
echT PressScience

Doi:10.32604/cmc.2025.063274

ARTICLE

Efficient Searchable Encryption Scheme Supporting Fuzzy Multi-Keyword
Ranking Search on Blockchain

Hongliang Tian, Zhong Fan*, Zhiyang Ruan and Aomen Zhao

College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
*Corresponding Author: Zhong Fan. Email: 2202300381@neepu.edu.cn
Received: 10 January 2025; Accepted: 05 March 2025; Published: 19 May 2025

ABSTRACT: With the continuous growth of exponential data in IoT, it is usually chosen to outsource data to the
cloud server. However, cloud servers are usually provided by third parties, and there is a risk of privacy leakage.
Encrypting data can ensure its security, but at the same time, it loses the retrieval function of IoT data. Searchable
Encryption (SE) can achieve direct retrieval based on ciphertext data. The traditional searchable encryption scheme has
the problems of imperfect function, low retrieval efficiency, inaccurate retrieval results, and centralized cloud servers
being vulnerable and untrustworthy. This paper proposes an Efficient searchable encryption scheme supporting fuzzy
multi-keyword ranking search on the blockchain. The blockchain and IPFS are used to store the index and encrypted
files in a distributed manner respectively. The tamper resistance of the distributed ledger ensures the authenticity of the
data. The data retrieval work is performed by the smart contract to ensure the reliability of the data retrieval. The Local
Sensitive Hash (LSH) function is combined with the Bloom Filter (BF) to realize the fuzzy multi-keyword retrieval
function. In addition, to measure the correlation between keywords and files, a new weighted statistical algorithm
combining Regional Weight Score (RWS) and Term Frequency–Inverse Document Frequency (TF-IDF) is proposed to
rank the search results. The balanced binary tree is introduced to establish the index structure, and the index binary
tree traversal strategy suitable for this scheme is constructed to optimize the index structure and improve the retrieval
efficiency. The experimental results show that the scheme is safe and effective in practical applications.

KEYWORDS: Blockchain; searchable encryption; TF-IDF; fuzzy multi-keyword search; index tree

1 Introduction
As the volume of data increases, data owners are starting to host their data with cloud service providers.

Considering the sensitivity and privacy of the data, these data are usually encrypted before transmission to
the cloud. The existing encryption mechanism makes the data in the ciphertext state unable to be retrieved
directly in plaintext, thus losing the data retrieval function. The traditional approach is to first download
all the encrypted data on the server to the local area, then use the key to decrypt all these data into
plaintext format, and finally perform the retrieval operation. This approach may trigger overburdening of the
server while consuming a large amount of local computational resources and inefficient retrieval. Searchable
encryption technology can achieve effective retrieval based on ciphertext data. However, most of the existing
searchable encryption schemes are based on cloud servers, which have the problem of single point of failure
of centralized devices and are not credible. In addition, the existing schemes only return files containing
search keywords, and cannot sort the returned files according to the importance of keywords in the file. Most
of them only support single keyword or precise search, which has defects in function.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063274
https://www.techscience.com/doi/10.32604/cmc.2025.063274
mailto:2202300381@neepu.edu.cn

5200 Comput Mater Contin. 2025;83(3)

Aiming at these problems, a ciphertext retrieval scheme supporting fuzzy multi-keyword sorted search
on blockchain is proposed. The scheme uses blockchain and IPFS to store index and encrypted files in a
distributed manner, respectively. The distributed ledger of blockchain is tamper-proof, which ensures the
authenticity of the stored index data. The smart contract based on blockchain is responsible for performing
data retrieval. Due to the decentralization and non-tampering characteristics of blockchain, the smart
contract can avoid the problems of dishonest search that may occur in traditional centralized servers when
performing retrieval operations, thus ensuring the reliability of data retrieval. Implement fuzzy multi-
keyword search in ciphertext state using LSH and BF. A weighted statistical algorithm combining TF-IDF
and RWS is proposed to calculate the similarity between files and trapdoors to realize the ranking of query
results, and a balanced binary tree is introduced to construct an index structure to improve the efficiency of
ciphertext retrieval. The contributions of this article are as follows:

(1) Blockchain technology is introduced to store the index, smart contracts are utilized to carry out data
search work, and ciphertext files are uploaded to IPFS for off-chain storage. It eliminates the problems
of single point of failure and dishonest search that exist in traditional cloud servers and ensures the
security of data and the reliability of data search.

(2) Aiming at the functional limitations and low-performance problems of fuzzy multi-keyword search-
able encryption schemes on the blockchain, the keywords are mapped into vectors by using the
pairwise encoding function, and the fuzzy multi-keyword retrieval is realized with the help of locally
sensitive hash and Bloom filter techniques. At the same time, the index vectors and query vectors are
encrypted using the secure k-nearest neighbor algorithm. The relevance score is accurately calculated
while avoiding privacy leakage.

(3) Considering the importance of keywords in different regions of the file, this paper proposes a Region
Weight Score weighting algorithm. The correlation between the two is measured by the position of the
keyword in the file. Considering both word frequency and inverse document frequency, a weighted
statistical algorithm combining TF-IDF and weight region score is proposed to calculate the similarity
between the file and the trapdoor, so as to sort the query results. Improve the ranking quality and
personalized experience of search results.

(4) A balanced binary tree index structure was adopted, and a binary tree traversal strategy suitable for
this scheme was designed to accurately return top − k files without traversing all index vectors during
the search, further improving retrieval efficiency and reducing storage space and communication over-
head.

2 Related Work
In recent years, Song et al. [1] first introduced symmetric searchable encryption (SSE). By symmetrically

encrypting the keywords and uploading them to the cloud server for storage. However, SSE needs to perform
global traversal operations when performing search, which has the problems of low efficiency and large
computational overhead. Wu et al. [2] proposed a public key authenticated encryption and fast keyword
search scheme that can well protect indexing and keyword privacy. However, it is currently impossible to
extend the PAEFKS scheme to multi-keyword search scenarios. Curtmola et al. [3] proposed a keyword-
based search strategy that utilizes an inverted indexing method, which makes it possible to perform searches
without having to retrieve all the files. However, the strategy is limited to single-keyword searches.

