set into a training set and a test set. Specifically, the
training set contains about 200,000 data samples, while the test set contains 50,000 data samples. Considering
that the number of samples of malicious DoH traffic in the data set is much larger than that of benign
DoH traffic, we adopt oversampling to deal with class imbalance in the training process. The over-sampling
strategy increases the number of samples of benign DoH traffic, which improves the model’s ability to identify
minority classes.

It should be noted that the CIRA-CIC-DoHBrw-2020 dataset is derived from encrypted DNS traffic
in real network environments and is mainly used to study the detection of DoH traffic, but because its
samples are mainly from specific network environments and attack modes, it may not fully represent all
possible encrypted DNS traffic scenarios. Therefore, in practical applications, the results of this dataset may
be somewhat limited, and future studies can further verify the effectiveness of our method by extending more
diverse traffic scenarios and attack modes.

The experimental environment is based on Python 3.8 programming language and leverages the
TensorFlow 2.0 deep learning framework for model training and inference. During the data preprocessing
stage, the Pandas library is used for data cleaning and feature selection, while Matplotlib and Seaborn

5824 Comput Mater Contin. 2025;83(3)

libraries are employed for result visualization and model performance evaluation. The FedRA federated
learning algorithm, based on the Medoid aggregation strategy, is combined with TCN for feature learning.
The model parameters are configured as follows: the number of TCN convolutional kernels is set to 128, the
convolutional kernel size is 3, the number of residual layers is 2, the number of stacked residual layers per
layer is 4, and the dropout rate is set to 0.2. As a counterpart to the FedAvg aggregation algorithm, FedRA
utilizes the Medoid strategy to select the most representative local model updates, enhancing the robustness
and accuracy of the global model.

6.2 Experimental Comparison
To comprehensively evaluate the performance of the proposed Privacy-Preserving Real-Time Encrypted

DNS Identification Framework, this section conducts several comparative experiments covering model
identification effectiveness, federated learning training modes, and recognition speed under edge comput-
ing assistance.

The experiments compare FedRA-TCN with several other encrypted DNS identification algorithms,
including FedRA-LSTM, Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM).
Notably, FedRA-LSTM differs from the proposed algorithm in that it employs Long Short-Term Memory
(LSTM) networks instead of TCN within the federated learning framework. The evaluation metrics for each
algorithm include Accuracy, Precision, Recall, F1-Score, ROC-AUC, and PR-AUC.

Fig. 3 presents the confusion matrices for different algorithms, including FedRA-TCN, FedRA-LSTM,
SVM, and XGBoost, in the task of classifying DoH and non-DoH traffic. The confusion matrix highlights
the True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) for each
algorithm. FedRA-TCN shows the highest TP, meaning it accurately identifies the most DoH traffic, and the
lowest FN, indicating it misclassifies the fewest DoH packets as non-DoH. This demonstrates that FedRA-
TCN outperforms other models in recognizing DoH traffic with high accuracy and strong differentiation
capability. In contrast, SVM and XGBoost have fewer TP and TN, reflecting their limited ability to classify
encrypted traffic. These traditional machine learning models lack the deep feature learning capability needed
for effective classification of encrypted DNS traffic, resulting in lower performance compared to deep
learning-based models like FedRA-TCN.

From the metrics shown in Fig. 4, FedRA-TCN consistently outperforms all other algorithms across key
evaluation metrics. It achieves the highest accuracy (93.13%), precision (93.96%), recall (93.26%), F1-score
(93.61%), ROC-AUC (93.72%), and PR-AUC (93.57%), highlighting its superior ability to correctly identify
DoH and non-DoH traffic with a well-balanced trade-off between precision and recall. FedRA-LSTM follows
closely in performance, with strong scores in all metrics, though slightly behind FedRA-TCN in accuracy
and other key indicators. This indicates that FedRA-TCN is the most reliable model in terms of classification
accuracy, minimizing both false positives and false negatives.

In comparison, traditional models like SVM and XGBoost demonstrate lower performance across all
metrics, with accuracy scores of 91.09% and 91.01%, respectively. Their precision and recall are also lower
than those of the deep learning models, showing their struggle to effectively distinguish between DoH and
non-DoH traffic. These models are limited by their inability to capture the complex patterns in encrypted
traffic, resulting in higher misclassification rates and less reliable performance overall. Therefore, FedRA-
TCN emerges as the most robust solution for encrypted DNS traffic classification, with FedRA-LSTM also
showing strong but slightly less competitive results.

