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ABSTRACT: As the number and complexity of sensors in autonomous vehicles continue to rise, multimodal fusion-
based object detection algorithms are increasingly being used to detect 3D environmental information, significantly
advancing the development of perception technology in autonomous driving. To further promote the development of
fusion algorithms and improve detection performance, this paper discusses the advantages and recent advancements of
multimodal fusion-based object detection algorithms. Starting from single-modal sensor detection, the paper provides
a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based
on images and point clouds. For image-based detection methods, they are categorized into monocular detection and
binocular detection based on different input types. For point cloud-based detection methods, they are classified into
projection-based, voxel-based, point cluster-based, pillar-based, and graph structure-based approaches based on the
technical pathways for processing point cloud features. Additionally, multimodal fusion algorithms are divided into
Camera-LiDAR fusion, Camera-Radar fusion, Camera-LiDAR-Radar fusion, and other sensor fusion methods based
on the types of sensors involved. Furthermore, the paper identifies five key future research directions in this field, aiming
to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage
broader attention to the research and application of multimodal fusion-based object detection.
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1 Introduction
Environmental perception technology [1] is the core technology of autonomous driving systems, which

is responsible for helping vehicles identify and locate surrounding obstacles, and is essential for applications
such as autonomous vehicles, robotics, and intelligent traffic management. Autonomous driving technology
has made significant progress in recent years, but deploying reliable autonomous driving systems in the real
world remains challenging. Autonomous vehicles [2] must perform tasks such as perception, prediction,
decision-making, planning, and execution in a complex and uncontrolled environment, and any small
mistake can lead to serious consequences. Fig. 1 shows the system architecture for autonomous driving.

Challenges for autonomous driving systems include dealing with occlusion, complex backgrounds, and
sensor noise. In order to overcome these challenges, researchers have begun to explore multimodal data
fusion strategies [3], combining data sources from different sensors, such as lidar, camera, and radar, to
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improve detection performance by mining their complementary characteristics. Lidar can provide high-
precision three-dimensional spatial information, but it may face problems of sparse data and lack of semantic
features in dense scenes; although camera images are rich in color and texture information, they have
limitations in expressing three-dimensional geometric structures. By integrating the spatial information of
point clouds and the semantic features of images, it is possible to accurately identify and locate targets in
complex environments, significantly improving detection accuracy and robustness. However, as the number
of sensors installed in autonomous vehicles increases, problems arise one after another, such as differences
in data distribution between different modalities, and alignment errors in time and space. How to efficiently
extract multimodal features, achieve accurate modal alignment, and dynamically adjust the differences in
contributions of different modalities to tasks are still key issues that urgently need to be addressed.

Figure 1: Auto drive system architecture, composed of four subsystems: Perception; Positioning; Planning and
Execution

Although the existing reviews comprehensively summarize some key technologies in the field of
autonomous driving (such as object detection, semantic segmentation, sensor fusion, etc.), there are still
some obvious limitations, such as:

(1) Narrow technical coverage: Some reviews only focus on a single technology (such as convolutional
neural network (CNN) or Transformer) and lack a systematic summary of multimodal fusion methods. For
example, the application of CNNs in image perception is discussed in detail in Ref. [4], but does not address
the processing methods of lidar or radar data. Ref. [5] focuses on the advantages of Transformer in sequence
modeling, while ignoring its potential for fusion with other modalities such as images or point clouds. The
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limitations of this single technology make it difficult for the existing reviews to fully reflect the research status
of multimodal perception of autonomous driving.

(2) Failure to cover the latest technological advances: Although some reviews cover the basic methods of
multimodal fusion, they fail to incorporate the latest technological advances in a timely manner. For example,
perception algorithms based on self-supervised learning have made significant progress in recent years,
which can improve model performance by using unlabeled data, but the existing reviews [6] are still mainly
limited to supervised learning methods. In addition, some emerging technologies, such as multimodal fusion
methods based on graph neural networks, have not been fully discussed.

(3) Lack of in-depth analysis of practical application scenarios: Existing reviews often focus on the
theoretical description of algorithms, but lack of in-depth analysis of practical application scenarios. For
example, the performance of multimodal perception algorithms often decreases significantly in extreme
weather (e.g., rain, snow, haze) or complex traffic scenarios (e.g., urban congestion, highways), but existing
reviews fail to systematically summarize these challenges and their solutions.

These shortcomings provide important research directions for this review. In this paper, we will review
the latest research progress of object detection algorithms based on multimodal fusion, and conduct in-
depth analysis of different solutions and algorithms. We will explore how these advanced algorithms and
technologies can solve the technical challenges of multimodal data fusion and improve the detection
performance of autonomous driving systems in complex environments. By summarizing and analyzing these
research results, we can better understand the potential and prospect of multimodal data fusion in the field
of autonomous driving, and help us build a safer and more reliable autonomous driving system. The main
contributions of this paper are as follows:

(1) This paper systematically summarizes the application of multimodal fusion methods in autonomous
driving, which fills the gap in existing research. Focusing on three-dimensional object detection in
autonomous driving scenarios, this paper comprehensively and systematically reviews the research in the
field of multimodal fusion object detection. Compared with the existing review, we not only cover the
classical methods from the early days to the latest cutting-edge technologies, but also pay special attention to
the multimodal fusion methods based on deep learning and Transformer architectures in recent years. This
paper comprehensively discusses the latest representative work of 3D object detection based on multi-modal
fusion, introduces relevant datasets and evaluation indicators, summarizes the background technology of
multi-modal fusion, including the characteristics of sensors in autonomous driving and the advantages
and disadvantages of single-modal sensor object detection, and deeply analyzes the technical paths of
different algorithms.

(2) The potential of the latest technologies in autonomous driving is explored in depth. In this paper, the
multimodal fusion object detection methods are classified and analyzed from multiple dimensions, including
data types (such as images, point clouds, radars, etc.), fusion strategies (such as data-level fusion, feature-
level fusion, decision-level fusion, etc.), application scenarios (such as autonomous driving, robot navigation,
etc.), and model architecture (such as Transformer, CNN, etc.). The three core issues in multimodal fusion
are discussed in detail: what to fuse, when to fuse, and how to fuse, and the processing methods of the original
data are reasonably classified. The technical methods of multimodal fusion are comprehensively discussed,
including camera-lidar fusion, camera-millimeter-wave radar fusion, camera-lidar-millimeter-wave radar
fusion, and other sensor fusion.

