
echT PressScience

Doi:10.32604/cmc.2025.063295

ARTICLE

Through-Wall Multihuman Activity Recognition Based on MIMO Radar

Changlong Wang1 , Jiawei Jiang1 , Chong Han1,2,*, Hengyi Ren3 , Lijuan Sun1,2 and Jian Guo1,2

1College of Computer, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
2Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and
Telecommunications, Nanjing, 210023, China
3College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210000, China
*Corresponding Author: Chong Han. Email: hc@njupt.edu.cn
Received: 10 January 2025; Accepted: 27 February 2025; Published: 19 May 2025

ABSTRACT: Existing through-wall human activity recognition methods often rely on Doppler information or
reflective signal characteristics of the human body. However, static individuals, lacking prominent motion features,
do not generate Doppler information. Moreover, radar signals experience significant attenuation due to absorption
and scattering effects as they penetrate walls, limiting recognition performance. To address these challenges, this study
proposes a novel through-wall human activity recognition method based on MIMO radar. Utilizing a MIMO radar
operating at 1–2 GHz, we capture activity data of individuals through walls and process it into range-angle maps to
represent activity features. To tackle the issue of minimal variation in reflection areas caused by static individuals, a
multi-scale activity feature extraction module is designed, capable of extracting effective features from radar signals
across multiple scales. Simultaneously, a temporal attention mechanism is employed to extract keyframe information
from sequential signals, focusing on critical moments of activity. Furthermore, this study introduces an activity
recognition network based on a Deformable Transformer, which efficiently extracts both global and local features from
radar signals, delivering precise human posture and activity sequences. In experimental scenarios involving 24 cm-thick
brick walls, the proposed method achieves an impressive 97.1% accuracy in activity recognition classification.
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1 Introduction
In recent years, with the rapid advancement of technology, Human Activity Recognition (HAR)

[1–3] has found extensive applications in smart homes [4,5], health monitoring [6,7], human-computer
interaction [8], and security surveillance [9]. However, traditional activity recognition methods relying
on visual sensors are often susceptible to external environmental factors such as lighting and weather,
making it challenging to maintain stable performance in complex and dynamic real-world scenarios. In
addition, the data collected by visual sensors frequently involve personal privacy, posing significant risks
of privacy breaches. These limitations have, to some extent, constrained the breadth and depth of their
practical applications.

Compared to visual sensors, certain radio frequency sensors, such as WiFi [10,11] and radar [12], can
achieve activity recognition by analyzing received reflected echoes. However, WiFi devices suffer from
relatively low localization accuracy and are highly susceptible to environmental changes. While millimeter-
wave radar offers higher localization precision and stronger resistance to environmental interference, its
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high-frequency characteristics result in relatively weaker penetration capability. In contrast, multiple-input-
multiple-output (MIMO) radar achieves localization accuracy comparable to millimeter-wave radar while
offering superior penetration performance, making it better suited for activity recognition in complex envi-
ronments. WiFi thermal imaging offers good real-time performance, typically completing data acquisition
and processing in a relatively short time. Since it does not require additional sensors, the data collection
process is relatively simple, and the processing speed is fast, making it suitable for scenarios requiring quick
responses. However, WiFi has a lower resolution and is more suited for detecting the general position and
basic posture of humans. In contrast, MIMO radar technology usually requires more complex algorithms
for signal processing and data analysis to generate thermal maps and behavioral analysis results, resulting
in longer processing times. Nevertheless, MIMO radar can effectively identify target behaviors in complex
environments, such as obstructed spaces or between different rooms, making it particularly suitable for
through-wall detection and micro-motion behavior detection.

In current mainstream radar-based human activity recognition methods [13,14], most rely on extracting
micro-Doppler features and inputting these features into neural network models to predict target activity.
However, this approach has certain limitations, primarily in its inability to associate predicted activities
with the specific locations of individuals in the scene. Even with the use of Range-Doppler images [15], it
remains difficult to effectively separate different targets when multiple individuals are located at the same
distance. Furthermore, when recognizing activities of multiple targets, it typically requires separating the
reflection areas of the targets first, and then performing individual activity recognition for each target, which
inadvertently increases both the time cost and complexity of the recognition process. More challenging still,
for stationary individuals, traditional methods struggle to detect and recognize activities, as they fail to
produce significant changes in radar Doppler signals.

