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ABSTRACT: It is known that long non-coding RNAs (lncRNAs) play vital roles in biological processes and contribute
to the progression, development, and treatment of various diseases. Obviously, understanding associations between
diseases and lncRNAs significantly enhances our ability to interpret disease mechanisms. Nevertheless, the process of
determining lncRNA-disease associations is costly, labor-intensive, and time-consuming. Hence, it is expected to foster
computational strategies to uncover lncRNA-disease relationships for further verification to save time and resources.
In this study, a collaborative filtering and graph attention network-based LncRNA-Disease Association (CFGANLDA)
method was nominated to expose potential lncRNA-disease associations. First, it takes into account the advantages
of using biological information from multiple sources. Next, it uses a collaborative filtering technique in order to
address the sparse data problem. It also employs a graph attention network to reinforce both linear and non-linear
features of the associations to advance prediction performance. The computational results indicate that CFGANLDA
gains better prediction performance compared to other state-of-the-art approaches. The CFGANLDA’s area under
the receiver operating characteristic curve (AUC) metric is 0.9835, whereas its area under the precision-recall curve
(AUPR) metric is 0.9822. Statistical analysis using 10-fold cross-validation experiments proves that these metrics are
significant. Furthermore, three case studies on prostate, liver, and stomach cancers attest to the validity of CFGANLDA
performance. As a result, CFGANLDA method proves to be a valued tool for lncRNA-disease association prediction.

KEYWORDS: LncRNA-disease associations; collaborative filtering; principal component analysis; graph attention
network; deep learning

1 Introduction
It is commonly known that protein-coding genes include biological genetic information found in

human genomes [1,2]. Nevertheless, most human genomes, nearly 98%, have little or no protein-coding
abilities. We refer to them as non-coding RNAs (ncRNAs). Among them, there is a particular class that
encompasses non-coding RNAs with more than 200 nucleotides in length, recognized as long non-coding
RNAs (lncRNAs) [2,3]. It has been established that lncRNAs are essential for a variety of biological processes
in the human body, such as translation, transcription, splicing, differentiation, epigenetic regulation, and
immune response [4–7]. Particularly, an increase of evidence suggests that the dysregulations and mutations
of lncRNAs contribute to the development of various complicated human diseases. For example, lncRNA
PVT1 promotes the growth of hepatitis B virus-positive liver cancer by interfering with histone methylation
on the c-Myc promoter [8]. LncRNA H19 encourages the migration and invasion of colon cancer cells via the
mitogen-activated protein kinase (MAPK) signaling pathway [5]. Obviously, understanding of associations
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between lncRNAs and diseases can aid in human diseases’ diagnosis, treatment and prevention by identifying
their mechanisms [4,6,9–11]. However, the discovery of lncRNA-disease associations through biological
experiments is expensive, tedious, and laborious. As a consequence, to avoid wasting time and resources, it
is necessary to exploit efficient computational approaches for unveiling lncRNA-disease relationships [4,6].
Numerous computational approaches have recently been established to deduce latent lncRNA-disease
interactions, providing the basis for further biological experimental proof. They can be broadly grouped
into four categories: network-based, matrix factorization-based, machine learning-based, and multi-model
integration approaches [12,13].

First, the network-based approaches for uncovering lncRNA-disease interactions typically construct
a global heterogeneous network based on known associations as well as different similarities. A common
assumption was often used in network-based methods that lncRNAs related to diseases sharing comparable
symptoms also have comparable functions, and vice versa [14,15]. For example, by integrating the confirmed
lncRNA-disease associations, lncRNA cosine, lncRNA expression, disease cosine and disease semantic
similarities and network consistent projection, Xie et al. employed a method called network consistency
projection for human lncRNA-disease associations (NCPHLDA) to identify latent lncRNA-disease associ-
ations [15]. Wang et al. [16] constructed an internal inclined random walk with restart (IIRWR) method
to anticipate lncRNA-disease relationships by incorporating validated lncRNA-disease associations, disease
weights, lncRNAs’ Gaussian interaction profile (GIP) kernel similarity, and disease semantic similarity. After
that, they deduced potential lncRNA-disease interactions by an algorithm of an internally inclined random
walk with restart. The lncRNA-disease association prediction problem was addressed by Xie et al. through
the use of a bidirectional linear neighborhood label propagation algorithm and selective similarity matrix
fusion [17]. Bonomo et al. [18] considered the lncRNA-disease association prediction issue as a neighborhood
analysis performed on tripartite graphs using known lncRNA-miRNA interactions and miRNA-disease
associations. Chen et al. [19] submitted an LPARP method that addressed the lncRNA-disease association
prediction problem using a label-propagation algorithm and random projection. These methods could
achieve competitive prediction performance but many of them could not be utilized to uncover isolated
lncRNAs or diseases [16].