(3) It condenses the future research direction of multimodal fusion algorithm, and provides new ideas
for technological progress in the field of autonomous driving. In this paper, we pay special attention to the
latest research progress in this field in recent years, including some emerging technologies that have not yet
been widely used, analyze the innovation and performance improvement of these methods in detail, and put
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forward the key directions for future research. Including: (a) Convolutional operators suitable for feature
extraction of non-Euclidean data; (b) The exploration of semi-supervised learning vs. unsupervised learning;
(c) Multimodal target detection in polar coordinates; (d) Adaptive implicit multimodal spatial fusion; (e)
Efficient real-time detection.

2 Dataset and Evaluation Indicators
Datasets are typically made up of a variety of scenarios, each with a different number in a different

dataset. We have summarized the multiple datasets available for autonomous driving environment per-
ception tasks, including issuance time, region, sensor data, and the number of annotations for different
perception tasks (object detection; lane line segmentation; and semantic segmentation). Among them,
four large-scale autonomous driving benchmark datasets, KITTI [7], NuScenes [8], Waymo Open Dataset
(WOD) [9], and ONCE [10] datasets, are introduced in detail, which have become the focus of this paper
due to their importance and wide application in autonomous driving research. There are also smaller-scale
datasets that focus on specific individual perception tasks, which are not covered in this article. For example,
OpenLane [11] is created for a single task such as lane markings; DeepAccident [12] is a set of accidents
dedicated to the safety of autonomous driving research.

2.1 Datasets
To reduce development costs and ensure the safety of experiments, researchers often use open-

source in-vehicle datasets to train and validate the detection algorithms they build. High-quality datasets
not only enable the training of fast and accurate detection algorithms, but also provide a fair algorithm
evaluation platform and benchmark, which helps researchers make horizontal and vertical comparisons
to develop better models. Table 1 summarizes the data of the current mainstream autonomous driving
perception datasets.

Table 1: Autonomous driving perception dataset

Dataset Year Area Scenario Time Point Clouds Image Frames 3D box
KITTI [7] 2012 EU 22 1.5 15 K 15 K 15 K 80 K

NuScenes [8] 2019 NA/AS 1000 5.5 390 K 1.4 M 40 K 1.4 M
Waymo [9] 2019 NA 1150 6.4 230 K 12 M 230 K 12 M
ONCE [10] 2021 AS † 144 1M 7 M 15 K 417 K

DeepAccident [12] 2022 Sim 464 † 131K 786 K 131 K 1.8 M
ApolloScape [13] 2018 AS 103 2.5 29 K 144 K 144 K 70 K

Lyft L5 [14] 2019 AF 366 2.5 46 K 240 K 46 K 1.3 M
A* 3D [15] 2019 AS † 55 39 K 39 K 39 K 230 K
H3D [16] 2019 NA 160 0.8 27 K 83 K 27 K 1.1 M
A2D2 [17] 2020 EU † † 12.5 K 41 K 12.5 K 43 K

Cityscapes 3D [18] 2020 – † 2.5 – 5 K 5 K 40 K
Argoverse [19] 2019 NA 113 0.6 22 K 490 K 22 K 993 K
AIODrive [20] 2021 Sim 100 2.8 100 K 1 M 100 K 26 M
KITTI-360 [21] 2020 EU 11 † 80 K 320 K 80 K 68 K

Note. “AS” stands for Asia, “EU” stands for Europe, “NA” stands for North America, “Sim” stands for simulated
data, and “3D box” represents the number of annotation instances for 3D inspection tasks. “†” means that the
statistics are not available, and “–” means that the column does not exist.
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KITTI: KITTI dataset [7] is a groundbreaking autonomous driving dataset proposed by Karlsruhe
Institute of Technology (KIT) and Toyota Technological Institute Chicago (TTIC) in 2012, and is the first
comprehensive dataset for multiple autonomous driving tasks. The collection vehicle of the dataset carries
2 grayscale cameras, 2 color cameras, 1 64-line lidar, 4 optical lenses and a global positioning system (GPS)
navigation system to obtain scene data, including 389 stereo image pairs, optical flow maps, 39.2 km visual
range sequences, 15,000 point cloud frames and 200,000 artificially labeled 3D target frames. Each frame
can contain up to 15 vehicles and 30 pedestrians with varying degrees of occlusion and truncation, and
also includes 7481 training images and 7518 test images. The KITTI dataset classifies object detection tasks
into three levels based on the size, visibility, and truncation of the target: easy, medium, and difficult. There
are two types of evaluation for object detection tasks: 3D Object Detection Evaluation (3D AP) and Bird’s-
Eye View Detection Evaluation (BEV AP). Compared with other mainstream datasets, KITTI has a small
data scale, making it suitable for research scenarios with limited resources, such as algorithm prototyping,
rapid verification, lightweight model training, and beginner learning and teaching. Its high-quality 2D/3D
annotation data makes it ideal for basic object detection research, especially in object detection tasks with
monocular cameras or lidar point clouds.

NuScenes: The NuScenes dataset [8] is a large-scale autonomous driving dataset developed by the
Motional team in 2019, containing 1000 driving scenarios in two cities, Boston and Singapore, including
complex scenarios such as sunny, rainy, and dark nights. Among them, 850 scenes were used for training
and validation, and 150 scenes were used for testing, each with a 20-s time and 40,000 keyframes, totaling
approximately 1.4 million camera images, 390,000 lidar scans, 1.3 million radar scans, and 1.4 million 3D
object annotations. Compared to other datasets, all of its sensors provide a 360 degree view. The sensors used
to collect data include 6 cameras, 1 lidar, and 5 radars, with a camera image resolution of 1600 × 900. At the
same time, it also has corresponding HD-Map and controller area network (CAN) bus data to explore multi
task perception with multiple inputs. The NuScenes dataset is currently the most widely used dataset for 3D
object detection tasks. NuScenes has a medium data scale (about 40,000 frames) and provides multi-sensor
data (camera, lidar, radar) and timing information, making it suitable for complex tasks such as multi-modal
fusion and time-series object detection and tracking. Its diverse scenarios and rich annotations make it the
first choice for medium-scale deep learning model training and multi-task learning.