Through-wall human activity recognition technology holds significant practical value, particularly in
search and rescue and security monitoring. By penetrating walls or obstacles to monitor human activities
in real time, it not only enhances rescue efficiency in complex environments but also provides precise
behavioral alerts for security protection. In disaster rescue operations, this technology enables the assessment
of trapped individuals’ conditions without direct contact, greatly improving the timeliness and accuracy of
rescue efforts. In radar-based human activity recognition tasks, especially in through-wall scenarios, the
radar signal reflections triggered by human movements are often weak and complex due to the obstruction
caused by walls and the surrounding environment. In most cases, these signal variations are not sufficiently
prominent, making traditional methods that rely on manual signal analysis and feature extraction ineffective
in handling dynamic scenes and actions, thus failing to achieve satisfactory recognition results. However, the
rapid development of deep learning technologies [16–19] in recent years has provided a new breakthrough for
radar signal processing. Deep learning [20–22], with its powerful feature extraction capabilities, can capture
complex contextual information from radar heatmaps, enabling automatic recognition and classification of
various activities. However, recognizing subtle motion changes and stationary activities remains a significant
challenge due to the extremely weak variations in the radar signal they induce. Therefore, it is essential to
further optimize network structures and design feature extraction strategies specifically tailored for radar
heatmaps to enhance the ability to distinguish micro-movements and stationary activities.

This study introduces a through-wall multihuman activity recognition system based on MIMO radar,
named TW-MHAR. The system employs a MIMO frequency-modulated continuous wave radar operating
in the 1–2 GHz band to capture reflection signals of human activities. This frequency band offers excellent
penetration capabilities, allowing the radar to traverse common obstacles such as wood and bricks and
generate high-precision radar reflection heatmaps, providing reliable data support for activity recognition
in through-wall scenarios. To address the challenge of weak signals caused by certain activities, a novel
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radar-based human activity recognition network, RHACNet, is proposed. RHACNet begins by extracting
spatial features from each sequential radar signal to fully capture multi-temporal, multi-scale feature
representations, effectively capturing the intricate details of complex activities. Subsequently, the network
employs a temporal attention mechanism to integrate features across the temporal dimension, focusing on
dynamic changes in key temporal features to enhance sensitivity to behavioral pattern variations. Moreover,
an end-to-end multihuman activity classification module is incorporated, strengthening the system’s ability
to handle complex scenarios and enabling efficient classification of diverse human activities.

The main contributions of this paper are as follows:

• We propose TW-MHAR, a through-wall multihuman activity recognition system based on MIMO radar.
• We introduce RHACNet, designed to identify and distinguish signal variations of diverse micro-

movements and even stationary activities across multiple temporal and spatial scales.
• We conduct comprehensive experiments on a multihuman activity recognition dataset collected in

through-wall scenarios, demonstrating the effectiveness and advantages of the proposed method.

The remainder of this paper is organized as follows: Section 2 provides a review of related studies
on human activity recognition using various sensors. Section 3 details the structure of the radar device
and the signal processing methods employed in this study. Section 4 proposes the architecture of a real-
time through-wall multihuman activity recognition system based on MIMO radar. Section 5 describes the
experimental setups and the dataset used. Section 6 presents the experimental results and performance
analysis. Finally, Section 7 concludes the paper with a summary and future outlook.

2 Related Work
This section will explore the application methods of various wireless sensors in activity recognition,

including WiFi, RFID, and radar.
WiFi-based human activity recognition methods primarily infer human activities by analyzing WiFi

Channel State Information (CSI) or Received Signal Strength Indicator (RSSI). Luo et al. [23] introduced the
Transformer model into WiFi sensing applications and designed five HAR Vision Transformer architectures
based on WiFi CSI. Jiao et al. [24] proposed a novel framework based on Gramian Angular Fields (GAFs),
incorporating two modules: Gramian Angular Summation Fields (GASF) and Gramian Angular Difference
Fields (GADF). This framework effectively extracts information from CSI and converts it into CSI-GAF
images, followed by convolutional neural networks for activity prediction. Sheng et al. [25] presented a
Cross-Domain Sensing Framework comprising a Nearest Neighbor-based Domain Selector (NNDS) and
a Fine-to-Coarse Granular Transformer Network (FCGTN). NNDS evaluates the similarity between the
source and target domains by measuring local and global feature distributions. Experiments demonstrate
that this method achieves an activity recognition rate of 89.8% in cross-domain scenarios. Yadav et al. [26]
proposed a universal framework for human activity recognition based on CSI. This framework utilizes
two hybrid strategies for data augmentation, which are then fed into an enhanced InceptionTime network
architecture. The approach achieved accuracies of 98.20%, 98%, and 95.42% on the ARIL, StanWiFi, and
SignFi datasets, respectively.