Second, over the past few years, many matrix factorization-based methods have been used to forecast
lncRNA-disease associations. For example, Fu et al. [20] presented a technique known as Matrix Factoriza-
tion based LncRNA-Disease Association (MFLDA), which fused data from heterogeneous sources and used
matrix tri-factorization to decompose data into low-rank matrices. Lu et al. [21] inferred latent lncRNA-
disease relationships utilizing inductive matrix completion. First, they calculated lncRNAs’ GIP kernel and
diseases’ functional similarity. Next, they extracted the initial feature vectors of diseases and lncRNAs using
Principal Component Analysis (PCA). Finally, they calculated the predicted association matrix utilizing
the inductive matrix completion. A PMFILDA approach was proposed to unveil lncRNA-disease pairs
using probability matrix decomposition [22]. An improved collaborative matrix factorization method was
utilized to reveal lncRNA-disease relationships by incorporating lncRNAs and diseases’ the GIP kernels [23].
Methods in this group often achieve a competitive performance, but they may be biased towards sparse
matrices. To capture non-linear features of lncRNAs and diseases to address the sparse data challenge, some
scientists have integrated matrix factorization and deep learning techniques for enhancing lncRNA-disease
association prediction performance [24,25].

Third, as a result of the development of machine learning in biology, various machine learning-
based prediction algorithms have been adopted to unveil latent lncRNA-disease relationships. For instance,
Yu et al. inferred possible lncRNA-disease interactions using a Naïve Bayesian Classifier in a CFNBC
method [26]. Yao et al. implemented a lncRNA-disease interaction prediction method utilizing random
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forest and feature selection [27]. A new algorithm IPCARF, which integrates incremental PCA (IPCA) with
random forest (RF) algorithm, was proposed for predicting associated pairs of lncRNA and disease [28].
An LDNFSGB method was established for revealing associated couples of lncRNA and disease using
network feature similarity along with gradient boosting [29]. Sheng et al. presented a model VADLP, which
extracts, encrypts, and adaptively fuses multi-level representations containing attributes of nodes, pairwise
topology, and feature distributions for revealing lncRNA-disease relationships [30]. One of the biggest
drawbacks of the machine learning-based approaches is that the data is not sufficiently rich, which restricts
prediction performance [28]. Additionally, though machine learning methods can identify associations
between variables but, they do not commonly handle knowledge from different domains [31]. Therefore, it
is important to integrate domain knowledge into machine learning for biomedical applications, especially
for lncRNA-disease association prediction. Recently, deep learning techniques, which are an essential part of
machine learning, have widely been employed to enrich lncRNA-disease relationships’ non-linear features.
They made the assumption that the linear and non-linear features would work in concert to provide
good lncRNA-disease association features so that they can enhance the prediction performance [24,32].
For example, Zeng et al. extracted linear and non-linear features of lncRNA-diseases associations using
Singular Value Decomposition (SVD) and deep learning and used their combination to train SDLDA model
to figure out disease-associated lncRNAs [24]. A gGATLDA model used a graph-level graph attention
network to detect latent lncRNA-disease associations [13]. A novel GCNFORMER model was developed
on transformer and graph convolutional network (GCN) to anticipate disease-associated lncRNAs [33].
Li et al. [34] presented a novel NAGTLDA model for inferring lncRNA-disease associations, combining
node-adaptive graph transformer and structural encoding.

Lastly, in recent years, various computational methods combined the different methods into a unified
model to overcome their limitations and enhance overall prediction performance [35]. For example, a hybrid
method combining graph autoencoders with variational inference was proposed to uncover lncRNA-disease
relationships [36]. Li et al. [37] first used SVD along with node2vec to extract linear and non-linear features
of lncRNAs and diseases. Next, they constructed the integrated features using previously obtained ones to
enhance semantic representation. Finally, they used an XGBoost classifier for determining lncRNA-disease
relationships. Liang et al. [38] used a GCN to extract features from similarity graphs. After that, they
leveraged the attention mechanisms to assign weights to different feature matrices of lncRNAs and diseases.
Next, they extracted additional features from multiple feature matrices using a convolutional neural network
(CNN). Lastly, they made the final prediction using a stacking ensemble classifier, which consists of various
classical machine-learning classifiers. Yao et al. [39] predicted associations between lncRNAs and diseases
utilizing multiple metapaths in hierarchical graph attention networks. Peng et al. [40] incorporated lncRNA-
disease association feature extraction relying on SVD and variational graph autoencoder and utilizing a
heterogeneous Newton boosting machine for lncRNA-disease association prediction.

Although existing computational methods for inferring disease-associated lncRNAs have yielded
immense benefits, there is still room for improvement to achieve more robust performance. One major issue
that has attracted researchers’ attention is that sparse and incomplete biological data can affect prediction
accuracy. In the past few years, a weighted K-nearest known neighbors (WKNKN) technique was widely
employed as a preprocessing step to mitigate the effects of sparse data challenge in associations among
biological objects, including miRNA-disease associations and drug-target interactions [41–44]. Besides, a
recommender system based on collaborative filtering (CF) algorithm was employed in various studies to
address the limitation of restricted known associations among biological objects, including the published
works of [23,26,45,46]. These works relied on the fact that the number of validated associations among
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biological objects was significantly lower than the number of unverified associations among them, whereas
the unknown relationships could conceivably be accurate relationships [26].