Waymo: The Waymo Dataset [9] is a dataset released by Google’s Waymo autonomous driving company
in 2020, and the dataset tasks are divided into three categories: 2D object detection, 3D object detection,
and target tracking. It collects data from multiple cities like San Francisco, Phoenix, etc. Includes different
scenarios in various driving conditions, such as day, night, dawn, dusk, and rain. The dataset consists of 1150
scenarios, including 798 scenarios in the training set, 202 scenarios in the validation set, and 150 scenarios in
the test set. Each scene has 20 s and a total of 230,000 frames of data, of which 12 million objects are manually
labeled. The acquisition equipment in the scene is 5 high-resolution cameras and 5 high-quality lidar sensors,
with an image resolution of 1920 × 1280 or 1920 × 886 pixels. The Waymo dataset has a large data scale
(about 1950 scenes, 20 s per scene), providing high-resolution lidar and multi-camera data, which is suitable
for high-precision 3D object detection, large-scale deep learning model training, and multi-target tracking
tasks in complex scenes. Its fine annotation and large-scale data support the development and verification of
high-precision algorithms.

ONCE: The ONCE dataset [10] is one of the largest and most diverse autonomous driving datasets
collected by Huawei’s Noah’s Ark Lab for 144 h of driving in China. The dataset contains 16,000 typical
scenes, including 417,000 3D frames and 769,000 2D frames, covering various labeling categories such as
cars, pedestrians, buses, trucks, and cyclists. The weather conditions of the collection scenes were varied,
including sunny, cloudy, and rainy days, and the time span ranged from morning to evening, covering
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different time periods. The large data size of the ONCE dataset (1,000,000 scenarios) makes it suitable for
data-driven deep learning methods, especially unsupervised or semi-supervised learning tasks. Although
there are few annotations, its massive data provides a solid foundation for large-scale pre-training and diverse
scenario research.

2.2 Evaluation Indicators
The most commonly used evaluation metrics for multimodal fusion 3D object detection tasks are the

average precision (AP) for a single class, the mean average precision (mAP) across all classes, and the
nuscenes detection score (NDS).

AP: Average-precision AP is a commonly used metric in object detection tasks, which is suitable for
evaluating the detection performance of a model on a specific class (such as vehicles, pedestrians, and
bicycles). In static or simple dynamic scenes, AP can better reflect the accuracy of the model for target
localization and classification. Its limitation is that it only works with a single class and does not directly
reflect the overall performance of the model in a multi-class task. In the evaluation of 3D object detection
performance, the prediction frame with the intersection union ratio (IoU) of the detection frame and the
truth frame is greater than a certain threshold, otherwise it is judged to be false. IoU represents the degree
of overlap between the detection frame (box1) and the truth box (box2). The AP value can be obtained by
calculating the area enclosed by the accuracy-recall curve and the coordinate axis, and the formulas for
Precision, Recall, AP and IoU are as follows:

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

AP = ∫
1

0
P (R) dR (3)

IoU (box1 , box2) =
∣box1 ∩ box2∣
∣box1 ∪ box2∣

(4)

where TP is a true example (predicted to be positive, actual is positive), FP is a false positive example
(predicted to be positive, actual is negative), FN is a false negative example (predicted to be negative, actual
is positive), and R is to represent the recall rate.

LET-3D-APL: An evaluation index specially designed for 3D object detection tasks aims to solve the
problem that traditional 3D detection indicators (such as 3D AP) are too sensitive to positioning errors. By
introducing a tolerance mechanism for positioning error, the performance of the model in complex scenarios
can be evaluated more comprehensively, especially in the detection task of vehicles, pedestrians and other
objects in the field of autonomous driving. However, it depends on the setting of positioning error tolerance
threshold and longitudinal affinity, and improper parameter selection may affect the fairness of the evaluation
results. In addition, additional computational steps (e.g., longitudinal affinity calculations) are introduced,
resulting in higher computational complexity than traditional 3D APs. The formula for calculating LET-3D-
APL is as follows:

LET − 3D − APL = ∫
1

0
pL (r) dr = ∫

1

0
al ⋅ p (r) dr (5)
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where pL (r) is the longitudinal affinity-weighted precision value, p (r) is the accuracy value at the recall r,
and al is the average longitudinal affinity of the matching prediction that is considered to be the TP.

mAP: Mean Average Accuracy (mAP) is an extension of AP, which evaluates the overall performance
of the model in multi-class object detection tasks by averaging the APs of all classes, and is a common
indicator to evaluate the comprehensive performance of the model in multiple categories (such as vehicles,
pedestrians, traffic signs, etc.). It is suitable for complex scenarios with a variety of targets, and can fully
reflect the detection ability of the model. The limitation is that it may not be sensitive enough to datasets with
unbalanced categories, and it cannot directly reflect the model’s ability to predict attributes such as target
direction and velocity. The matching strategy of the mAP is to replace the interaction ratio (IoU) of the 3D
bounding box with the 2D center distance on the BEV plane. According to different distance thresholds, it
can be divided into 0.5, 1, 2 and 4 m, and the mAP is averaged according to the AP in the above thresholds.
It is calculated as follows in Eq. (6).

NDS: It is a composite scoring metric proposed by the NuScenes dataset that combines weighted scores
from mAP and other tasks such as target direction, velocity, and attribute prediction. It is suitable for
evaluating the comprehensive performance of the model in multiple tasks such as object detection, direction
prediction, and velocity estimation. In dynamic scenarios, NDS can better reflect the model’s ability to predict
the target motion state (e.g., velocity, direction). Its limitations lie in its high computational complexity,
the need for additional attribute prediction tasks, and its strong dependence on datasets, which is mainly
applicable to specific datasets such as NuScenes. NDS is a weighted combination of mAP and other object
attribute detection results, and consists of Mean Translation Error (ATE), Mean Scale Error (ASE), Mean
Directional Error (AOE), Mean Velocity Error (AVE), and Mean Attribute Error (AAE). mAP is the average
of the matching thresholds for the bird’s-eye center distance D = {0.5, 1, 2, 4}meters and the class C set, and
the NDS indicator is calculated as follows:

mAP = 1
CD ∑cεC

∑
dεD

APc ,d (6)

NDS = 1
10
[5mAP + ∑

mTPεTP
(1 −min (1, mTP))] (7)

mTP = 1
C ∑cεC

TPc (8)

where APc ,d is the average precision, TPc is the metric set of five average errors, and mTP is the average TP
metric for all classes.