Aiming at these problems, Golle et al. [4] introduced the method of multi-keyword search and
constructed a secure framework for performing conjunctive keyword searches of encrypted data. However,
in the face of scenes that require approximate matching, the scheme shows obvious limitations. Wang et al. [5]
proposed a secure sorted keyword search method for encrypted cloud data, which represents indexes and

Comput Mater Contin. 2025;83(3) 5201

trapdoors in vector format and achieves retrieval by performing computation on the vectors. However, the
scheme only focuses on single keyword search and does not involve multi-keyword search. Xia et al. [6]
proposed a secure multi-keyword sorting search method for encrypted cloud data, which realized multi-
keyword sorting search results through a vector space model and TF-IDF algorithm. However, the scheme
does not take into account the importance of the position of the keywords in the document, and cannot
achieve a fuzzy search function. Chen et al. [7] proposed a multi-keyword ciphertext retrieval method
based on hierarchical clustering, which can achieve linear computational complexity with an exponentially
growing document set. However, this method cannot evaluate the importance of keywords in the document.
And does not support a fuzzy search function. Zhu et al. [8] proposed an indexing structure based on
hierarchical cohesive clustering to gather highly relevant files in clusters to improve the efficiency of text
retrieval. However, only exact keyword search is supported.

To solve the problem of users not being able to obtain correct search results due to spelling errors,
Li et al. [9] proposed for the first time a fuzzy keyword search technique executed in a cloud computing
environment. However, the scheme does not consider the semantic privacy of keywords, and attackers may
be able to crack. Vaanchig et al. [10] proposed a temporary fuzzy keyword search public key cryptography
method combining fuzzy functions and cryptographic trees and achieved secure retrieval of time-related
data. However, the search results cannot be sorted according to the degree of relevance to the search
keywords. Wang et al. [11] implemented fuzzy multi-keyword ciphertext search using Bloom Filter (BF) and
Locality-Sensitive Hashing (LSH) techniques to eliminate predefined dictionaries. However, it is necessary
to traverse the global file when performing the search, which leads to low efficiency. Liu et al. [12] proposed
a matrix-based multi-keyword fuzzy search strategy, which realizes the of keywords with the help of the
incommensurable nature of prime numbers. However, the search time of this scheme will increase with the
increase in the number of query keywords.

To address the above challenges, Miao et al. [13] proposed a verifiable searchable encryption scheme
that features short ciphertext length, fast ciphertext conversion, and an accelerated search process of search
results. However, the scheme does not involve fuzzy keyword search functions, and cannot achieve sorting of
search results. The schemes proposed by Ge et al. [14] and Liu et al. [15] validate multi-keyword search results
through public key cryptography. While these schemes can verify document validity and keyword inclusion,
they cannot guarantee that all relevant files are retrieved. The searchable encryption schemes mentioned
above are all based on cloud servers, but the centralized cloud servers are vulnerable to a single point of
failure, and the data may have the risk of leakage or tampering. Using decentralized blockchain technology
can perfectly solve the problem of a single point of failure. Hu et al. [16] constructed a decentralized privacy-
preserving search system that replaces the role of a central server with smart contracts to ensure that data
owners have reliable access to accurate search results. Similarly, Zhang et al. [17] proposed a blockchain-
based stable keyword search architecture that supports two-party verification and direct fair transactions,
eliminating the involvement of a third party. Han et al. [18] proposed a blockchain-assisted multi-keyword
searchable encryption scheme to solve the single-point failure problem of centralized systems. However, the
above schemes do not support the function of fuzzy search and cannot sort the search results. Yan et al. [19]
proposed a verifiable fuzzy searchable encryption scheme with blockchain-assisted multi-user scenarios to
achieve fine-grained access control in multi-user scenarios. However, the returned files cannot be sorted
according to the importance of keywords in the file.

At present, the existing searchable encryption schemes have their advantages and limitations. The
existing schemes have the problems of imperfect functions, low retrieval efficiency, inaccurate retrieval
results, and centralized cloud servers that are vulnerable and untrustworthy. A ciphertext retrieval scheme
supporting fuzzy multi-keyword ranking search on the blockchain is proposed to solve the above problems.

5202 Comput Mater Contin. 2025;83(3)

3 Preliminaries

3.1 TF-IDF Algorithm
TF-IDF technique is commonly used in information retrieval and text mining to evaluate the impor-

tance of a word for a particular document in a collection of files. The formula is shown below, Where TF′f j ,wi

denotes the frequency of occurrence of keyword wi in the file f j, IDF′wi
denotes the frequency of occurrence

of files containing the keyword wi in the total set of files, N f j ,wi denotes the number of keywords wi in the file
f j, N denotes the total number of files, Nwi denotes the number of files containing keyword wi , see Eqs. (1)
and (2).

TF′f j ,wi
= 1 + ln N f j ,wi (1)

IDF′w j
= ln(1 + N/Nwi) (2)

Normalize it to get Eqs. (3) and (4):

TF f j ,wi =
TF′f j ,wi√

∑wi∈W(TF′f j ,wi
)2

(3)

IDFw j =
IDF′w j√

∑w j∈W(IDF′w j
)2

(4)

3.2 Regional Weighting Scores
Z fi ,w j denotes the weight region score, suppose a file has φ regions, let the weight coefficients of these

φ regions are g1, g2,. . ., gφ . Assume that the importance of these φ regions is decreasing. Their weight
coefficients should satisfy (5)–(7) three conditions:

g1 , g2, . . . , gφ ∈ [0, 1] (5)
φ

∑
x=1

gx = 1 (6)

g1 ≥ g2 ≥ . . . ≥ gφ (7)

If the keyword appears in region i then let Vi = 1, otherwise 0. Derive the weighted region score Eq. (8):

Z fi ,w j =
φ

∑
x=1

gx Vx (8)