In this work, we proposed a new deep learning method to address the challenges of sparse data using
a CF algorithm to promote the advantages of using biological information from multi-sources as well as to
reinforce linear and non-linear features of associations between lncRNAs and diseases. First, we calculated
the integrated similarity for lncRNAs based on the lncRNA functional similarity and lncRNA GIP kernel.
Similarly, we computed integrated similarity for diseases using disease semantic similarity and disease GIP
kernel. Second, the integrated similarities are used as input features in a PCA method to reduce the dimension
of input features. Third, we employed a CF algorithm on lncRNA-disease along with lncRNA-miRNA
interaction sets. It is based on the premise that the number of known associations among three object types
of lncRNAs, diseases and miRNAs is very limited. After applying the CF algorithm, we obtained the updated
lncRNA-disease association set which is used as input for a graph attention network (GAN) later. Fourth, the
new features and the updated lncRNA-disease association set are used in a GAN to obtain the latent vectors of
lncRNAs and diseases. Lastly, a multi-layer perceptron (MLP) is used to generate lncRNA-disease association
prediction scores. The experiments on the datasets used in recent studies [2,13,15,36,46,47] demonstrated
the strong performance of CFGANLDA. It achieved an average AUC of 0.9835 and an average AUPR of
0.9822. Statistical analysis using 10-fold cross-validation experiments shows that these metrics are significant.
They are better than the values of other state-of-the-art methods, including GANLDA [2], IPCARF [28],
VGAELDA [36], an improved tripartite graph for lncRNA-disease association prediction (ITPGLDA) [46]
and HGNNLDA [47]. Thus, CFGANLDA is a valuable tool for revealing lncRNA-disease relationships.

2 Materials and Methods

2.1 Method Overview
In this work, a new CFGANLDA method is proposed for inferring potential lncRNA-disease rela-

tionships. Generally, CFGANLDA includes the following stages. First, lncRNA-integrated similarity and
disease-integrated similarity are computed. Second, the integrated similarities of lncRNAs and diseases are
used in a PCA to reduce noise. Third, a CF algorithm is applied to the sets of lncRNA-disease and lncRNA-
miRNA associations to obtain updated lncRNA-disease associations. Fourth, we use a GAN where inputs are
the updated lncRNA-disease associations and new features obtained from PCA. Finally, the latent vectors
of lncRNAs and diseases obtained from GAN are used in an MLP to compute scores of lncRNA-disease
associations. The CFGANLDA’s workflow is shown in Fig. 1.

2.2 Materials
In this paper, we utilized the datasets that were previously used in [47] for our experiments. These

datasets were also widely used in various works, including [13,15,36,46]. In these datasets, the number of
lncRNA, disease and miRNA are 240, 412 and 495, respectively. Among them, 2697 experimentally confirmed
associations exist between 240 lncRNAs and 412 diseases. There are 1002 validated associations between
495 miRNAs and 240 lncRNAs. They also contain lncRNA functional similarity, and disease semantic
similarity information. From these datasets, we used known lncRNA-disease associations, known lncRNA-
miRNA interactions, disease semantic similarity and lncRNA functional similarity in the experiments, as
described below.
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Figure 1: CFGANLDA method’s workflow. It contains the following stages: 1. Calculating the integrated similarity for
diseases and lncRNAs according to Eqs. (6) and (7); 2. Reducing noise of integrated similarities using PCA; 3. Applying
a CF algorithm to obtain an updated lncRNA-disease association set; 4. Employing a GAN to obtain embedded features;
5. Predicting lncRNA-disease associations using an MLP

2.2.1 Validated lncRNA-Disease Associations
The validated lncRNA-disease association set was collected from the Lnc2Cancer [48], GeneRIF [49],

and LncRNADisease [50] databases. This association set comprises 2697 validated associations among 412
diseases and 240 lncRNAs. The sparsity of this dataset is 2.73%. We used an ALD adjacency matrix to indicate
the set of lncRNA-disease associations where ALD(i , j) = 1, if lncRNA i is validated to be related with disease
j, otherwise, ALD(i , j) = 0.

2.2.2 Verified lncRNA-miRNA Associations
The set of verified lncRNA-miRNA associations was collected from starBase database [51]. There are

1002 verified associations between 240 lncRNAs and 495 miRNAs.
This association set is represented as an adjacency matrix ALM where ALM(i , k) = 1 if lncRNA i is

verified to be associated with miRNA k, otherwise, ALM(i , k) = 0.
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2.2.3 Disease Semantic Similarity
In this work, we used the diseases semantic similarity (DSS) matrix provided in Shi et al. [47], which was

calculated using Wang et al. [52]. DSS is a semantic similarity matrix of size 412 × 412, where 412 represents
the number of diseases.

2.2.4 LncRNA Functional Similarity
As previous studies [14,47,52], in this work, lncRNA functional similarity (LFS) among lncRNAs

is explicated by the similarity of lncRNA-associated diseases. Assume that lncRNA l (1) relates to a
disease group D (1) = {d (11) , d (12) , . . . , d(1r)} and lncRNA l(2) relates to a disease group D (2) =
{d (21) , d (22) , . . . , d(2s)}, thus lncRNA l (1) and lncRNA l (2) functional similarity is symbolized by
LFSl(1), l(2) as below:

LFSl(1), l(2) =
∑1≤i≤r max1≤ j≤s(DSS (d (1i) , d (2 j))) +∑1≤ j≤s max1≤i≤r(DSS (d (2 j) , d (1i)))

r + s
(1)

where DSS (d (1i) , d (2 j)) is the semantic similarity of disease d (1i) and disease d (2 j). r is the disease
number in group D (1), and s is the disease number in D(2). LFS represents a functional similarity matrix
with the shape of 240 × 240, and 240 means the lncRNA number.