3 Background Technology
In this section, we provide a background overview of typical sensors used in autonomous driving and

introduce camera-based object detection methods and lidar-based object detection methods.

3.1 Mainstream Sensors for Autonomous Driving
There are many different working principles and data collection methods of in-vehicle sensors, and their

adaptability in different driving environments is also different. Due to the unique advantages and limitations
of each mainstream sensor, a single sensor cannot fully meet the perception needs of unmanned vehicles.
Therefore, multi-sensor fusion technology has emerged, which can integrate the advantages of each sensor
and overcome the limitations of a single sensor, so as to provide more accurate information for smart cars
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for decision-making planning and vehicle control, and enhance the safety of smart cars. Fig. 2 illustrates the
mainstream sensors used in autonomous driving.

Figure 2: Sensors commonly used for autonomous driving

(1) Camera: The camera enhances the perception ability of the system by providing high-resolution
image data in 3D target detection and fusing it with sensor data such as lidar. Not only does it have rich
color and texture information to identify and classify targets, but it can also improve depth perception and
build bird’s-eye view features through stereo vision technology to achieve more accurate and robust target
positioning in a variety of environmental conditions. However, the camera cannot directly obtain the 3D
structural information of the scene, which limits its ability to accurately target in 3D space.

(2) LiDAR: The role of lidar in 3D object detection is mainly reflected in its ability to provide 3D struc-
tural information of the scene. By emitting a laser beam and measuring the reflection information, the lidar
is able to obtain accurate depth images and point cloud data, with each point containing information such
as depth, azimuth, and inclination. These data not only contain rich three-dimensional spatial information,
but also compared with cameras, lidar is less susceptible to time and weather changes, and is suitable for the
detection of targets in 3D space. The high accuracy and resolution of lidar make it play an important role
in the perception of the vehicle environment in autonomous driving, especially in scenarios where precise
target localization is required. However, lidar is unable to acquire color and texture information, which limits
its application in target recognition and classification.

(3) Radar: The main advantages of radar in three-dimensional target detection are its strong penetration
ability, high-precision ranging ability, and low cost. It detects targets by emitting electromagnetic waves and
receiving signals reflected from the target, and it can also calculate information such as distance, velocity,
and azimuth between the target and the radar. The high resolution of radar allows it to accurately detect
and identify target objects, while its strong penetration allows it to work normally in adverse weather
conditions such as rain, snow, and smoke. However, compared with lidar, radar has lower detection accuracy,
smaller detection range, and relatively low angular resolution, which limits its recognition and positioning
capabilities in target detection.

(4) Ultrasonic radar: Ultrasonic radar is mainly used in short-distance obstacle detection in three-
dimensional target detection, and its functions include providing accurate short-range ranging and auxiliary
parking. It has the advantages of low cost, simplicity in ranging methods, and the ability to triangulate
with multiple probes. However, its detection range is limited, usually between 15 and 500 cm; Low update
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frequency and propagation delay, suitable for low-speed scenarios; it cannot be accurately located, and it is
greatly disturbed by the environment, such as signal transmission and echo co-channel interference.

Ultrasonic Radar: Ultrasonic radar is primarily utilized for short-distance obstacle detection in three-
dimensional target detection applications, with key functions including precise short-range ranging and
parking assistance. Its advantages include low cost, a straightforward ranging method, and the capability
to perform triangulation using multiple probes. However, it has several limitations: its detection range is
typically restricted to 15 to 500 cm; it exhibits a low update frequency and propagation delay, making it
suitable only for low-speed scenarios; it lacks precise localization capabilities; and it is highly susceptible to
environmental interference, such as signal transmission and echo co-channel interference.

(5) GNSS and high-definition maps: GNSS (Global Navigation Satellite System) provides precise global
positioning information to assist vehicles in determining their precise location around the world. High-
definition maps provide detailed road and environmental information. When integrated with GNSS data,
this information enhances positioning accuracy and supports vehicle object detection and path planning.
However, GNSS signals can be affected by factors such as buildings, weather, etc., resulting in reduced
positioning accuracy. At the same time, high-definition maps need to be updated regularly to reflect road
changes, which can be a disadvantage when map data is not updated in a timely manner.

(6) IMU and odometer: The IMU (Inertial Measurement Unit) is able to provide high-precision attitude
and velocity information in a short period of time by measuring linear acceleration and angular velocity,
while the odometer estimates the distance and direction traveled by the vehicle by measuring the rotation of
the wheels. However, there is a cumulative error in the IMU, which can lead to large positioning deviations
when used for a long time; The odometer is affected by wheel slippage and different ground conditions,
resulting in measurement errors. In the target detection task, the data of IMU and odometer can help correct
the change of viewing angle caused by vehicle movement, help to realize the tracking and positioning of
dynamic targets, and improve the accuracy of detection.

3.2 Single-Modal Target Detection Methods
In this section, we introduce the background overview of the use of single-modal sensors for object

detection, which is divided into two modes: image-based and point cloud, and introduce some classic
detection methods according to different data modalities, sort out the method context, and analyze their
advantages and disadvantages. Based on the detection method of image mode, we introduce the detection
methods of monocular camera and binocular camera. Based on the detection method of point cloud mode,
we divide it into projection method, voxel method, point cluster method, columnar method and graph
structure method according to the technical path of point cloud feature processing.

3.2.1 Image-Based 3D Object Detection
With its small size and low price, car cameras have attracted wide attention from the industry. While it

is capable of generating RGB images rich in texture and color information, it also lacks depth information,
which makes it critical to recover the depth information of the scene in image-based 3D object detection.
According to the processing strategies adopted by different network models for the input images, we classify
the image-based 3D object detection methods as: monocular image 3D object detection and binocular stereo
vision 3D object detection.