3.3 Localized Sensitive Hashing
LSH [20] is an algorithm for similarity searching of high-dimensional data. It utilizes a hash function

to map similar points in a high-dimensional space into the same bucket to quickly search for points that are
similar to the query point. When two points in a high-dimensional space are close together, there is a higher
probability that they will be mapped to the same hash value. Conversely, there is a lower probability that two
points will be mapped to the same hash value when they are farther apart. If any two points s, t ∈ {0, 1}k and
h ∈ H satisfy (9) and (10):

d (s, t) ≤ r1∶Pr [h (s) = h (t)] ≥ p1 (9)
d (s, t) ≥ r2∶Pr [h (s) = h (t)] ≤ p2 (10)

Comput Mater Contin. 2025;83(3) 5203

Then the hash function family H is said to be sensitive, in the case of character input error is not big
even if there is an input error that is easy to map in the near-neighborhood, constitutes a prerequisite for the
realization of fuzzy retrieval. In this scheme, the p-stable distribution LSH function of the form of Eq. (11) is
used to realize the effective dimensionality reduction of high-dimensional vectors.

ha ,b (v) = ⌊
a ⋅ v + b

ω
⌋ (11)

3.4 Bloom Filter
The main use of BF is to determine whether an element belongs to a collection. It can be understood

as a very long binary vector of 0 and 1 s, initially all 0 s by default. When an element is added, the element
serves as input to the k hash function, whose output value corresponds to the subscript of the binary array,
and the binary value corresponding to the subscript is changed from 0 to 1. When determining whether an
element belongs to a set, it is again necessary to input the element into the K hash function and determine
the position in the Bloom filter array based on the output hash value. If any of the corresponding binary bits
is 0, the element is not in the set; if all bits are 1, the element can be considered to be in the set. As shown
in Fig. 1, the BF has already stored the element set {a, b, c}. Now we want to query whether elements a and
f are included in this set. Since element a, after being mapped by two hash functions h1 and h2, has all the
values mapped to the BF as 1, it can be judged that a exists in the set. After element f is mapped by the two
hash functions h1 and h2, there are 0 values among those mapped to the Bloom filter, so it can be judged that
f does not exist in the set.

0101101101

Figure 1: Bloom filter query

4 System Model
The scheme includes a total of four parts: Data Owner (DO), Data User (DU), Interplanetary File System

(IPFS), and Blockchain (BC), and the specific modeling process is shown in Fig. 2.
Data Owner (DO): The DO extracts the keyword set W = {w1 , w2, . . . , wm} from the file set F =

{ f1 , f2, . . . , fn}. A Bloom filter BFi is generated for each file fi , and the keywords are transformed into vectors
by pairwise encoding and then it is loaded into the Bloom filter BFi through the LSH as the index vector Ii
of the file fi . Using file information as leaf nodes, construct an index tree I from bottom to top, and encrypt
the index tree to obtain Ĩ, and upload the encrypted index tree Ĩ to the blockchain. Encrypt the plaintext file
to obtain an encrypted file C, and upload it to IPFS.

Data User (DU): After getting the authorization, the user generates the search vector Q based on the
set of search keywords Wq . Upload the encrypted search vector Q̃ to BC. After searching and matching to
obtain the score list SList , DU accesses the IPFS to retrieve the top − k most relevant ciphertext files.

Blockchain (BC): The BC is mainly responsible for storing the encrypted index tree Ĩ and the search
vector Q̃. In addition, after receiving the search vector Q̃ uploaded by the data user, the smart contract
performs a search and matches through the index tree Ĩ to get the score list SList and sends it to the DU.

5204 Comput Mater Contin. 2025;83(3)

...

Return address

hash

Upload search vector

Return the correlation score list

6.24

......

3.37

... ...

Encrypting data

Upload the ciphertext file to IPFS

Generate encrypted

index tree

Upload the encrypted index tree to the blockchain

Perform data retrieval

Input address

hash

Get the top-k most relevant files from the

Figure 2: System model

Interplanetary File System (IPFS): IPFS is a distributed file system that can store the encrypted files
and generate a unique hash value for each stored file. The relevant algorithms are defined below:

(1) SK ← Ke yGen (1λ): Key generation algorithm. The security parameter λ is input by the DO and the
key set SK = {k, S , M1 , M2} is output, where k is a symmetric key, S is an m-dimensional binary vector,
and M1 and M2 are m ×m-dimensional invertible matrices.

(2) C ← Enc (k, F): symmetric encryption algorithm, which is performed by the DO. Input a collection
of files F and a symmetric key k, output an encrypted file C, and upload C to IPFS.

(3) Ĩ ← BuildIndex (SK , F): Index tree generation algorithm, which is executed by the DO. Input the key
SK and the set of files F to generate the index vector Ii for each file fi , which constitutes the index tree
I. The index tree is then encrypted to obtain Ĩ, which is uploaded to the BC.

(4) Q̃ ← GenTrapdoor (SK , Wq): Trapdoor generation algorithm, executed by the DU. Input the key SK
and the set of search keywords Wq to generate the search vector Q, which is then encrypted to obtain
Q̃, and upload Q̃ into the BC system.

(5) SList ← ScoreSearch (Ĩ, Q̃): Search algorithms, executed by smart contracts. Input the encrypted
index tree Ĩ and the search vector Q̃, compute the corresponding inner products to obtain the relevance
scores, and sort them to return the top − k encrypted files with the highest relevance scores.

(6) F ← Dec (k, C): Decryption algorithm, performed by the DU. After obtaining the ciphertext sorting
result, the ciphertext is decrypted by inputting the symmetric key k to obtain the plaintext set F.

5 Fuzzy Multi-Keyword Sorted Ciphertext Retrieval Scheme
In the field of encrypted data retrieval, traditional methods have many limitations in function and

performance, which seriously affect the security, accuracy, and efficiency of data retrieval. This chap-
ter proposes a fuzzy multi-keyword ranked ciphertext retrieval scheme based on blockchain. Among

Comput Mater Contin. 2025;83(3) 5205

them, Section 5.1 mainly analyzes the construction algorithm of index and trapdoor, which is the basis of
ciphertext retrieval. Section 5.2 introduces the data retrieval algorithm, which realizes the data retrieval
operation based on index and trapdoor. In Section 5.3, based on the above two algorithms, the specific
ciphertext data retrieval scheme is elaborated in detail to form a complete ciphertext retrieval system.