2.3 Methods
2.3.1 GIP kernel Similarity for lncRNAs and Diseases

Based on the assumption that functionally similar lncRNAs typically have comparable associations with
similar diseases, and vice versa [53], this paper determines lncRNA GIP kernel similarity and disease GIP
kernel similarity using the ALD matrix.

Assume that the vector related to lncRNA l (i) in ALD is represented by ALD (li), which corresponds
the i-th row of the ALD adjacency matrix. Likewise, the vector associated with disease d j is denoted by
ALD (d j) which represent the j-th column of the ALD adjacency matrix. Thus, the lncRNA li and lncRNA
l j GIP kernel similarity is computed as follows:

GIPKL(li , l j) = exp(−γl ∥ALD (li) − ALD (l j)∥
2) (2)

where γl is charged with controlling the kernel bandwidth. γl is updated as follows:

γl =
γ
′

l
1

nl
∑nl

i=1 ∥ALD (li)∥2
(3)

here γ
′

l is simply set to 1 in accordance with previous work [53], nl is the number of lncRNAs.
In the similar way, we computed the disease di and disease d j GIP kernel similarity as follows:

GIPKD(di , d j) = exp(−γd ∥ALD (di) − ALD (d j)∥
2) (4)

where γd is charged with controlling the kernel bandwidth. γd is updated as follows:

γd =
γ
′

d
1

nd
∑nd

i=1 ∥ALD (di)∥2
(5)
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here γ
′

d is simply set to 1, according to previous study [53], nd represents the number of diseases.

2.3.2 Integrated Similarity for lncRNAs and Diseases
In fact, determining semantic similarity for all diseases is challenging. Consequently, to leverage disease

similarity information from multiple sources, we integrated disease semantic similarity with the GIP kernel
for diseases (GIPKD) to obtain the integrated similarity for diseases (InSD), following previous work [53] as
follows:

InSD (di , d j) = {
DSS (di , d j) if di and d jhas semantic similarity
GIPKD (di , d j) otherwise (6)

similarly, integrated similarity for lncRNAs (InSL) was calculated according to previous work [53] as follows:

InSL (li , l j) = {
LFS (li , l j) if li and l j has functional similarity
GIPKL (li , l j) otherwise (7)

2.3.3 Reducing the Noises of Integrated Similarities using PCA
The integration of similarities from multiple sources inevitably introduces noise. To address the issue,

a PCA is used to decrease the noise. PCA is a simple, efficient and unsupervised approach for feature
selection [2], and it is one of the most widely used techniques for dimension reduction [54]. In this study, PCA
is used as it may reduce model training time. Additionally, it extracts the most important information from
data by identifying relevant features. Let l = {l1 , l2, . . . , lu} and d = {d1 , d2, . . . , dv} represent the feature
vectors of lncRNAs and diseases, derived from InSL matrix and InSD matrix, respectively. The PCA in this
study is implemented using a SVD technique. The new feature vectors of lncRNAs and diseases are denoted
as lnew = {l1 , l2, . . . , lc} and dnew = {d1 , d2, . . . , dc} where c represents the number of new features for both
lncRNAs and diseases.

2.3.4 Applying a CF Algorithm to Obtain an Updated lncRNA-Disease Association Set
Undoubtedly, compared to the total number of associations in each category, the number of validated

lncRNA-disease associations and validated lncRNA-miRNA associations, accounting for 2.727% and 0.84%,
respectively, is extremely small. O mitigate the impact of sparse known associations, we employed an
item-based CF algorithm to recommend relevant lncRNA nodes to disease nodes and miRNA nodes. In
general, CF is recognized as a domain-independent prediction technique for content that cannot be easily
and adequately described by attributes, such as content in biological networks. This means that CF can
recommend items without analyzing the attributes of biological objects, thereby enriching heterogeneous
information [55]. The CF algorithm was successfully employed to solve sparse data problems in previous
studies [26,46]. In more detail, we concatenated two matrices of validated lncRNA-disease associations
together with validated lncRNA-miRNA interactions to form a new matrix. The number of rows in the new
matrix matches the number of lncRNAs, whereas the number of columns corresponds to the total number of
diseases and miRNAs. Diseases and miRNAs were treated as users, whereas lncRNAs were treated as items
in the CF algorithm. The CF algorithm contains the subsequent steps:

Step 1. Building a new ALDM adjacency matrix
The ALD and ALM matrices have the same number of rows. As a result, a new matrix, ALDM is

obtained by merging two matrices. The row vectors of ALDM are the concatenated row vectors of the ALD
and ALM matrices, whereas the column vectors of ALDM remain the same as those in ALD and ALM.
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Step 2. Constructing a new ALDMre c recommender matrix
Based on the ALDM matrix, we computed the Rnl x nl co-occurrence matrix where nl indicates the

number of lncRNAs. The element R (lk , lr) is located at the kth row and rth column of Rnl x nl matrix.
R (lk , lr) = 1 if and only if lncRNA lk and lncRNA lr share at least one common neighbor miRNA or disease
node, otherwise, R (lk , lr) = 0. By normalizing the Rnl x nl matrix, we obtained the similarity matrix Rnor as
follows:

Rnor(lk , lr) =
∣N(lk) ∩ N(lr)∣√
∣N (lk) ∣ ∗ ∣N(lr)∣

(8)

where ∣N(lk)∣ and ∣N(lr)∣ are the numbers of diseases or miRNAs in ALDM already related to lncRNA lk
and lncRNA lr , respectively. They reflect the number of values which are equal to 1 in the kth and rth rows,
of ALDM matrix, respectively. ∣N(lk) ∩ N(lr)∣ represents the number of miRNAs and diseases concurrently
associated with both lncRNA lk and lncRNA lr . Then, we computed ALDMrec matrix using the Rnor and
ALDM matrices as shown in the following equation:

ALDMrec = Rnor ∗ALDM (9)

Step 3. Updating ALDM matrix based on ALDMre c to have a new updated ALDMu pd ated matrix
For a specific disease d j or a specific miRNA mt in the ALDM matrix, if there exists a lncRNA lk that

satisfies ALDM (lk , d j) = 1 or ALDM (lk , mt) = 1 then we sum the values of all cells in the jth or tth column
of the ALDMrec matrix to obtain its corresponding averaged Pa value. Then, if the jth or tth column in the
ALDMrec contains a lncRNA lδ satisfying ALDMrec (lδ , d j) > Pa or ALDMrec (lδ , mt) > Pa , we recommend
lδ for d j disease or mt miRNA, respectively. Thus, an updated matrix ALDMu pd ated is obtained as follows:

ALDMu pd ated(lδ , d jormt) =
⎧⎪⎪⎨⎪⎪⎩

1 if ALDMrec (lδ , d j) > Pa or ALDMrec (lδ , mt) > Pa

0 otherwise
(10)

Step 4. Separating the ALDMu pd ated matrix into two matrices: ALDu pd ated and ALMu pd ated

By decomposing the ALDMu pd ated into ALDup and ALMup, which have the same shapes as original
ALD and ALM matrices, we obtain the updated lncRNA-disease association set. This association set is used
as input for a graph attention network in the next step, along with the new feature vectors of previously
identified lncRNAs and diseases.

2.3.5 Graph Attention Network Embedding Features
Deep learning techniques have been widely employed in various studies to predict lncRNA-disease

associations [2,13,36,56,57]. Among deep learning techniques, GAN is a neural network-based model that
operates on graph-structured data [2]. GAN utilizes a graph containing structural information and node
feature information as inputs. In this study, the graph is a lncRNA-disease bipartite graph, where the edges
connecting lncRNAs to diseases represent the lncRNA-disease associations contained in the ALDu pd ated

matrix. The node features are represented as Z = [ lnew
dnew

], and the adjacency matrix of graph is constructed
as:

GaM = [ 0 ALDup
ALDupT 0 ] (11)
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where ALDup is the updated set of associations obtained from CF algorithm, ALDupT is the transpose of
the ALDup matrix.

To enhance the representation of input features, we defined a linear transformation applied to the input
features as follows:

ZLT = Z ⋅Wz (12)

where Wz represents a learnable weight matrix, Wz ∈ R f0 x f0 and f0 denotes the number of output features.
The core concept of GAN is to update node features by aggregating information from neighboring nodes

and a self-attention mechanism is utilized to capture the varying significance of different nodes. The un-
normalized attention coefficient ei j is calculated based on information of contemporary node i and its first
neighbor node j as follows:

ei j = LeakyRELU((ZLTi ∣∣ZLTj) ⋅We) (13)

where ∣∣ represents a concatenation operation, LeakyRELU represents an activation function, We reflects a
learnable weight matrix, We ∈ R2∗ f0 x1.

We used a softmax function to calculated the normalized attention coefficient as follows:

ai j =
exp(ei j)

∑k∈Ni exp(ei j)
(14)

where Ni indicates the first-order neighbor nodes of node i.
Then, we updated the features of nodes in t + 1 layer by combining the first-order features of nodes with

the attention coefficient in the t layer as follows:

Zt+1
i = LeakyRELU( ∑

k∈Ni

at
i k Zt

LTik
) (15)

Typically, a multi-head attention mechanism is used to balance the learning process and enhance
method’s capability [2]. During the learning progress, all nodes were replicated in H clones, each with
separate weight matrix Wz . The output embedding features of layer t + 1 were obtained by concanating H
clones. Specifically, the node i’s output embedding features could be computed as:

Zt+1
i = ∣∣Hh=1LeakyRELU

⎛
⎝∑k∈Ni

ah
i k Zt

kW h
z
⎞
⎠

(16)

2.3.6 Predicting lncRNA-Disease Associations Using MLP
At final stage, we used a multilayer perceptron (MLP) to infer lncRNA-disease associations. First, we

concatenate the lncRNA embedding vector lnewi and disease embedding vector dnew j together as follows:
Z = ( lnewi

dnew j
). The association between lncRNA lnewi and disease dnew j based on latent features is inferred using

a standard MLP as follows:

h1 = LeakyRELU (W 1Z + b1) (17)

hL−1 = LeakyRELU (W L−1hL−2 + bL−1) (18)
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Âi j =W L hL−1 + bL (19)

2.3.7 Loss Function
In the training model process, the matrix Â logistic loss and L2 regularization are minimized using the

following loss function:

Loss = 1
N ∑i j

(ALDupi j log (Âi j) + (1 − ALDupi j) log (1 − Âi j)) + λ∣ ∣Θ∣ ∣2 (20)

where N indicates the adjacency matrix size, λ is a hyperparameter controlling the L2 regularization strength.