RFID-based human activity recognition methods primarily infer behavioral patterns by analyzing the
dynamic variations of RFID tags associated with the human body. Zhao et al. [27] proposed a non-wearable
RFID-based human motion recognition approach that integrates phase and RSSI data to enhance data
diversity. They developed a combined processing method to effectively eliminate device-induced thermal
noise and reduce environmental interference, while employing a spatio-temporal graph convolutional neural
network to construct an efficient classification model for human motion signals, achieving an overall
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recognition accuracy of 92.8%. Qiu et al. [28] introduced LD-Recognition, an RFID-based classroom motion
recognition system. This system utilizes a multi-channel attention graph convolutional neural network to
deeply analyze motion-related phase and signal strength, achieving a recognition accuracy as high as 96.9%.

Radar-based human activity recognition methods identify activities by transmitting signals and ana-
lyzing echoes reflected from the human body. Song et al. [29] proposed a framework for reconstructing
human poses and classifying activities using 4D radar imaging. This framework employs ultra-wideband
MIMO radar as the detection sensor to capture 4D imaging data, including range, azimuth, elevation, and
time. A 3D convolutional neural network-based pose reconstruction model is used to generate 3D human
poses, while a dual-branch network leveraging multi-frame 3D poses and 4D radar images classifies activities,
achieving a recognition accuracy of 94.75%. Froehlich et al. [30] addressed the challenge of measuring lateral
velocity, which is unattainable with a single radar, by employing a radar network comprising two spatially
orthogonal millimeter-wave MIMO radars. They designed a radar activity recognition network combining
CNN and LSTM for the dual radar data, achieving an average recognition rate of 74.44% across four activities.
Zhu et al. introduced a hybrid classifier combining convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) for spatiotemporal pattern extraction. They first applied 2D CNNs to radar data
to extract spatial features from spectrograms. Subsequently, bidirectional gated recurrent units (Bi-GRU)
were used to capture both long-term and short-term temporal dependencies in the feature maps generated
by 2D CNN, achieving a classification accuracy of approximately 90.8% across nine categories of human
activity. Yu et al. [31] proposed a novel non-intrusive human activity recognition system using millimeter-
wave radar. The system first converts millimeter-wave signals into point clouds and employs an improved
voxelization method to account for the spatiotemporal point clouds in the physical environment. A dual-
view convolutional neural network is then used to learn human activities from the sparse data enriched by
the radar’s rotational symmetry. The system achieved accuracies of 97.61% and 98% in fall detection and
activity classification tasks, respectively, across datasets with seven different activities.

3 Radar Architecture and Signal Processing
The radar system used in this study employs a 4-transmitter, 16-receiver antenna array MIMO radar [32]

with a center frequency of 1.5 GHz, a bandwidth of 1 GHz, and a sweep period of 0.05 s. The transmitted
signal from the i-th transmitting antenna of the radar at the k-th moment is represented as shown in (1):

sk , i(t) =
√

2Pk , i e
2 jπ fc+

π jkt2
Tp (1)

The transmitted power is denoted as Pk , i , where fc is the radar’s center frequency, k represents the chirp
rate of the linear frequency-modulated pulse, and Tp is the sweep period of the linear frequency-modulated
pulse. After penetrating the wall and reflecting off the human body, the received echo signal can be expressed
as shown in (2):

Im ,n(t) = A(t)e2 jπ Sm ,n
λ t (2)

The term A(t) represents the amplitude at time t, λ denotes the wavelength corresponding to the radar’s
center frequency, and Sm ,n represents the total path distance traveled by the chirped signal transmitted
from the m-th transmitting antenna, reflected, and received by the n-th receiving antenna. Subsequently, the
sampled signal from a transmit-receive antenna pair is combined and processed using a three-dimensional
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Fourier transform to compute the final 3D power matrix. The specific calculation is shown in (3):

p(φ, θ , γ) = ∣
M
∑
m=1

N
∑
n=1

T
∑
t=1

Im ,n(t)e j2π kr
c t e j 2π

λ s inθ(nsn cosθ+msm sind φ)∣ (3)

where variables φ, θ, and γ represent the elevation angle, azimuth angle, and range, respectively. The
parameter k denotes the chirp slope, c is the signal propagation speed, sm and sn indicate the spacing of the
transmitting and receiving antennas, respectively. These parameters are critical in determining the spatial
and temporal resolution of the radar system, as well as in constructing the accurate three-dimensional power
matrix through the signal processing pipeline.