5.1 Index and Trapdoor Construction
(1) Index construction
Keyword conversion: As shown in the keyword conversion section of Fig. 3, the keywords are converted

into vector form using pairwise encoding, which is the use of two adjacent characters in a string to generate
a two-character set BS. Assuming a character w1 = {s1 , s2, . . . , sn}, a vector V1 = {x1 , x2, . . . , xm} with m-
dimensional values all 0, where m >> n. If Hash {si , si+1} = j, then x j = 1.

··· ··· ···

··· ··· ···

··· ··· ···

··· ··· ···

... ··· ··· ...

... ··· ··· ...

...

...

...

...

...

...

·

Figure 3: Index and trapdoor generation process

BF generation: Inserting keywords into Bloom filters as shown in the index construction section
of Fig. 3, an m-dimensional Bloom filter Ii is generated for each file fi and each bit is initialized to 0. For
each keyword w j in fi , using BVj as the input of l LSH functions, the output value represents the subscript
of Ii and the value corresponding to the position of the subscript is changed to TF′f i ,w j

× Z fi ,w j , which is
shown in Fig. 3, the vector weighting part. By using independent hash functions H = {h1 , h2, . . . , hl} to
convert multiple binary m-dimensional vectors, utilizing the property of LSH, the same LSH function can
map multiple similar keywords to the same position with high accuracy. The same keyword undergoes
different LSH functions to achieve the final generalized word vector corresponding bits as similar or even
the same. Eventually, the inner product of the index vector and the search vector represents the relevance of
the document to the search keyword, as shown in the last step of Fig. 3.

5206 Comput Mater Contin. 2025;83(3)

Index tree construction: Create a node for each file as a leaf node of the tree. The internal nodes
are then constructed based on the information from the child nodes Each node u contains information:
u =< f id , childL , childR , Iu >, where f id denotes the file identifier, childL and childR denote the pointers
to the left and right child nodes, and Iu denotes the index vector of the corresponding file of the node.
For the leaf node, childL and childR are null. For the internal node, f id is null, Iu[i] = max{u.childL →
Iu[i], u.childR → Iu[i]}. The specific steps are shown in Fig. 4 and Algorithm 1.

Figure 4: Index tree generation

Algorithm 1: Build index tree
Input: I = {I1, I2,., In}, fid=1, 2,., n
Output: T
1.function BuildIndexTree(I, fid)
2. u = (fid, childL, childR, Iu)
3. if u = uleaf then
4. childL = null, childR = null, Iu = Ii
5. u = (fid, null, null, Iu)
6. else if u = uinternal then
7. fid = null, Iu = max(Iu.childL[i], Iu.childR[i])
8. u = (null, childL, childR, Iu)
9. for u = 1 to fid.lenth do
10. T = Append(u)
11. return T
12. end for
13. end if
14.end function

(2) Trapdoor construction
Search vectors are constructed using the same principles as index vectors. The keywords are converted

into vector form using pairwise encoding, which generates a two-character set BS′ using two adjacent
characters in a string. Suppose a character w′ = {s′1 , s′2, . . . , s′n}, a vector V ′ = {x′1 , x′2, . . . , x′m} with m-
dimensional values all 0, where m >> n, and If Hash {si , si+1} = j, then x j = 1. An m-dimensional Bloom
filter Q with the initial state of all 0 is set up for the search trapdoor, and the binary vector transformed into
the search keyword is used as the input to the l LSH functions and the output values represent the subscripts

Comput Mater Contin. 2025;83(3) 5207

of Q. The values corresponding to the positions of the subscripts are changed to the IDF-weighted values of
the keywords. The trapdoor generation process is shown in Fig. 3.

5.2 Data Retrieval
The data retrieval process is performed by the blockchain. The inner product between the index Ii and

trapdoor Q is then expressed as the correlation between file fi and query keyword w.At the beginning of the
search, an empty score list SList =< f id , score > is created, where f id denotes the file identifier and score
denotes the score of the file associated with f id. Store the top − k files with the highest scores in the SList and
sort them in descending order, where k is determined by the DU based on their actual needs. According to
the index tree generation strategy, the internal node vector value takes the maximum value of its child node
vector. When performing data retrieval, the inner product of the search vector and the internal node vector
is calculated. When the inner product is less than the minimum value of the score list, it will not continue to
traverse down. The retrieval algorithm is shown below, where u.score is the inner product of the index vector
Iu in node u and the search vector Q, and SList_ min is the score with the smallest correlation in the SList . Its
data retrieval process is shown in Fig. 5. The specific algorithm for data retrieval is shown in Algorithm 2.

······

......

6

··· ···

Upload search vector

Data retrieval

Return the score list

The inner product is

greater than .
Continue to search

down.

The inner product

is less than .
Stop the downward

search.

Figure 5: Data retrieval based on index tree

Algorithm 2: Search
Input: T, Q
Output: Slist
1. function Search(u)
2. Slist = Append(u.score)
3. u.score = Iu * Q
4. if u = uinternal then
5. if u.score > Slist_min then
6. Search(u.childL)
7. Search(u.childR)
8. else if u = uleaf then
9. if u.score > Slist_min & fid ∉Slist then
10. Slist = Delete(Slist_min)

(Continued)

5208 Comput Mater Contin. 2025;83(3)

Algorithm 2 (continued)
11. Slist = Append(u.score)
12. Descending_order(Slist)
13. return Slist
14. end if
15. end if
16.end function

5.3 Program Description
The blockchain-based fuzzy multi-keyword searchable encryption scheme is shown below. Fig. 6 is the

algorithm timing diagram of this scheme, and the algorithm of the specific scheme is shown in Algorithm 3.

(1) SK ← Ke yGen (1λ): The DO inputs the security parameter λ and outputs the key set SK =
{k, S , M1 , M2}. Where k is a symmetric key that encrypts the file, S is an m-dimensional binary vector,
and M1 and M2 are m ×m-dimensional invertible matrices that serve to encrypt the index.