Monocular images cannot provide accurate scene depth information, and how to overcome this
limitation has become the primary task of 3D object detection algorithms based on monocular images. To
this end, the CenterNet [22] model proposes a keypoint-based detection method, the structure of which is
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shown in Fig. 3. This is an anchor-free object detection method that can extract image features within a single
crop area with minimal computing cost. In the image, CenterNet uses an anchor-free 2D detector to identify
the target object’s category, center point, viewing angle, and relative position and depth offset between the
image plane and the object’s 3D center point. Combined with the internal and external parameters of the
camera, the model further estimates the three-dimensional position and heading angle of the target object
in the world coordinate system. In order to improve the detection accuracy, two custom modules are also
designed: a cascaded corner cell and a center cell. These two modules not only enrich the feature information
in the upper left and lower right corners, but also enhance the feature expression ability of the central area,
so as to provide more recognizable information. The M3D-RPN [23] model introduces a monocular 3D
detection method with anchor points for the first time. This method uses predefined 2D and 3D bounding
box anchors to first locate the 2D bounding box of the target object in the monocular image by a 2D detector,
and then infer the object’s 3D bounding box by matching the 2D and 3D anchor points. For the first time, the
ROI-10D [24] model achieved second-order monocular 3D detection. The model first uses Faster RCNN [25]
to identify the 2D region of interest of the object on the image, and then predicts the 2D center point,
observation angle, relative depth and 3D scale of the object. Eventually, this information is converted through
the camera’s KT matrix to recover the object’s 3D bounding box in the world coordinate system.

Figure 3: Object detection based on monocular vision: CenterNet

There are also some methods that use some prior knowledge of the image to make up for the
disadvantage that the monocular image cannot provide scene depth information in the process of object
detection, so as to optimize the detection effect of the model. Mono3D [26] proposed a monocular 3D object
detection method with the help of prior information. In this method, the prior information such as object
shape, pavement assumption, and object semantics are used to guide the detection process, and the difference
between the 2D projected bounding box and the real 2D bounding box is combined to identify the optimal
3D candidate frame of the object, so as to optimize the 3D detection effect. On the basis of this method,
models such as DeepMENTA [27], Mono3D++ [28], and 3D-RCNN [29] further propose monocular target
detection methods guided by object contour information. These methods represent the outline of an object
as a mesh connected by a fixed number of vertices and reconstruct the 3D bounding box of the target object
by predicting the position of these mesh vertices.

Compared with monocular images, binocular images can obtain accurate scene depth information
through stereo matching technology, which makes 3D object detection based on binocular stereo images
an important research direction in the field of autonomous driving. The Disp R-CNN [30] model proposes
an object detection method based on binocular instantiated parallax map, the structure of which is shown
in Fig. 4. This instanced parallax map generation enables more accurate parallax estimation by predicting
the parallax of pixels on an object of interest and learning the shapes of a particular class in advance. In order
to solve the challenge of scarce parallax annotation in training, the method uses a statistical shape model
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to generate dense parallax pseudo-ground true values, and still obtains the depth information of the scene
without using lidar. In addition, with the support of the image instantiation segmentation network, Disp
R-CNN can pre-exclude background pixels that are not related to the regression of the bounding box of the
target object in the detection process, so as to achieve better detection results. The Stereo R-CNN [31] model
designed a dual-network interconnected binocular 3D detection architecture, which extracted features from
the left and right frames of the image through two 2D detectors, and generated the left and right regions of
interest of the target object. By docking two regions and using the key constraints of the 2D-3D bounding
box, the 3D bounding box of the target object is accurately returned. The TL-Net [32] model, which also
adopts the dual-network interconnection mode, introduces the triangulation method in the region of interest
alignment stage, which further optimizes the 3D positioning accuracy of the target object. The Sparse4D [33]
model introduces three modules: time instance denoising, quality estimation, and decoupled attention. Time
instance denoising effectively reduces noise in sparse instances by improving the attention module and
replacing feature addition operations with concatenation; quality estimation introduces auxiliary training
tasks to allow the model to better evaluate the accuracy of detection boxes, thereby improving detection
indicators and accelerating model convergence; decoupled attention is proposed in the feature interaction
module, which improves the perception effect without increasing the inference delay. The Far3D [34] model
proposes an innovative long-range 3D object detection framework that aims to break through the bottleneck
of long-distance detection. The method first generates 3D adaptive queries through high-quality 2D object
priors to expand the perception range; then uses 3D spatial offset sampling and 3D-2D view transformation
to aggregate multi-scale features and reduce the amount of computation; finally, a range-modulated 3D
denoising method is used to solve the query error propagation problem and improve the model stability.
These models improve the accuracy and efficiency of binocular 3D inspection through innovative network
structures and alignment techniques.

Figure 4: Object detection based on binocular vision: Disp R-CNN

In Table 2, we have sorted out the image-based object detection methods mentioned in this section in
detail, systematically summarized the advantages and disadvantages of each method, and combined with
actual application scenarios, deeply analyzed its scope of application and limitations, providing readers
with a comprehensive and in-depth reference basis for better selecting detection technology suitable for
specific needs.
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Table 2: Advantages and disadvantages of each method and applicable scenarios

Method Advantage Disadvantage Applicable scenarios
CenterNet [22] Simple and efficient, no

anchor frame design
required, suitable for a

variety of tasks

It requires high accuracy
in center point

positioning and is easily
affected by occlusion or

dense targets.

Scenarios with high
real-time requirements,

such as obstacle detection
in autonomous driving.

M3D-RPN [23] Combining 2D and 3D
information, it performs

better on monocular
images

Depth estimation error
affects 3D detection

accuracy.

3D object detection in
monocular camera

scenes, such as vehicle
detection in autonomous

driving.
ROI-10D [24] The 10-dimensional

parameters represent the
3D box with high

accuracy

The computational
complexity is high and

the real-time
performance is poor.

Scenarios that require
high-precision 3D

detection, such as scene
reconstruction for

autonomous driving.
Mono3D [26] Designed for monocular

images, using geometric
constraints and

contextual information

It is highly dependent on
depth estimation and

easily affected by image
quality.

3D object detection in
monocular camera
scenarios, such as

autonomous driving.
DeepMENTA [27] Multi-task learning, joint

optimization of 2D and
3D detection tasks

The model is highly
complex and takes a long

time to train.