3 Experimental Results

3.1 Performance Measurements
To assess CFGANLDA’s performance in inferring lncRNA-disease relationships, 10-fold cross-

validation experiments were conducted in this study. The known lncRNA-disease association set is randomly
divided into 10 parts. Nine out of ten parts served as training sets, while the remaining part was alternatively
utilized as a testing set. We plotted the receiver operating characteristics curve (ROC) and measured the Area
under roc curve (AUC) [58] to evaluate CFGANLDA’ performance. Additionally, we plotted the Precision-
Recall curve and measured the Area under precision-recall curve (AUPR) to assess prediction performance.
As acknowledged by Takaya Saito and Marc Rehmsmeier, Precision-Recall curve and AUPR are more
informative than ROC and AUC when evaluating binary classifiers on imbalanced datasets [59].

To plot ROC and evaluate AUC metrics, we obtained the false positive rate (FPR) and true positive rate
(TPR) metrics. FPR is used to denote the ROC curve’s abscissa, while TPR represents its ordinate. The FPR
and TPR are computed using the following formulas:

FPR = FP
FP + TN

(21)

TPR = TP
TP + FN

(22)

where TP (true positive) and TN (true negative) represent the number of positive and negative samples that
have been accurately predicted, respectively; FP (false positive), FN (false negative) denote the number of
positive and negative samples that have been inaccurately predicted, respectively.

To plot Precision-Recall curve and measure the AUPR values, we calculated Precision and Recall values.
Precision denotes the Precision-Recall curve’s ordinate whereas Recall corresponds t the Precision-Recall
curve’s abscissa. Precision and Recall were computed using the following formulas:

Precision = TP
TP + FP

(23)

Recal l = TP
TP + FN

(24)
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3.2 AUC and AUPR Evaluating by 10-Fold-Cross-Validation Experiments
As previously mentioned, in 10-fold cross-validation experiments, we first took the validated lncRNA-

disease associations to be positive samples while the unknown associations were considered negative
samples. Second, we arbitrarily divided all positive and negative samples into 10 equivalent parts. Third, 9
out of 10 parts of positive and negative samples were treated as training set and the remaining one is used
as testing set in a particular experimental running time in which the values of elements in testing set are
changed from 1 to 0. Finally, we recalculated Âi j in each run. To enhance the reliability of AUC and AUPR
values, we repeatedly run the 10-fold cross-validation experiments 30 times to obtain significant statistical
AUC and AUPR values. It reached the significant statistical AUC value of 0.9835 while its AUPR value was
0.9822. These values were obtained by performing a One-sample t-test with N = 30 at a 95% confidence level.
The details of One sample t-test are demonstrated in Table 1. Additionally, the ROC curves along with AUC
values Fig. 2a as well as PR curves along with AUPR values Fig. 2b in 10-fold cross-validation experiments’
10 running times are shown in Fig. 2, respectively.

Figure 2: ROC curves along with AUC values (a) and Precision-Recall curves along with AUPR values (b) in 10-fold
cross-validation experiments’ 10 running times

3.3 Ablation Studies
In this study, to evaluate the impact of the CF algorithm and the integration of multiple similarities in our

CFGANLDA method, we conducted some ablation studies. Fig. 3 shows the performance of our proposed
method and two ablation cases: (1) applying CF and no integrating multiple similarities; (2) no applying CF
algorithm and no integrating multiple similarities.

As shown in Fig. 3, CFGANLDA achieved the highest performance, and it indicates that applying both
the CF algorithm and integrated multiple similarities play a role in enhancing prediction performance.

3.4 Performance in Comparison with Other Related Methods
To demonstrate CFGANLDA’s superior performance in comparison to other state-of-the-art methods

for inferring lncRNA-disease associations, we compared its performance with several state-of-the-art mod-
els, including GANLDA [2], IPCARF [28], VGAELDA [36], ITPGLDA [46], and HGNNLDA [47] under
10-fold cross-validation experiments.
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Table 1: AUC and AUPR obtained by One-Sample t-test. It proves that the proposed method reaches the significant
statistical AUC and AUPR values

N Mean Std.
Devia-

tion

Std.
Error
mean

AUC test value = 0.9835 AUPR test value = 0.9822

t df Sig.
(2-

Tailed)
/p-

value

Mean
differ-
ence

95% Confidence
interval of the

difference

Lower Upper
AUC 30 0.9831 0.0007967 0.0001455 −2.612 29 0.014 −0.00038 −0.000677 −0.00083
AUPR 30 0.9818 0.009256 0.001690 −2.426 29 0.022 −0.00041 −0.000756 −0.000064

Figure 3: ROC curves along with AUC values (a) and Precision-Recall curves along with AUPR values (b) in ablation
case studies. The results illustrate that both the integration of multiple similarities and collaborative filtering make
contributions to improvement in prediction performance

As shown in Fig. 4, CFGANLDA exhibited competitive performance or outperformed other related
methods in both AUC and AUPR measurements.

Specifically, CFGANLDA’s AUC and AUPR values are slightly higher than those of the ITPGLDA
method. Moreover, it is significantly superior to the GANLDA, IPCARF, VGAELDA and HGNNLDA
methods in both AUC and AUPR measurements. This suggests that CFGANLDA can be considered as an
effective tool for lncRNA-disease association prediction.