(2) C ← Enc (k, F): The DO encrypts F = { f1 , f2, . . . , fn} using the symmetric key k to obtain the
encrypted file C = {c1 , c2, . . . , cn} and stores it in IPFS.

(3) Ĩ ← BuildIndex (SK , F): The DO extracts the keyword Wi = {w1 , w2, . . . , wm} in fi . Generate an m-
dimensional Bloom filter Ii for each file fi and initialize each bit to 0. For each keyword w j in fi , the
keyword is transformed into a vector BVj by pairwise encoding, and utilizes BVj as the input of l LSH
functions, and the output values represent the subscripts of Ii , and the values corresponding to the
positions of the subscripts are changed to TF′f i ,w j

× Z fi ,w j . The unencrypted index tree I is generated
by the index tree construction algorithm, which is described in Section 5.1. Use S to split the index
vector Iu in the node into two random vectors {I′u , I′′u }. The rules are as follows: If S [i] = 1 then
I
′

u [i] + I
′′

u [i] = Iu [i], and I
′

u [i] and I
′′

u [i] can take any value; If S [i] = 0 then I
′

u [i] = I
′′

u [i] = Iu [i].
Obtain the encrypted index vector as Ĩu = {MT

1 I
′

u , MT
2 I
′′

u}, and upload the encrypted index tree Ĩ to
the blockchain.

(4) Q̃ ← GenTrapdoor (SK , Wq): The DU generates a Bloom filter Q based on the set of search keywords
Wq and initializes each bit to 0. For each keyword wz , the keyword is transformed into a vector BVz
by pairwise encoding, and utilizes BVz as the input of l LSH functions, the output value represents the
subscript of Q, and the value corresponding to the position of the subscript is changed to IDFwz , the
specific construction principle is shown in Section 5.1. Use S to split the search vector Q in the node
into two random vectors {Q′, Q′′}. The rules are as follows: If S [i] = 1, then Q′ [i] = Q′′ [i] = Q [i].
If S [i] = 0 then Q′ [i] + Q′′ [i] = Q [i]. Q′ [i] and Q′′ [i] can take any value. Obtain the encrypted
search vector Q̃ = {M−1

1 Q′, M−1
2 Q′′}, and upload the encrypted search vector Q̃ to the blockchain.

(5) SList ← ScoreSearch (Ĩ, Q̃): After receiving the Q̃ submitted by the DU, the blockchain executes the
search matching through the smart contract. The process is described in Algorithm 2, in which the
inner product (i.e., relevance score) of the encrypted index vector and the search vector is computed
as Eq. (12):

Comput Mater Contin. 2025;83(3) 5209

SScore (Ĩu , Q̃)

= {MT
1 I
′

u , MT
2 I
′′

u} ⋅ {M−1
1 Q′, M−1

2 Q′′}

= (MT
1 I
′

u) ⋅ (M−1
1 Q′) + (MT

2 I
′′

u) ⋅ (M−1
2 Q′′)

= I
′

u ⋅ Q′ + I
′′

u ⋅ Q′′

= Iu ⋅ Q

(12)

In Eq. (12), the result of making the inner product of vectors after encryption is the same as the result
of making the inner product of plaintext vectors. After executing the query algorithm, the score list SList is
returned and the corresponding ciphertext file is returned to the DU based on the f id in the list.

(6) F ← Dec (k, C): After the DU gets the returned ciphertext file, the file is decrypted using the
symmetric key k to get the plaintext file.

Figure 6: Timing diagram of the algorithm

Algorithm 3: Specific scheme
Input: λ, f = {f 1, f 2,., f n}, Wq
Output: F
1.function KeyGen(), Enc(), BuildIndex(), GenTrapdoor(), ScoreSearch(), Dec()
2. SK = KeyGen(λ)
3. return SK = {k, S, M1, M2}

(Continued)

5210 Comput Mater Contin. 2025;83(3)

Algorithm 3 (continued)
4. if SK = ture then
5. ci = Enc(k, f = {f 1, f 2,., f n})
6. Ĩ = BuildIndex(SK, f = {f 1, f 2,., f n})
7. return ci = {c1, c2,., cn}, Ĩ
8. end if
9. if Wq = ture then
10. Q̃ = GenTrapdoor(SK, Wq)
11. return Q̃
12. end if
13. if Q̃ = ture then
14. Slist = ScoreSearch(Ĩ, Q̃)
15. return Slist
16. end if
17. if k = ture & ci = {c1, c2,., cn} then
18. F = Dec(k, ci)
19. return F
20. end if
21.end function

5.4 Security Analysis
(1) Document Privacy: The DO encrypts the collection of plaintext files before sending them to IPFS, and

the DU gets the decryption key only after authorization, so only the DO and the authorized DU can get
the plaintext files, and this scheme achieves document retrieval based on document identifiers, which
has nothing to do with the content of the plaintext files and achieves the privacy of the files.

(2) Confidentiality of encrypted index trees and search vector: This scheme utilizes the secure k-nearest
neighbor algorithm to encrypt the index vectors Iu of nodes in the index tree. Since the generated
binary vector S is random, the encrypted index vectors Ĩu can not be associated with the unencrypted
index vectors Iu , and the generated encrypted vectors Ĩu are different even for the files that have the
same keywords. Q̃ is obtained by encrypting the search vector Q by the secure k-nearest neighbor
algorithm, and even if the two sets of search keywords searched are the same, the obtained Q̃ is not
the same.

(3) Unrelatedness of queries: In this scheme, the search vector Q achieves cryptographic uncertainty
through the randomized decomposition of binary vectors. Even if the DU issues the same search
request twice in a row, the vector Q obtained after decomposition encryption will be different, thus
ensuring the uncorrelatedness between queries. However, even if the same search vector is encrypted
to obtain different search vectors, the relevance score calculated by the inner product is still the same.
It follows that when correlating the same search requests, the retrieval or access pattern is leaked under
the known ciphertext model.