Scenarios that require
simultaneous 2D and 3D

detection, such as
autonomous driving or

robot navigation.
Mono3D++ [28] Improved version of

Mono3D, introducing
more geometric

constraints and context
information

Still relies on depth
estimation and is

sensitive to image quality.

High-precision 3D
detection in monocular

camera scenes.

3D-RCNN [29] Based on Faster R-CNN,
it combines 2D and 3D
information with high

accuracy

The computational
complexity is high and

the real-time
performance is poor.

Scenarios that require
high-precision 3D
detection, such as

autonomous driving or
augmented reality.

Disp
R-CNN [30]

Combined with disparity
information, suitable for
binocular cameras, depth

estimation is more
accurate

Relying on binocular
cameras, it is not

applicable to monocular
scenes.

3D object detection in
binocular camera
scenarios, such as

autonomous driving or
robot navigation.

(Continued)
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Table 2 (continued)

Method Advantage Disadvantage Applicable scenarios
Stereo

R-CNN [31]
Designed for binocular
images, combining left

and right view
information, high

accuracy

Relying on binocular
cameras, the

computational
complexity is high.

High-precision 3D
detection in binocular

camera scenarios, such as
autonomous driving.

TL-Net [32] Improve model
performance and reduce
training time and data
requirements through

transfer learning

The similarity between
the source domain and

the target domain is high,
and the transfer effect

may be unstable.

3D object detection in
data-scarce or specific

scenarios, such as
industrial inspection.

3.2.2 Lidar Point Cloud-Based 3D Object Detection
Lidar depicts a scene by emitting a laser beam and receiving its reflection, and by measuring the time

difference between the beam emission and reception, it can accurately obtain the three-dimensional spatial
position of an object. However, the point cloud data generated by lidar is usually sparse, disordered, and
irregular, which makes it difficult for traditional CNN models to process directly. At present, the commonly
used lidar point cloud processing methods include projection method, voxel method, point cluster method,
columnar method, and graph structure method. These methods are designed to make point cloud data
suitable for deep learning models for effective 3D object detection and analysis.

Projection is a technique that converts a 3D lidar point cloud into a 2D image for processing using a
traditional CNN model. The main projection methods include forward field of view (RV) projection and
bird’s-eye view (BEV) projection. For the first time, the VeloFCN [35] model uses RV projection to convert
the point cloud into a 2D Point-map and then uses a fully convolutional neural network to detect it in
2D to obtain a 2D bounding box containing 3D shape information. For the first time, the BirdNet [36]
model introduces a BEV projection based on lidar point cloud for 3D target detection, and its structure is
shown in Fig. 5. The model converts the lidar point cloud into a 2D BEV-map containing altitude, reflection
intensity, and density information, and then uses Faster RCNN to perform 2D object detection on the
BEV-map. Finally, the 3D bounding box of the target object is recovered by combining the road surface
information and the height of the object from the ground. This process enables the effective use of the 3D
information extracted from the lidar data, improving the accuracy of the inspection. The BirdNet+ [37]
model is optimized on the basis of BirdNet, transforming the regression process of the 3D bounding box
into end-to-end processing and eliminating the time-consuming post-processing steps, thereby improving
the detection accuracy and inference speed of the model. The MVF model [38] proposes a 3D detection
method based on the fusion of lidar point cloud BEV projection and RV projection, which combines point
cloud data from different perspectives and adopts dynamic voxel point cloud feature extraction technology,
so as to stand out among many detection algorithms. The FocalFormer3D [39] model is based on point
cloud projection and guides the model to focus on mining difficult instances through multi-stage instance
detection. It uses multi-stage heat map prediction to generate queries for difficult instances and excludes
simple positive samples by accumulating positive sample masks, allowing the model to focus on difficult-
to-detect targets. In addition, the model uses a box-level Transformer decoder to efficiently distinguish real
objects from a large number of candidate objects, thereby significantly improving detection accuracy.
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Figure 5: The architecture of BirdNet

The voxel method converts point cloud data into a continuous, regular three-dimensional grid structure,
and the local features of each grid element are defined by the average or maximum feature value of all points
within the cell. Then, 3D CNNs were used to extract and model the features of these voxelized data. The
VoxelNet [40] model is the first to introduce a detection method based on lidar point cloud voxelization,
and its structure is shown in Fig. 6. The model first divides the 3D point cloud into a fixed-size voxel mesh,
and normalizes and fills the point cloud within each voxel to generate voxel-level input features. Then, the
local and global features were extracted through the voxel feature encoding (VFE) module, and the sparse
point cloud features were mapped into dense representations. Then, the 3D convolutional network was
used to further extract the multi-scale spatial features and generate a structured feature map. Subsequently,
the regional proposal network (RPN) performs a sliding window operation on the feature map, generates
candidate boxes, and optimizes the detection results through classification and bounding box regression.
Finally, the overlapping boxes were removed by non-maximum suppression (NMS) to obtain the final
detection results, including the target class, 3D bounding box and confidence level. End-to-end learning is
used to replace traditional manual feature engineering, which effectively improves the 3D object detection
performance and robustness of point cloud data. The SA SSD [41] model further optimizes the voxel block
division of point clouds, and proposes an efficient voxel block division method based on tensor calculation
to solve the problem of time-consuming data traversal calculation in the original voxelization process, which
significantly improves the computational efficiency of the model. The FSTR-L [42] model combines the latest
sparse backbone network based on sparse voxelization, introduces dynamic query to provide the decoder
with the prior position and context of the foreground, and discards high-confidence background tags to
further reduce redundant calculations. Gaussian denoising query is proposed to accelerate decoder training
and make it more adaptable to the distribution of sparse voxel features. The development of these models
demonstrates the importance and potential for efficiency improvement of point cloud voxelization in 3D
object detection.