3.5 Setting of Parameters
Inspired by the GANLDA [2] method, in this paper, the graph attention network parameters are set as

follows: the number of iterative training is set to 1000 by using a stochastic optimization Adam [60]. The
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number of GAN layers is set to 1. Both the number of heading and embedding are set to 8. The dropout rate
is set to 0.4, and the last hidden layer is set to 64. The PCA embedding size is set to 128. The learning rate
and weight decay are set to 0.005 and 0.00005, respectively.

Figure 4: ROC curves along with AUC values (a) and Precision-Recall curves along with AUPR values (b) in
comparison with other state-of-the-art methods. It proves that the proposed method is competitive or superior to the
other methods in both AUC and AUPR values

3.6 Case Studies
In addition to the 10-fold cross-validation experiments, three case studies on prostate cancer, liver

cancer, and stomach cancer were conducted to enhance the trustworthiness of prediction performance.
We performed experiments using all known and unknown lncRNA-disease association samples. For each
selected disease (Prostate cancer, Liver cancer, and Stomach cancer), we computed disease-associated
lncRNA scores, ranked them in descending order, and selected the top 15 disease-associated lncRNAs. Finally,
we validated the predicted results using alternative databases or verified biological literature.

3.6.1 Prostate Cancer Case Study
Prostate cancer is one of the most prevalent cancer types and a leading cause of cancer-related deaths in

men [61]. Numerous lncRNAs have been shown to play crucial roles in various diseases in different manners.
For example, lncRNA H19 regulates tumor plasticity in neuroendocrine prostate cancer [62]. lncRNA
UCA1 acts as a ceRNA to speed up prostate cancer progression by sponging miR143 [63]. The knockdown
of MATLAT1 lncRNA inhibits prostate cancer progression by regulating miR-140/BIRC6 axis [64]. It is
the reason of selecting prostate cancer as a case study for further validation. As shown in Table 2, 8 out
of top 10 predicted prostate cancer-related lncRNAs were retrieved from known associations while 2 of
top 10 predicted associations are previously unknown. Both of the two new predicted associations were
recently verified in other literature. Specifically, lncRNA CCAT2 has recently been proven to promote
cell proliferation and invasion of prostate cancer by regulating the Wnt/β-catenin signaling pathway [65].
The prostate cancer progression was driven by lncRNA CYTOR via supporting AR-V7 generation and its
oncogenic signaling [66].
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Table 2: Top 10 predicted Prostate cancer-associated lncRNAs, 8 of top 10 predicted prostate cancer-related lncRNAs
were recalled and the remaining 2 of top 10 predicted associations had been verified in other literature

Rank lncRNAs Known
before

Evidence(s) Rank lncRNAs Known
before

Evidence(s)

1 MALAT1 1 Known
association

6 GAS5 1 Known
association

2 UCA1 1 Known
association

7 HOTAIR 1 Known
association

3 PVT1 1 Known
association

8 HULC 1 Known
association

4 MEG3 1 Known
association

9 CYTOR 0 PMID: 37132132

5 CCAT2 0 PMID: 32831916 10 H19 1 Known
association

3.6.2 Liver Cancer Case Study
Liver cancer is recognized as the second leading cause of cancer-related deaths globally and the fifth

in the United States, with a low survival rate as 18% per year and with limited treatment options [67,68].
It is crucial to develop new therapeutic methods for liver cancer treatment and curing. Primary liver
cancer mainly includes two pathophysiological subtypes comprising Hepatocellular Carcinoma (HCC) and
Cholangiocarcinoma (CCA) [67]. HCC is the ninth leading cause of cancer-related deaths in the United
States [69,70]. Long non-coding RNAs have already been demonstrated to play crucial roles in different
biological processes, including the apoptosis, invasion, metastasis and cell proliferation of liver cancer. For
example, by regulating miR-544/RUNX3, lncRNA GAS5 bolsters the malignant growth of human liver
cancer stem cells [71]. In this paper, we selected liver cancer as a case study for increasing the reliability
of our method prediction performance. As demonstrated in Table 3, CFGANLDA recalled 10 out of top 10
predicted associations.

Table 3: Top 10 predicted liver cancer-associated lncRNAs, all of top 10 predicted Liver cancer-related lncRNAs were
recalled

Rank lncRNAs Known
before

Evidence(s) Rank lncRNAs Known
before

Evidence(s)

1 UCA1 1 Known
association

6 HOTAIR 1 Known
association

2 PVT1 1 Known
association

7 HULC 1 Known
association

3 MEG3 1 Known
association

8 DBH-AS1 1 Known
association

4 MIR194-
2HG

1 Known
association

9 H19 1 Known
association

5 GAS5 1 Known
association

10 PANDAR 1 Known
association
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3.6.3 Stomach Cancer Case Study
Stomach cancer, also known as Stomach Neoplasms or Gastric cancer, is one of the most popular