(4) Security of data storage and reliability of retrieval: The solution utilizes blockchain technology to store
encrypted index trees and search vectors, and the ciphertext files are stored in the IPFS distributed file
system, which eliminates the single point of failure that exists in traditional cloud servers, provides

Comput Mater Contin. 2025;83(3) 5211

higher reliability, and ensures file integrity. Utilizing smart contracts to perform data retrieval solves the
problem of dishonest searches on traditional cloud servers and ensures the reliability of data retrieval.

In Table 1, we compare this scheme with other schemes in terms of the above security performance.

Table 1: Comparison of security schemes

Scheme Privacy Index confidentiality Distributed Reliability
Scheme [21] ✗ ✗ ✗ ✓

Scheme [22] ✗ ✓ ✗ ✓

Ours scheme ✓ ✓ ✓ ✓

6 Performance

6.1 Performance of Time Complexity
In this section, we analyze the communication complexity of the scheme from three key links: index

upload stage, trapdoor upload stage, and data retrieval stage. And in Table 2 compared with the existing
scheme. In the following analysis, n represents the number of files, m represents the dimension of the index
or trapdoor, p is the number of exact keywords, and q is the maximum number of fuzzy keywords.

(1) Index upload phase: This stage mainly includes two stages: plaintext index generation and index
encryption. The generation of the plaintext index is mainly affected by the number of keywords in the
file, and the generation of the index tree is affected by the number of files. The time overhead of index
encryption mainly depends on matrix multiplication. Therefore, the communication overhead of the
index upload phase of this scheme is O(m2n + nlog n), and the other schemes are O(q).

(2) Trapdoor upload stage: Similarly, the trapdoor upload phase mainly includes matrix multiplication, so
the time complexity of this phase is O(m2), and the time complexity of trapdoor generation in other
schemes is O(q).

(3) Data retrieval phase: The time complexity of the search phase after constructing the index tree mainly
depends on the height of the index tree, and the height of the index tree is determined by the number
of leaf nodes (number of files) n. Since the balanced binary tree is used to construct the index structure,
the time complexity is O(mlog n).

Table 2: Comparison of computational complexity schemes

Scheme Scheme [21] Scheme [23] Scheme [24] Ours scheme
Index upload stage O(pq) O(pq) O(pq) O(m2n + nlog n)

Trapdoor upload stage O(q) O(q) O(q) O(m2)
Data retrieval stage O(q) O(qlog p) O(qlog p) O(mlog n)

m is the length of the index or trapdoor, which can be regarded as a constant. Because of
n << p << q, the computational complexity of this scheme is better than that of the existing schemes in the
index establishment, trapdoor generation, and data retrieval stages.

5212 Comput Mater Contin. 2025;83(3)

6.2 Performance Testing
The experimental environment in this study is a 64-bit Windows 10 operating system, with an Intel(R)

Core(TM) i5-7300HQ CPU running at 2.50 GHz and 16 GB of RAM. The proposed solution is implemented
by writing the smart contract in the Go language and using Fabric to set up a local blockchain network for
deploying the smart contract. Terminal commands are then employed to interact with the deployed smart
contract. We randomly selected 3000 files from the IEEE database as the dataset and extracted approximately
65,000 keywords from the dataset. The minimum number of keywords in a file is 107, while the maximum
is 396. The number of LSH functions is set to l = 20, and the length of the Bloom filter is set to m =
5000. To demonstrate the fuzzy search capability of the data, we adopt a similar approach to the original
method. We randomly select a keyword and then alter one of its characters to construct a fuzzy keyword.
The experimental part mainly measures the time consumption of the index construction stage, trapdoor
construction stage, and search matching stage.

6.2.1 Single File Index Generation
Fig. 7 shows how the time taken for index generation changes with the number of keywords. Litera-

ture [25] needs to perform encryption operations on each keyword to generate an index. Therefore, the time
spent on generating the index increases with the increase in the number of keywords. In this scheme and
reference [26], the increase in the number of keywords has almost no impact on the time required to generate
indexes. This is because both this scheme and Literature [26] map all keywords to the Bloom filter, and the
time consumed for index construction is more related to the number of Bloom filter bits and less related
to the number of keywords. On this basis, the index construction efficiency of this scheme is better than
that of Literature [26], because this scheme uses dual encoding functions to directly convert keywords into
vectors, while Literature [26] needs first to convert keywords into lowercase and then extract the stem before
converting them into vectors.

Figure 7: Time cost of index generation [25,26]

Comput Mater Contin. 2025;83(3) 5213

6.2.2 Trapdoor Generation
As shown in Fig. 8, the trapdoor generation time in [25] increases with the number of keywords. When

the number of keywords is 10, the time consumption is about 110 ms, and the increase in the number
of keywords has almost no effect on the time consumption of trapdoor generation in this scheme and
Literature [26]. This is because both this scheme and Literature [26] map all keywords to the Bloom filter,
and the time consumed by constructing trapdoors is more related to the number of Bloom filter bits and less
related to the number of keywords. On this basis, the overall efficiency of trapdoor generation in this scheme
is better than that of Literature [26]. When the number of keywords is 4, the time cost is about 10 ms, while
the time cost of Literature [26] is about 43 ms. The reason is that this scheme utilizes dual encoding functions
to directly convert keywords into vectors, which is more efficient compared to Literature [26].

Figure 8: Time cost of trapdoor generation [25,26]

6.2.3 Index Tree Construction
Fig. 9 illustrates how the time cost for generating the entire index tree varies with the number of files

when the index tree is constructed based on all files. As shown in the figure, the time cost for index generation
increases with the number of files. When the number of files reaches 3000, the indexing generation stage
of this scheme takes 200 s, which is much lower than other schemes. This is because the index structure is
different from other schemes. As shown in Fig. 7, the index generation time of this scheme is mainly related
to the number of files, while the index generation time of other schemes is mainly related to the number of
keywords contained in the files. Among them, Literature [24] has the highest time cost because it uses the
RSA accumulator for verification.