The power matrix P encapsulates the reflection signals of all objects in the scene. To isolate human
reflection signals, a background subtraction method is employed. Specifically, multiple frames of scene
reflection signals are continuously captured and averaged to generate background data. Subsequent frames
are then subtracted from this averaged background, producing what is referred to as radar static heatmaps. To
further extract motion information of humans in the scene, a Doppler static removal method is introduced.
By calculating the Doppler velocity of spatial points across multiple frames and filtering out zero-velocity
components, the motion velocity information of the target is extracted, resulting in radar dynamic heatmaps.
Next, horizontal and vertical projections are performed on both types of radar heatmaps, generating
radar static horizontal/vertical heatmaps and radar dynamic horizontal/vertical heatmaps. This processing
approach not only significantly reduces the parameter count required for network training but also retains
critical information from the scene, facilitating efficient learning and inference by the model.

4 Methods
This paper proposes a system for through-wall multihuman activity recognition, named TW-MHAR,

with its framework illustrated in Fig. 1. The system primarily consists of a Radar Human Activity Recognition
Network (RHACNet) and a visual motion capture system. The radar and visual systems are connected to
a terminal via a synchronization interface to enable collaborative and synchronized data analysis. In the
system architecture, the radar device is positioned behind the wall to capture through-wall signals reflected
by human bodies, while the visual motion capture system is deployed within the wall to accurately record
3D human pose sequences. Each captured pose sequence is manually annotated with corresponding activity
labels, which are subsequently used as supervised training signals for the RHACNet network. RHACNet
forms the core of this system and comprises two main components: the radar feature extraction module and
the human activity decoding module. The radar feature extraction module is responsible for extracting deep
features related to human poses and activities from the spatial and temporal dimensions of sequential radar
data. By constructing multi-scale and multi-dimensional feature representations, this module effectively
mines valuable information from radar signals. The human activity decoding module takes the abstract
features output by the radar feature extraction module and decodes them into corresponding human pose
and activity sequences, enabling precise activity recognition. Through this design, TW-MHAR achieves
efficient transformation from radar signals to activity semantics while leveraging the precise pose data
provided by the visual motion capture system to supply high-quality supervision for radar network training.
The following sections will delve into the detailed designs of the radar feature extraction module and
the human activity decoding module. Micro-movements are often misclassified as noise or background
interference, especially at low resolutions. However, by integrating multi-scale features, the system can model
signals across multiple scales simultaneously, enhancing sensitivity to these subtle changes. During through-
wall detection, different sensors or radar systems may introduce variations in perspective or resolution
due to environmental and hardware differences. This makes single-scale feature extraction insufficient to
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accommodate all scenarios effectively. By leveraging multi-scale feature fusion, the model can adapt to
varying resolutions and environmental changes, improving robustness in dynamic settings.
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Figure 1: The framework of the through-wall multihuman activity recognition system. The system framework begins
by extracting features from two types of radar heatmaps through the radar feature extraction module. Subsequently, the
human activity decoding module processes these features to derive human poses and activities. The labeling component
utilizes precise annotations provided by the vision motion capture system for supervised training

4.1 Radar Feature Extraction Module
In this network, the input consists of sequential horizontal radar heatmaps Ih = {x1 , x2, . . . , xN} and

vertical radar heatmaps Iv = {y1 , y2, . . . , yN}, where N represents the length of the temporal frames of the
radar. First, we employ a Spatial Multi-scale Network (SMN) to extract multi-scale features from each frame
of the radar heatmaps. The SMN is composed of multiple 2D convolution layers, pooling layers, normal-
ization layers, and stacked residual structures, designed to extract spatial features at various scales from the
raw heatmaps. By applying SMN to each frame of the horizontal and vertical radar heatmaps, we obtain
multi-scale features denoted as fh = {{x 1′