Additionally, to validate the acceleration effect of edge computing on federated learning, this paper
designs a FedRA cloud-edge-end collaborative learning mode and compares it with traditional cloud-edge

Comput Mater Contin. 2025;83(3) 5825

federated learning. The simulation configuration for cloud-edge federated learning is consistent with the
parameters of FedRA’s cloud and terminal layers. The number of training rounds R is set to 50.

Figure 3: Confusion matrices of different algorithms for DoH and non-DoH traffic classification tasks, including the
number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN)

Figure 4: Performance evaluation metrics of different algorithms, including accuracy, precision, recall, and F1-score

In Fig. 5, the overall latency of the cloud-edge-terminal collaborative training mode is 183 s, compared
to 247 s for the cloud-terminal training mode, reducing latency by 64 s. This demonstrates that introducing
the terminal layer for collaborative training significantly enhances overall training efficiency. In terms of
communication latency, the cloud-edge-end mode has a communication latency of 77 s, much lower than the

5826 Comput Mater Contin. 2025;83(3)

cloud-edge mode’s 151 s, reducing latency by 74 s. This is primarily due to terminal devices only needing to
upload local model updates rather than raw data or complete model parameters, reducing data transmission
volume and effectively alleviating network bandwidth pressure, especially in bandwidth-constrained envi-
ronments, thereby significantly improving communication efficiency. Although the cloud-edge-end mode’s
computation latency is slightly higher at 113 s compared to 104 s for the cloud-edge mode, this increase
is acceptable because the terminal devices undertake more computational tasks, and the overall latency
reduction compensates for this increment.

Figure 5: Training time comparison

Furthermore, to further evaluate the acceleration effect of edge computing in real-time encrypted DNS
traffic identification, this experiment compares the latency of edge computing-assisted recognition with
pure local recognition under different load conditions. The evaluation metric is recognition latency (unit:
milliseconds), i.e., the time from receiving an encrypted DNS packet to completing classification.

In Fig. 6, latency comparison between edge computing-assisted recognition and pure local recognition
under varying CPU load conditions. When CPU load is below 44%, local recognition latency is lower than
edge computing-assisted recognition, indicating that edge offloading strategies are unnecessary. However, as
terminal load increases (higher CPU utilization), the latency growth of edge computing-assisted recognition
is minimal, whereas pure local recognition latency increases significantly. In high-load scenarios, edge
computing-assisted encrypted DNS recognition significantly outperforms local recognition in terms of
latency, demonstrating that edge offloading effectively reduces recognition latency on terminal devices and
enhances the overall system’s real-time performance.

Comput Mater Contin. 2025;83(3) 5827

Figure 6: Latency comparison

7 Conclusion
This paper proposes a Privacy-Preserving Real-Time Encrypted DNS Identification Framework that

significantly improves the accuracy and efficiency of encrypted DNS traffic identification through multi-
layer collaboration among terminal, edge, and cloud layers. By integrating federated learning and differential
privacy technologies, the framework effectively handles encrypted DNS traffic while avoiding the privacy
leakage issues inherent in traditional methods. Simulation results demonstrate that the proposed FedRA-
TCN model outperforms traditional algorithms in multiple performance metrics, and the intelligent
offloading strategy significantly enhances the real-time identification capability of encrypted DNS traffic.
Additionally, the application of edge computing effectively reduces system latency and improves model
update efficiency, providing a more efficient and flexible solution for encrypted DNS traffic monitoring.

Acknowledgement: Not applicable.

Funding Statement: This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

Author Contributions: Zhipeng Qin and Hanbing Yan conceived and designed the research. Biyang Zhang and Peng
Wang performed the experiments and analyzed the data. Yitao Li contributed to writing and revising the paper. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets generated and/or analyzed during the current study are not publicly
available due to personal privacy reasons but are available from the corresponding author on reasonable request.