malignant neoplasms worldwide, with a high incidence and mortality [72]. Various studies have indicated
that lncRNAs are involved in the progression and development of Stomach/Gastric cancer. For example,
lncRNA MEG3 regulates the growth of gastric cancer by acting as a competing endogenous RNA [73]. The
high expression of lncRNA PVT1 infers metastasis in Han and Uygur Patients with Gastric Cancer [74].
Through the regulation of EMT, lncRNA MEG3 inhibits the growth, invasion and migration of gastric
cancer cells [75]. In this study, stomach cancer was selected as a case study to further validate our method’s
performance in predicting lncRNA-disease associations. Among the top 10 predicted stomach cancer-
associated lncRNAs, six were already known associations, while four were newly predicted. Three out of
the four newly predicted associations have been verified in other literature, as shown in Table 4, while the
remaining association remains unknown. Particularly, lncRNA MALAT1 expression was demonstrated to
have a correlation with gastric cancer tissues compared with adjacent healthy tissues [76]. lncRNA CCAT2
is up-regulated in stomach cancer and associated with poor prognosis [77]. The up-regulation of lncRNA is
associated with poor pathological and clinical outcomes in gastric cancer [78].

Table 4: Top 10 predicted stomach cancer-associated lncRNAs, 6 out of top 10 predicted associations were recalled, 3
of top 10 predicted associations had been verified by other literature and the remaining association is still unknown

Rank lncRNAs Known
before

Evidence(s) Rank lncRNAs Known
before

Evidence(s)

1 MALAT1 0 PMID:
33968337

6 GAS5 1 Known
association

2 UCA1 1 Known
association

7 MEG3 1 Known
association

3 PVT1 1 Known
association

8 HULC 0 PMID:
27781386

4 HOTAIR 1 Known
association

9 DBH-AS1 0 Unknown

5 CCAT2 0 PMID:
25755774

10 H19 1 Known
association

4 Conclusion and Discussions
Numerous studies have shown that lncRNAs are involved in various biological processes, including early

cell development, proliferation, differentiation, apoptosis, and more. Investigating the associations between
lncRNAs and diseases is crucial. However, it is costly, laborious and time-consuming to infer potential
lncRNA-disease associations via traditional biological experiments.

Consequently, developing computational tools for predicting lncRNA-disease associations has become
urgently need, attracting attention of many researchers in recent years. Up to now, a large number of compu-
tational approaches, grouped into different categories, have been developed to infer latent lncRNA-disease
associations. Notably, the deep learning-based computational methods for predicting lncRNA-disease
associations have gained dominant interest. In this paper, we proposed a computational method based on
collaborative filtering and graph attention networks to predict lncRNA-disease associations. Graph attention
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network is a deep learning technique based on neural network architecture. It uses graph structure informa-
tion and graph node features to process both linear and non-linear information, enabling the extraction of
high-quality features of lncRNA-disease associations and improving prediction performance. Our proposed
method achieved high performance in predicting lncRNA-disease associations, as demonstrated by the
values of AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) of 0.9835 and
0.9822, respectively, under 10-fold-cross-validation experiments. The AUC and AUPR values are statistically
significant, as supported by One sample t-test verification. Its prediction performance outperforms several
state-of-the-art approaches, including GANLDA [2], IPCARF [28], VGAELDA [36], ITPGLDA [46] and
HGNNLDA [47] methods. The reliability of prediction performance is supported by three case studies of
Prostate cancer, Liver cancer and Stomach cancer with 2, 0, and 4 newly predicted associations for each
case, respectively. Most of the new predicted associations have been verified in other biological literature.
Therefore, our proposed CFGANLDA method can be recognized as a valuable tool for inferring potential
lncRNA-disease associations.

The CFGANLDA achieved desirable prediction performance thanks to several contributing factors:
Firstly, our method leverages the advantages of incorporating multiple types of biological information to
enhance prediction performance, as indicated in the ablation case study. Secondly, the issue of sparse data
is addressed by employing a collaborative filtering algorithm. Finally, GAN is a deep learning technique
based on neural network architecture. It reinforces the linear and non-linear features of lncRNA-disease
associations.

Although CFGANLDA achieved strong performance and its reliability is supported by some case
studies. However, the number of known lncRNA-disease associations is still very limited, and the datasets
used in experiments were already employed in other methods without updates. Therefore, it is essential to
collect and update the known associations between biological objects to further improve the reliability of
prediction performance in future research.

Acknowledgement: Not applicable.

Funding Statement: This research was supported by the Vietnam Ministry of Education and Training under project
code B2023-SPH-14. The funders had no role in the design of the study, data collection, analysis, interpretation, or
manuscript writing.

Author Contributions: Dang Hung Tran and Van Tinh Nguyen conceived and designed the study; Dang Hung Tran
and Van Tinh Nguyen performed computational analyses, while Van Tinh Nguyen collected data and performed
experiments. Dang Hung Tran wrote the first draft of the manuscript. All authors reviewed the results and approved
the final version of the manuscript.

Availability of Data and Materials: The processed data are available upon request. Contact to corresponding: Van
Tinh Nguyen. Email: nguyenvantinh_cntt@haui.edu.vn.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Abbreviations
AUC Area Under Receiver Operating Characteristic Curve
AUPR Area Under Precision-Recall Curve
FN False Negative
FP False Positive
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SVD Singular Value Decomposition
FPR False Positive Rate
TP True Positive
TPR True Positive Rate
lncRNA long non-coding RNA
miRNA micro RNA
HCC Hepatocellular carcinoma
GAN Graph attention network
GIP Gaussian interaction profile
CF Collaborative filtering
MLP Multi layer perceptron
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