1 , x2′
1 , . . . , xM′

1 } , {x 1′
2 , x2′

2 , . . . , xM′
2 } , . . . , {x 1′

N , x2′
N , . . . , xM′

N }} and

fv = {{y1′
1 , y2′

1 , . . . , yM′
1 } , {y1′

2 , y2′
2 , . . . , yM′

2 } , . . . , {y1′
N , y2′

N , . . . , yM′
N }} where M represents the number of

scales in feature extraction. Next, we use a Temporal Attention Network (TAN) to aggregate temporal features
from the sequential radar heatmaps. TAN employs multiple stacked feedforward neural networks to compute
temporal attention weights for each radar frame. The output of each feedforward network represents the
feature weight at the current time step, which is normalized using a softmax function to ensure consistency
in the weighted sum of features across time steps. Through this process, we perform weighted summation of
features across time steps, obtaining feature vectors representing multi-scale temporal context information,
denoted as f ′h = {{k1

1 x 1′
1 , k1

2x 1′
2 , . . . , k1

N x 1′
N} , {k2

1 x2′
1 , k2

2 x2′
2 , . . . , k2

N x2′
N} , . . . , {kM

1 xM′
1 , kM

2 xM′
2 , . . . , kM

N xM′
N }}

and f ′v = {{q1
1 y1′

1 , q1
2 y1′

2 , . . . , q1
N y1′

N} , {q2
1 y2′

1 , q2
2 y2′

2 , . . . , q2
N y2′

N} , . . . , {qM
1 yM′

1 , qM
2 yM′

2 , . . . , qM
N yM′

N }}, where
k and q denote the temporal attention weights in the horizontal and vertical radar heatmaps, respectively.
Finally, to integrate information from both radar heatmaps, we perform element-wise addition of interme-
diate features at the same scale from the horizontal and vertical heatmaps. This operation facilitates the
fusion of multi-scale spatial and temporal information from different perspectives, resulting in a richer
and more accurate representation. The final output feature f = f ′h + f ′v = {z1 , z2, . . . , zM} of the network
encapsulates comprehensive spatiotemporal contextual information for subsequent task processing. This
approach effectively extracts and integrates multi-scale spatial and temporal features from sequential radar
heatmaps, enhancing the network’s representational capacity for handling complex scenarios. By improving
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feature extraction precision and capturing variations in targets across different time steps and spatial scales,
this method significantly boosts recognition performance in challenging environments.

4.2 Human Activity Decoding Module
In traditional Transformer feature mapping methods, querying every position in the feature map leads

to extremely high computational costs, especially when dealing with high-dimensional feature maps. To
address this issue and improve efficiency, we introduce the Deformable Transformer [33], which replaces
global queries with deformable convolutions. This approach enables the attention module to focus only on
a few sampled points in the local regions of the feature map. Such localized querying significantly reduces
computational overhead while allowing the network to concentrate on key local features. For the output
features f from the Radar Feature Extraction Module, we first flatten the width and height dimensions at
each scale. For each query element q, the deformable attention module is defined as:

DAM(zq , pq , f ) =
M
∑
z=1

Wz[
L
∑
l=1

K
∑
k=1

Aml qk W ′
z f (ϕ(p1 + Δpml qk))] (4)

where pq represents the query element at the reference point q, zq denotes the feature value at point q, m refers
to the index of the multi-head attention head, l indicates the scale level of the multi-scale features, and k is the
index of the sampling point. Aml qk and Δpml qk correspond to the attention weight and sampling point offset
for the k-th sampling point of the m-th attention head at the l-th scale, respectively. Through the Deformable
Attention Module, the sampling points for the query elements are no longer fixed but dynamically adjusted
based on the offsets Δpml qk . This allows the module to focus on regions of the feature map with higher local
relevance. After processing through multiple stacked multi-head, multi-scale attention modules, the resulting
features are passed into a Feed-Forward Network (FFN) for further refinement and enhancement. In the FFN,
the features are processed through a multi-layer perceptron (MLP), ultimately outputting multiple sets of
human pose candidate sequences P ∈ Rn×p×3 and human activity sequences A ∈ Rn×(c+1), where n represents
the number of predicted candidate targets, p denotes the number of predicted keypoints, c indicates the
number of predicted activity classes. A prediction of c + 1 for an activity implies that the candidate target
corresponds to the background. This approach allows the Deformable Transformer to not only significantly
improve processing efficiency but also enhance the model’s adaptability and representational power by
dynamically adjusting its attention to relevant regions. In tasks such as human pose recognition and activity
prediction, it excels at capturing local features and dynamic variations of the targets with greater precision.