The point clustering method refers to the independent processing of each data point, and the charac-
teristics of the data points in the cluster are extracted through clustering and multilayer perceptron (MLP)
layers. This allows points with similar features to converge, and point differences with different features to be
amplified, so that different objects in the point cloud can be distinguished by discerning these differences.
The PointRCNN model [43] is the first to propose a 3D detection mode based on lidar point cloud point
cluster processing, which realizes high-precision target detection by directly processing sparse point clouds,
and its structure is illustrated in Fig. 7. In the first stage, the features are extracted from the original point
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cloud, the geometric and semantic features of each point are generated by using the PointNet++ [44] network
and the 3D candidate box is predicted based on the features of the points. These candidate boxes generate
a preliminary target position through regression, while the quality of the candidate boxes is evaluated by
classification. In the second stage, the candidate boxes generated in the first stage are refined. The points in
the candidate boxes are resampled, and local features are extracted to further optimize the size, position,
and orientation of the 3D bounding box, as well as improve the accuracy of target classification. The
entire process is trained in an end-to-end manner, learning directly from the original point cloud, avoiding
the limitations of traditional manual feature engineering. The 3DSSD [45] model introduces a first-order
lidar point cloud point cluster 3D detection method, which omits the step of generating object proposals
in the traditional second-order detection method and directly detects the model, thereby improving the
computational efficiency of the model. In addition, 3DSSD also proposes an innovative point cloud fusion
sampling strategy, which can retain the feature information of the point cloud data better than the farthest
point sampling method used in PointNet++, which is helpful to return to the 3D bounding box of the object
more accurately.

Figure 6: The architecture of VoxelNet

Figure 7: The architecture of PointRCNN

The columnar method refers to organizing the 3D point cloud data into a regular cylindrical structure,
ignoring the height difference of the point cloud in the vertical direction, and compressing the point cloud
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in the same area into a two-dimensional BEV feature map, so that 2D CNN can be used instead of 3D
convolution, simplifying the calculation process. The PointPillar model [46] innovatively proposes a 3D
detection mode based on lidar point cloud columnarization processing, and its structure is shown in Fig. 8.
Firstly, the point cloud data is divided into a fixed grid structure according to pillars, and the point clouds
in each cylinder are normalized and input into the PointNet [47] network, and the local point features are
extracted and aggregated into a feature representation at the cylinder level. These beam features are then
projected onto a BEV plane to form a dense 2D feature map, simplifying complex 3D data processing.
Then, the 2D CNN extracts multi-scale features from the feature map to generate depth features suitable
for object detection. Finally, the candidate target boxes were generated through the RPN, and the object
detection was completed by classifying and regressing the bounding boxes. This method converts the 3D
point cloud features into 2D, so that the processing process can use the conventional 2D CNN model without
3D convolution operation, which not only retains the sparse characteristics of the point cloud, but also
significantly reduces the computational complexity, and realizes real-time and efficient 3D object detection.
The Pillar-OD model [48] is an improved version of PointPillar, adding the RV projection to the columnar
BEV projection. By stitching together the feature maps of both perspectives, it completes 3D target detection
and improves performance.

Figure 8: The architecture of PointPillar

The graph structure method is a method to construct a graph structure based on the topological
connection relationship between point cloud data, which allows the application of graph data processing
technology to model irregular lidar point clouds. This method is similar to point clustering, which can
directly extract features from the point cloud without any pre-processing steps, so that the network model
can be applied to the original point cloud data. For the first time, the Point-GNN [49] model introduces
the graph structuring processing based on lidar point cloud for 3D detection, and its structure is shown
in Fig. 9. The model first represents the point cloud as an undirected graph, with each point as a node, and the
edges between the nodes are connected based on Euclidean distances or predefined rules. Secondly, the point
cloud features are iteratively updated through the multilayer graph neural network, and the node features
aggregate the surrounding information to learn the local structure features, while retaining the global context
information. Subsequently, the edge connections and features are dynamically updated in each iteration to
further optimize the graph structure and representation capabilities. Next, the model predicts the parameters
of the target category, center point position, and 3D bounding box for each node in the point cloud. Finally,
the redundant detection frame was removed by NMS to obtain the final target detection result. The core
advantage of this method is that the point cloud data is directly modeled with a graph structure, which avoids
the information loss caused by voxelization or projection, and significantly improves the 3D object detection
performance of sparse point clouds. The SVGA-Net [50] and STA-GCN [51] models integrate the visual
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attention mechanism into 3D object detection based on the point cloud map structure. The local attention
mechanism is used to assign different weights to each node, and the importance of each data point in the
point cloud in the convolution process is highlighted. The global attention mechanism assigns weights to
different subgraphs to identify the importance of each local area in the point cloud map structure in object
detection. These multi-level and multi-attribute attention mechanisms help the model extract point cloud
features more efficiently, thereby improving the performance of 3D detection.

Figure 9: The architecture of Point-GNN

4 Multi-Modal 3D Object Detection
Image and point cloud have different data characteristics and advantages, and the fusion of these two

data modalities can complement each other’s advantages and disadvantages and improve the performance
of 3D inspection. When constructing a neural network for multimodal fusion object detection, three core
questions need to be considered: (1) What to fuse: determine which sensor data modalities should be fused,
and how to correctly represent and process these data; (2) When to fuse: at which stage of the feature
extraction of the neural network is the data fusion; (3) How to fuse: choose what operation to achieve data
fusion. Sections 4 and 5 will summarize existing approaches to convergence around these three issues.

4.1 What to Fuse?
The inputs of the fusion module show the diversity of algorithms and represent the unique ideas of each

algorithm, and this paper focuses on the fusion inputs of images and point clouds. Specifically, the sensor can
collect image and point cloud data, but the input of the fusion module is generally processed data, including
radar data, image feature maps, segmentation masks, or pseudo-lidar point clouds.

(1) Raw point cloud data: Lidar generates point clouds by scanning the environment, and each point
cloud contains depth and reflection information, where the depth information is encoded by the attributes
of the point, and the reflectivity information is reflected by the intensity value of the point. These point cloud
points are typically represented as quadruples (x, y, z, r), where r stands for reflectivity, and different surface
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textures produce different reflectances, providing additional information for a variety of tasks. Although
point cloud data can be used directly, in order to improve efficiency and performance, researchers often
convert point clouds into voxel or 2D projection before they are fed into downstream modules.

(2) BEV or RV projection: Commonly used point cloud inputs for the fusion module include BEV
and RV projection. RV projection can retain the full resolution of lidar data and reduce the loss of spatial
information, but it is susceptible to the change of object scale. In the fusion module, the RV projected data
is usually processed by 2D CNN to extract the view features, and then the size is unified with the image
features. In contrast, BEV projection provides accurate three-dimensional spatial information, such as the
distance, height, and width of the target, making it suitable for complex environments and effective in low
light or inclement weather. Due to the lack of occlusion between targets, the point clouds of each target can
be identified and processed independently, showing strong 3D environment awareness.