Ethics Approval: This study complies with the ethical standards of the institution and the National Research Council.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

5828 Comput Mater Contin. 2025;83(3)

References
1. Csikor L, Singh H, Kang MS, Divakaran DM. Privacy of DNS-over-HTTPS: requiem for a dream?. In: 2021 IEEE

European Symposium on Security and Privacy (EuroS&P); 2021; IEEE. p. 252–71.
2. Siby S, Juarez M, Diaz C, Vallina-Rodriguez N, Troncoso C. Encrypted DNS–> privacy? A traffic analysis

perspective. arXiv:1906.09682. 2019.
3. Kambourakis G, Karopoulos G. DNS: the good, the bad and the moot. Comput Fraud Secur. 2022;2022(5):2–20.
4. Hoffman PE. DNS security extensions (DNSSEC). RFC 9364. 2023 [cited 2025 Feb 10]. Available from: https://

docs.microsoft.com/zh-cn/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee683904(v=
ws.10).

5. Lyu M, Gharakheili HH, Sivaraman V. A survey on DNS encryption: current development, malware misuse, and
inference techniques. ACM Comput Surv. 2022;55(8):1–28.

6. Ding S, Zhang D, Ge J, Yuan X, Du X. Encrypt DNS traffic: automated feature learning method for detecting
DNS tunnels. In: 2021 IEEE International Conference on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom); 2021; IEEE. p. 352–9.

7. MontazeriShatoori M, Davidson L, Kaur G, Lashkari AH. Detection of doh tunnels using time-series classi-
fication of encrypted traffic. In: 2020 IEEE International Conference on Dependable, Autonomic and Secure
Computing, International Conference on Pervasive Intelligence and Computing, International Conference
on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech); 2020; IEEE. p. 63–70.

8. Singh SK, Roy PK. Detecting malicious dns over https traffic using machine learning. In: 2020 International
Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT); 2020; IEEE.
p. 1–6.

9. Alzighaibi AR. Detection of DoH traffic tunnels using deep learning for encrypted traffic classification. Computers.
2023;12(3):47. doi:10.3390/computers12030047.

10. Sharma M, Tomar A, Hazra A. Edge computing for Industry 5.0: Fundamental, applications and research
challenges. IEEE Internet Things J. 2024;11(11):19070–93

11. Nguyen DC, Ding M, Pathirana PN, Seneviratne A, Li J, Poor HV. Federated learning for internet of things: a
comprehensive survey. IEEE Commun Surv Tutor. 2021;23(3):1622–58. doi:10.1109/COMST.2021.3075439.

12. Zhao X, Huang G, Jiang J, Gao L, Li M. Research on lightweight anomaly detection of multimedia traffic in edge
computing. Comput Secur. 2021;111(2):102463. doi:10.1016/j.cose.2021.102463.

13. Wan S, Ding S, Chen C. Edge computing enabled video segmentation for real-time traffic monitoring in internet
of vehicles. Pattern Recognit. 2022;121(11):108146. doi:10.1016/j.patcog.2021.108146.

14. Kim K, Lee JH, Lim HK, Oh SW, Han YH. Deep RNN-based network traffic classification scheme in edge
computing system. Comput Sci Inf Syst. 2022;19(1):165–84. doi:10.2298/CSIS200424038K.

15. Song X, Guo Y, Li N, Zhang L. Online traffic flow prediction for edge computing-enhanced autonomous and
connected vehicles. IEEE Trans Vehicular Technol. 2021;70(3):2101–11. doi:10.1109/TVT.2021.3057109.

16. Modupe OT, Otitoola AA, Oladapo OJ, Abiona OO, Oyeniran OC, Adewusi AO, et al. Reviewing the trans-
formational impact of edge computing on real-time data processing and analytics. Comput Sci IT Res J.
2024;5(3):603–702.

17. Chen J, Yan H, Liu Z, Zhang M, Xiong H, Yu S. When federated learning meets privacy-preserving computation.
ACM Comput Surv. 2024;56(12):1–36. doi:10.1145/3679013.

18. Wen J, Zhang Z, Lan Y, Cui Z, Cai J, Zhang W. A survey on federated learning: challenges and applications. Int J
Mach Learn Cybern. 2023;14(2):513–35. doi:10.1007/s13042-022-01647-y.