The final output of the network encompasses two tasks: pose regression and activity prediction. For
the pose regression task, we employ L1Loss to calculate the regression loss, aiming to minimize the absolute
error between the predicted and ground truth keypoint positions. For the activity prediction task, we use
cross-entropy loss to calculate the classification loss, targeting the minimization of the difference between the
predicted and ground truth activity classes. Assuming the human pose labelsP′ are and the activity labelsA′
are, the loss functions are computed as follows:

ζ = 1
K

K
∑
i=0
[−A′ logA− (1 − A)log(1 − A) + ∣p − p′∣] (5)

5 Experimental Setup
The experimental setup includes a 24 cm brick wall, with the radar positioned outside the wall and a ring

of motion capture devices placed inside to capture precise human pose and activity data. The experimental
area spans a 6 × 15 meter range behind the wall, where participants freely perform six types of activities,
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including walking, sitting, and lying down. At most, three individuals are present in the scene simultaneously.
The radar and motion capture devices are synchronized and connected to a terminal, collecting data at a rate
of 20 frames per second. A total of 1,400,000 frames of data were recorded, which were split into training
and testing sets in a 4:1 ratio. Some of the data is shown in Fig. 2.
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Figure 2: Data captured by radar and labels captured by motion capture devices in scenes with 1 to 3 people

6 Results

6.1 Performance Comparison with Existing Methods
The performance comparison results of the algorithm proposed in this paper and the existing methods

are shown in Table 1. Zhao et al. [34] proposed a method using single-frame raw IQ radar data as input,
where the model extracts features from individual frames to recognize human activities. In their experiments,
the method achieved an accuracy of 94.7%, precision of 95.0%, recall of 94.7%, and an F1 score of 94.8%.
Although it performed well in terms of precision, its limited use of temporal information in radar signals
constrained its ability to recognize subtle motions effectively. Wang et al. [35] utilized a sequence of 32
consecutive range-angle maps as input, modeling dynamic activity changes by incorporating the temporal
dimension. Their method achieved an accuracy of 96.0%, precision of 94.4%, recall of 94.9%, and an F1
score of 94.7%. Compared to Zhao et al., Wang et al.’s approach significantly improved accuracy and recall,
demonstrating better capability in modeling the temporal dynamics of activities. The method proposed in
this paper further enhances the recognition of subtle motions by comprehensively considering both temporal
and spatial information. Specifically, our approach introduces a multi-scale feature extraction strategy to
improve the model’s sensitivity to fine signal variations, excelling in recognizing micro-movements or contin-
uous actions. Additionally, by integrating attention mechanisms, our model effectively captures the temporal
continuity of signals, enhancing the robustness of activity recognition. In experiments, our method achieved
an accuracy of 97.1%, precision of 94.7%, recall of 95.9%, and an F1 score of 95.2%. Compared to existing
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methods, the proposed approach demonstrates significant advantages in accuracy and recall, highlighting
its superior adaptability in capturing subtle motions and handling complex dynamic backgrounds.

Table 1: Performance comparison with existing advanced algorithms

Methods Accuracy Precision Recall F1 score
Zhao et al. [34] 94.7% 95.0% 94.7% 94.8%
Wang et al. [35] 96.0% 94.4% 94.9% 94.7%

Ours 97.1% 94.7% 95.9% 95.2%

Fig. 3 illustrates the confusion matrix of the proposed method. Despite the attenuation of through-
wall radar signals after penetrating the wall, the vast majority of samples are correctly classified. Dynamic
activities such as “walking” and “crawling” demonstrate stronger recognition capabilities due to their
pronounced temporal and spatial variations in radar signals. In contrast, static activities like “sitting” and
“standing” exhibit slightly higher misclassification rates. However, by applying multi-scale features and
temporal attention mechanisms, the model effectively distinguishes these subtle signal characteristics. Fig. 4
presents the Principal Component Analysis (PCA) [36] visualization of various activities. This visualization
highlights the clustering of different activity classes in the feature space, demonstrating the model’s ability to
extract discriminative features for robust activity recognition. Table 2 presents the computational complexity
and runtime of RHACNet and its submodules, Spatial Multiscale Network (SMN) and Temporal Attention
Network (TAN). RHACNet, the entire network, has the highest FLOPs at 91.07 G and 38.32 M parameters,
requiring 0.13 s for execution. SMN, a submodule of RHACNet, is more efficient with 8.20 G FLOPs and 25.56
M parameters, taking only 0.03 s. TAN, another submodule, requires 30.43 G FLOPs and 6.8 M parameters
but is the most computationally efficient, with a runtime of just 0.01 s.