5214 Comput Mater Contin. 2025;83(3)

Figure 9: Time cost of index building [21,23,24]

6.2.4 Search Matching
Since the comparative scheme only supports fuzzy searches for single keywords, we also conducted

fuzzy single-keyword searches to enable a fair comparison. As shown in Fig. 10, the time consumed during
the data retrieval phase increases approximately linearly with the number of files. When the number of files is
3000, the data retrieval time for the scheme in [22] is 3.2 s, while the retrieval times for the scheme in [21,23],
and [24] are 5.1, 5.3, and 16 s, respectively. The time costs of Literature [21] and Literature [23] are similar, and
when the number of files is 1000, the increased time consumption of both schemes is significantly reduced.
Because both of these schemes are based on building an index for a single keyword, as the number of files
increases, the growth rate of different keywords slows down, which is equivalent to the growth rate of different
indexes slowing down, resulting in a slower growth rate of search time. As shown in the experimental figure,
when the number of files is 3000, the data retrieval time for this scheme is only 0.6 s. Compared to the scheme
in [22], this scheme demonstrates higher retrieval efficiency. This is because this scheme is based on an index
tree to construct an index structure. By using the pruning technique of the index tree, the most relevant k
files can be obtained without traversing all the index vectors. Literature [24] still has the highest search time
overhead due to the use of the RSA accumulator.

Figure 10: Search time [21–24]

Comput Mater Contin. 2025;83(3) 5215

7 Conclusion
This paper proposes a blockchain-based fuzzy multi-keyword ranked ciphertext retrieval scheme to

overcome the limitations of traditional searchable encryption schemes in terms of functionality, perfor-
mance, and security. The scheme utilizes blockchain technology to store file indexes, IPFS to store encrypted
files, and smart contracts to perform data retrieval tasks. It effectively addresses the issues of single point
of failure and dishonest search associated with centralized servers, ensuring the security of data and the
reliability of retrieval. By leveraging LSH and BF techniques, the scheme achieves fault tolerance for spelling
errors and supports multi-keyword retrieval, thereby enhancing the accuracy and comprehensiveness of
the search results. By combining the TF-IDF algorithm with RWS, the scheme more accurately evaluates
the relevance between keywords and files, enabling ranking of the retrieval results and enhancing the user
experience. The index structure is built using a balanced binary tree, coupled with pruning techniques, which
significantly improves retrieval efficiency while reducing storage space and communication overhead. The
experimental results show that this scheme is superior to existing schemes in terms of index construction
efficiency, data retrieval efficiency, and security, providing new ideas and methods for the field of encrypted
data retrieval. Future work could further explore how to apply this scheme to a broader range of application
scenarios and investigate more efficient index structures and retrieval algorithms.

Acknowledgement: We would like to acknowledge the editors and reviewers for their comments.

Funding Statement: This research was funded by the Jilin Provincial Department of Education Scientific Research
Project (Project No. JJKH20250872KJ). The funding body had no role in the design of the study, collection, analysis,
and interpretation of data, or in writing the manuscript.

Author Contributions: The authors confirm their contribution to the paper as follows: Data curation, conceptu-
alization, Hongliang Tian; methodology, writing—review, editing, writing—original draft preparation, software and
validation, Zhong Fan; formal analysis, investigation and resources, Zhiyang Ruan; visualization and supervision,
Aomen Zhao. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from the corresponding
author, Z. F. upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Abbreviations

Sign Definition
w Keyword
f File
Wq Search keyword set
N Merge file
Nwi Number of files containing the keyword wi
N f j ,wi The number of keywords wi in file f j
gφ Weight coefficient
C Ciphertext file
I Unencrypted index tree
Ĩ Encrypted index tree
S M-dimensional binary vector
k Symmetric-key

5216 Comput Mater Contin. 2025;83(3)

DO Data Owner
DU Data User
IPFS InterPlanetary file system
BC Blockchain
F Plaintext file set
W Keywords set
SK System key
Q Unencrypted search vector
Q̃ Encrypted search vector
λ Safety parameter
M1 , M2 m ×m-dimensional invertible matrix
SList Score list

References
1. Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on

Security & Privacy (IEEE S&P); 2000 May 14–17; Berkeley, CA, USA. p. 44–55. doi:10.1109/SECPRI.2000.848445.
2. Wu M, Dong X, Cao Z, Shen J. A privacy preserving public-key searchable encryption scheme with fast keyword

search. In: 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC);
2017 Dec 19–21; Dalian, China. p. 579–85. doi:10.1109/ICCTEC.2017.00131.

3. Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable symmetric encryption: improved definitions and efficient
constructions. J Comput Secur. 2011;19(5):895–934. doi:10.3233/JCS-2011-0426.

4. Golle P, Staddon J, Waters BR. Secure conjunctive keyword search over encrypted data. In: 2004 Cryptography &
Network Security Conference (ACNS); 2004 Jun 8–11; China: Yellow Mountain. p. 31–45. doi:10.1007/978-3-540-
24852-1_3.

5. Wang C, Cao N, Li J, Ren K, Lou W. Secure ranked keyword search over encrypted cloud data. In: 2010 IEEE 30th
International Conference on Distributed Computing Systems (ICDCS); 2010 Jun 21–25; Genoa, Italy. p. 253–62.

6. Xia Z, Wang X, Sun X, Wang Q. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud
data. IEEE Trans Parallel Distrib Syst. 2016;27(2):340–52. doi:10.1109/TPDS.2015.2401003.

7. Chen C, Zhu X, Shen P, Hu J, Guo S, Zahir T, et al. An efficient privacy-preserving ranked keyword search method.
IEEE Trans Parallel Distrib Syst. 2016;27(4):951–63. doi:10.1109/TPDS.2015.2425407.

8. Zhu X, Dai H, Yi X, Yang G, Li H. Muse: an efficient and accurate verifiable privacy-preserving multi-keyword text
search over encrypted cloud data. Secur Commun Netw. 2017;2017:1–17.

9. Li J, Wang Q, Wang C, Cao N, Ren K, Lou W. Fuzzy keyword search over encrypted data in cloud computing. In:
2010 Proceedings IEEE International Conference on Computer Communications; 2010 Mar 14–19; San Diego, CA,
USA. p. 1–5.