19. Huang K. Federated learning for network traffic analysis. Italy: Politecnico di Torino; 2023.
20. Mateus J, Zodi GAL, Bagula A. Federated learning-based solution for DDoS detection in SDN. In: 2024

International Conference on Computing, Networking and Communications (ICNC); 2024; IEEE. p. 875–80.
21. Doriguzzi-Corin R, Siracusa D. FLAD: adaptive federated learning for DDoS attack detection. Comput Secur.

2024;137(4):103597. doi:10.1016/j.cose.2023.103597.

https://docs.microsoft.com/zh-cn/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee683904(v=ws.10)
https://docs.microsoft.com/zh-cn/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee683904(v=ws.10)
https://docs.microsoft.com/zh-cn/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/ee683904(v=ws.10)
https://doi.org/10.3390/computers12030047
https://doi.org/10.1109/COMST.2021.3075439
https://doi.org/10.1016/j.cose.2021.102463
https://doi.org/10.1016/j.patcog.2021.108146
https://doi.org/10.2298/CSIS200424038K
https://doi.org/10.1109/TVT.2021.3057109
https://doi.org/10.1145/3679013
https://doi.org/10.1007/s13042-022-01647-y
https://doi.org/10.1016/j.cose.2023.103597

Comput Mater Contin. 2025;83(3) 5829

22. de Caldas Filho FL, Soares SCM, Oroski E, de Oliveira Albuquerque R, da Mata RZA, de Mendonça FLL, et al.
Botnet detection and mitigation model for IoT networks using federated learning. Sensors. 2023;23(14):6305.
doi:10.3390/s23146305.

23. He Z, Yin J, Wang Y, Gui G, Adebisi B, Ohtsuki T, et al. Edge device identification based on federated learning
and network traffic feature engineering. IEEE Trans Cogn Commun Netw. 2021;8(4):1898–909. doi:10.1109/TCCN.
2021.3101239.

24. Liu L, Zhang J, Song S, Letaief KB. Client-edge-cloud hierarchical federated learning. In: ICC 2020–2020 IEEE
International Conference on Communications (ICC); 2020; IEEE. p. 1–6.

25. Jarwan A, Ibnkahla M. Edge-based federated deep reinforcement learning for IoT traffic management. IEEE
Internet Things J. 2022;10(5):3799–3813. doi:10.1109/JIOT.2022.3174469.

26. Liu Y, James J, Kang J, Niyato D, Zhang S. Privacy-preserving traffic flow prediction: a federated learning approach.
IEEE Internet Things J. 2020;7(8):7751–63. doi:10.1109/JIOT.2020.2991401.

27. Wang Z, Li Z, Fu M, Ye Y, Wang P. Network traffic classification based on federated semi-supervised learning. J
Syst Archit. 2024;149(2):103091. doi:10.1016/j.sysarc.2024.103091.

28. Fotse YSN, Tchendji VK, Velempini M. Federated learning based DDoS attacks detection in large scale software-
defined network. IEEE Trans Comput. 2024;74(1):101–15. doi:10.1109/TC.2024.3474180.

29. Lai WP, Wang JC. Editorial for the special issue on learning, security, AIoT for emerging communica-
tion/networking systems. APSIPA Trans Signal Inf Process. 2023;12(2):e13. doi:10.1561/116.00000102.

https://doi.org/10.3390/s23146305
https://doi.org/10.1109/TCCN.2021.3101239
https://doi.org/10.1109/TCCN.2021.3101239
https://doi.org/10.1109/JIOT.2022.3174469
https://doi.org/10.1109/JIOT.2020.2991401
https://doi.org/10.1016/j.sysarc.2024.103091
https://doi.org/10.1109/TC.2024.3474180
https://doi.org/10.1561/116.00000102

	Real-Time Identification Technology for Encrypted DNS Traffic with Privacy Protection
	1 Introduction
	2 Related Technologies and Research
	3 Privacy-Preserving Real-Time Encrypted DNS Identification Framework
	4 Privacy-Preserving FedRA Hierarchical Federated Learning Training Mechanism
	5 Encrypted DNS Identification Technology Based on Dynamic Priority Edge Offloading
	6 Simulation
	7 Conclusion
	References