Figure 3: Confusion matrix of classification results for different human activities
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Figure 4: PCA visualization of different human activities

Table 2: Cost of network modules

Modules FLOPs (G) Params (M) Times (s)
RHACNet 91.07 38.32 0.13

SMN 8.20 25.56 0.03
TAN 30.43 6.8 0.01

6.2 Impact of Trainning Parameters
Fig. 5 illustrates the impact of the number of temporal frames on the final recognition accuracy. It can

be observed that the recognition rate exhibits a gradual upward trend as the number of frames increases.
When the frame count reaches 32, the recognition accuracy peaks, after which it shows a slight decline. This
phenomenon occurs because the increase in temporal frames provides richer sequential information. With
fewer frames, the dynamic features captured by the model are limited, resulting in relatively lower recognition
accuracy. As the number of frames increases, more temporal information is introduced, enhancing the
network’s ability to recognize activity patterns, and thereby improving the recognition rate. However, when
the number of temporal frames exceeds a certain threshold, the additional sequential information may
become redundant. This redundancy contributes little to further improving recognition performance and
may even lead to increased focus on irrelevant features, reducing the model’s feature extraction effectiveness.
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Figure 5: The influence of input radar time frame length on recognition rate

Fig. 6 illustrates the impact of the number of predicted candidate targets on recognition accuracy. It
can be observed that as the number of candidate targets increases, the recognition rate gradually improves.
However, once the number of candidates exceeds a certain threshold, the accuracy begins to decline slowly.
This phenomenon can be attributed to the dual effects of resolution and sparsity influenced by the number of
candidate targets. When the number of predicted candidates is small, the model lacks sufficient resolution,
causing multiple radar reflection regions to be incorrectly aggregated into the same candidate target location.
This aggregation effect significantly reduces recognition accuracy, particularly in multi-target or complex
scenarios. As the number of candidate targets increases, the model’s resolution improves, allowing more
precise separation and identification of individual target regions, thereby enhancing overall recognition
performance. However, when the number of predicted candidates exceeds a reasonable range, the model
encounters sparsity issues in practical applications. In such cases, candidate positions become overly dense
relative to the actual number of targets, leading to the allocation of substantial resources to invalid candidate
regions, ultimately hindering the model’s effectiveness.
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Figure 6: The impact of the number of prediction candidates on the recognition rate

7 Conclusion
This paper presents a through-wall human activity recognition method based on MIMO radar. By

extracting behavioral features from multi-scale radar signals and incorporating temporal attention mecha-
nisms to capture keyframes in sequential signals, the proposed method effectively identifies human activities
in through-wall environments. Leveraging the Deformable Transformer module, it efficiently extracts both
global and local features, directly outputting human pose and activity sequences. In experimental scenarios
involving a 24 cm thick brick wall, the proposed method achieves an activity recognition accuracy of
97.1%, significantly outperforming existing approaches and demonstrating its performance advantages in
complex scenarios.

Although the proposed method demonstrates outstanding performance in activity recognition tasks,
there are still areas for optimization. Future work will focus on enhancing the predictive upper limit of the
network: due to the inherent resolution limitations of radar signals, the ability to predict multiple targets
may be constrained. To address this, we plan to redesign the sampling and imaging methods of radar signals
to improve the system’s resolution for multi-target activities, thereby further increasing the predictive upper
limit of the system. Another focus is improving the recognition of static activities: for prolonged static human
activities, the lack of prominent Doppler features often causes radar reflection signals to be overwhelmed by
background noise, leading to misclassification as background information. To tackle this challenge, we aim
to design more refined feature extraction modules to enhance the network’s sensitivity to static target signals,
enabling it to accurately distinguish static human signals from background noise.
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