10. Vaanchig N, Qin Z. Public key encryption with temporary and fuzzy keyword search. Math Biosci Eng.
2019;16(5):3914–35. doi:10.3934/mbe.2019193.

11. Wang B, Yu S, Lou W, Hou YT. Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud.
In: 2014 Proceedings IEEE International Conference on Computer Communications; 2014 Apr 27–May 2; Toronto,
ON, Canada. p. 2112–20.

12. Liu Q, Peng Y, Wu J, Wang T, Wang G. Secure multi-keyword fuzzy searches with enhanced service quality in cloud
computing. IEEE Trans Netw Serv Manag. 2021;18(2):2046–62. doi:10.1109/TNSM.2020.3045467.

13. Miao Y, Deng RH, Choo KKR, Liu X, Ning J, Li H. Optimized verifiable fine-grained keyword search in dynamic
multi-owner settings. IEEE Trans Dependable Secur Comput. 2021;18(4):1804–20.

14. Ge X, Yu J, Chen F, Kong F, Wang H. Toward verifiable phrase search over encrypted cloud-based IoT data. IEEE
Internet Things J. 2021;8(16):12902–18. doi:10.1109/JIOT.2021.3063855.

15. Liu X, Yang X, Luo Y, Zhang Q. Verifiable multi-keyword search encryption scheme with anonymous key
generation for medical internet of things. IEEE Internet Things J. 2022;9(22):22315–26. doi:10.1109/JIOT.2021.
3056116.

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/ICCTEC.2017.00131
https://doi.org/10.3233/JCS-2011-0426
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1109/TPDS.2015.2401003
https://doi.org/10.1109/TPDS.2015.2425407
https://doi.org/10.3934/mbe.2019193
https://doi.org/10.1109/TNSM.2020.3045467
https://doi.org/10.1109/JIOT.2021.3063855
https://doi.org/10.1109/JIOT.2021.3056116
https://doi.org/10.1109/JIOT.2021.3056116

Comput Mater Contin. 2025;83(3) 5217

16. Hu S, Cai C, Wang Q, Wang C, Luo X, Ren K. Searching an encrypted cloud meets blockchain: a decentralized,
reliable and fair realization. In: 2018 Proceedings IEEE International Conference on Computer Communications;
2018 Apr 16–19; Honolulu, HI, USA. p. 792–800.

17. Zhang Y, Deng RH, Shu J, Yang K, Zheng D. Tkse: trustworthy keyword search over encrypted data with two-side
verifiability via blockchain. IEEE Access. 2018;6:31077–87. doi:10.1109/ACCESS.2018.2844400.

18. Han H, Wang Z, Xu Z, Dong X, Tian W. Enhancing IoT security and efficiency: a blockchain-assisted multi-
keyword searchable encryption scheme. IEEE Access. 2024;12:148677–92. doi:10.1109/ACCESS.2024.3472119.

19. Yan X, Cheng P, Tang Y, Zhang J. Blockchain-assisted verifiable and multi-user fuzzy search encryption scheme.
Appl Sci. 2024;14(24):11740. doi:10.3390/app142411740.

20. Liu G, Yang G, Bai S, Zhou Q, Dai H. Fsse: an effective fuzzy semantic searchable encryption scheme over encrypted
cloud data. IEEE Access. 2020;8:71893–906. doi:10.1109/ACCESS.2020.2966367.

21. Ge X, Yu J, Hu C, Zhang H, Hao R. Enabling efficient verifiable fuzzy keyword search over encrypted data in cloud
computing. IEEE Access. 2018;6:45725–39. doi:10.1109/ACCESS.2018.2866031.

22. Li X, Tong Q, Zhao J, Miao Y, Ma S, Weng J, et al. Vrfms: verifiable ranked fuzzy multi-keyword search over
encrypted data. IEEE Trans Serv Comput. 2023;16(1):698–710. doi:10.1109/TSC.2021.3140092.

23. Wang J, Ma H, Tang Q, Li J, Zhu H, Ma S, et al. Efficient verifiable fuzzy keyword search over encrypted data in
cloud computing. Comput Sci Inf Syst. 2013;10(2):667–84. doi:10.2298/CSIS121104028W.

24. Huang R, Li Z, Wu G. A verifiable encryption scheme supporting fuzzy search. In: 2019 International Conference
on Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS); 2019 Jul 14–17;
Atlanta, GA, USA. p. 397–411.

25. Shu J, Yang K, Jia X, Liu X, Wang C, Deng RH. Proxy-free privacy-preserving task matching with efficient
revocation in crowdsourcing. IEEE Trans Dependable Secur Comput. 2021;18(1):117–30. doi:10.1109/TDSC.2018.
2875682.

26. Wang B, Fu S, Zhang X, Xie T, Lyu L, Luo Y. Reliable and privacy-preserving task matching in blockchain-based
crowdsourcing. In: 2021 Proceedings of the 30th ACM International Conference on Information and Knowledge
Management (CIKM); 2021 Nov 1–5; New York, NY, USA. p. 1879–88. doi:10.1145/3459637.3482385.

https://doi.org/10.1109/ACCESS.2018.2844400
https://doi.org/10.1109/ACCESS.2024.3472119
https://doi.org/10.3390/app142411740
https://doi.org/10.1109/ACCESS.2020.2966367
https://doi.org/10.1109/ACCESS.2018.2866031
https://doi.org/10.1109/TSC.2021.3140092
https://doi.org/10.2298/CSIS121104028W
https://doi.org/10.1109/TDSC.2018.2875682
https://doi.org/10.1109/TDSC.2018.2875682
https://doi.org/10.1145/3459637.3482385

	Efficient Searchable Encryption Scheme Supporting Fuzzy Multi-Keyword Ranking Search on Blockchain
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 System Model
	5 Fuzzy Multi-Keyword Sorted Ciphertext Retrieval Scheme
	6 Performance
	7 Conclusion
	Abbreviations
	References