(3) Image data: Deep neural networks can extract appearance and geometric feature maps from the
original image, which can explore richer appearance cues and a larger receptive field than the original image,
so as to achieve in-depth interaction between modalities. The Shift R-CNN [52] model combines deep
learning and geometry to first predict the 2D bounding box, 3D dimensions, and orientation information
of the target, and then use these prediction parameters and camera projection matrices to solve the closed
solution of the 3D transformation.

(4) Another image processing method is to use semantic segmentation network to obtain pixel-by-pixel
segmentation masks. These masks are a stand-alone result of image processing and are often used to fuse
with other sensor data. Compared with feature maps, the use of segmentation masks as fusion inputs has two
main advantages: first, the image mask is used as a compact outline feature of the image; Second, through
point-to-pixel mapping, pixel-level image masks can be easily used to match lidar points.

(5) Another method is to convert the image into pseudo-point cloud data. The parallax map formed
by stereo matching of binocular images can be converted into a scene depth map with the help of camera
internal parameters, and then pseudo-point cloud data can be generated. Based on this idea, the Pseudo-
LiDAR++ [53] model optimizes the process of generating disparity maps from binocular images. The
CG-Stereo [54] model proposes an image processing method based on full-scene pseudo-point clouds, which
predicts and generates a target object confidence distribution map in the process of converting binocular
parallax maps into pseudo-point clouds, which guides the transformation process of pseudo-point clouds.

4.2 When to Fuse?
According to the time point at which fusion is performed in the data processing process, data fusion can

be divided into three types: early fusion, middle fusion, and late fusion. The selection of the fusion period in
multimodal object detection is mainly based on the following criteria:

1. Data characteristics: High correlation between modalities is suitable for early fusion, while large
differences are suitable for mid-term or late fusion.

2. Task requirements: High-precision requirements tend to mid-term fusion, while real-time require-
ments tend to late fusion.

3. Computing resources: The computing cost of early fusion is high, while the efficiency of later fusion
is high.

4. Complementarity between modalities: Mid-term fusion can exert its advantages more when the
complementarity is strong.
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The advantages, disadvantages, and applicable scenarios of the three fusion periods are shown in Table 3.
Early fusion is suitable for scenarios where modal data is highly correlated and resources are sufficient; mid-
term fusion is suitable for high-precision tasks that require the combination of complementary information
between modalities; late fusion is suitable for scenarios with high real-time requirements or large differences
in modal data. Based on specific application scenarios and requirements, selecting an appropriate fusion
period can balance accuracy, efficiency, and robustness.

Table 3: Advantages and disadvantages of different fusion periods and applicable scenarios

Integration period Advantage Disadvantages Applicable scenarios
Early fusion Make full use of the

original data correlation
and the model is simple

High computational cost,
high data alignment
requirements, and
sensitive to noise

High correlation between
modal data (such as
image + depth map),
sufficient computing

resources
Middle fusion Combining

complementary
information between

modalities, high
flexibility

The model is complex
and the computational

cost is high

The information between
modalities is highly

complementary (such as
image + point cloud),

requiring high-precision
detection

Late fusion High computational
efficiency, strong

robustness, and low
requirements for data

alignment

Unable to fully utilize
complementary

information between
modalities, and the

fusion strategy design is
complex

High real-time
requirements and large

data differences between
modalities

(1) Early Fusion: Also known as data-level fusion, it is the combination of data from different modalities
at the original data level to form a data modality containing richer feature information. The general flow
of pre-fusion is shown in Fig. 10. This method can more completely retain the original data details of RGB
images and lidar point clouds, provide more comprehensive multi-modal data for the 3D object detection
model, and help improve the detection accuracy of target obstacles. The F-PointNet [55] model is the first to
propose a 3D detection method based on image-point cloud pre-fusion fusion. In this method, a 2D detector
is used to identify the 2D bounding boxes of the target object on the RGB image, and then these boxes are
projected onto the lidar point cloud to filter out the point cloud data in the frame. The three-dimensional
coordinates of these points are stitched with the corresponding pixel information in the image to form a
3D point cloud frustum space containing multimodal information. Next, F-PointNet utilizes two PointNet
structures, one for splitting the data points of the target object from the frustum space, and the other for
regressing the 3D bounding box from these split points. On the basis of F-PointNet, the F-ConvNet [56]
model proposes to segment the 3D point cloud frustum space formed by fusion, and each segment uses an
independent PointNet structure to extract features, and finally synthesizes the features of all segments to
predict the 3D bounding box of the target object. The F-PointPillar [57] model has two improvements: one
is to change the spatial segmentation process of the frustum based on PointNet to the point segmentation
based on Gaussian distribution statistics; The second is to change the 3D bounding box regression process
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from PointNet-based to Pillar-based method. These improvements are designed to improve the accuracy and
efficiency of segmentation and regression.

Figure 10: Early fusion framework

(2) Middle Fusion: Middle fusion refers to the combination of different forms of features or the generated
target object proposal after the data of the two modalities are extracted to jointly complete the 3D object
detection task. The general flow of mid-term fusion is shown in Fig. 11. This approach allows each modality
to independently contribute its own unique information, which is then aggregated to improve the accuracy
of detection. For the first time, the MV3D [58] model introduces a 3D detection mode based on image-
point cloud mid-term fusion, which uses the fisheye view (FV) and BEV projection of the lidar point cloud
and RGB images to generate a proposal of the target object from multiple perspectives. These proposals are
clipped, aligned, and pooled together to complete the 3D bounding box regression task. The PI-RCNN [59]
model further fuses the 2D proposal generated by 2D semantic segmentation of images with the 3D proposal
generated by PointNet++. The SCANet [60] model uses a spatial attention mechanism to fuse RGB images
and lidar point cloud BEV projection maps to generate 2D and BEV proposals. The FusionPainting [61]
model fuses the 2D proposal generated by 2D semantic segmentation of the image with the 3D proposal
generated by the 3D semantic segmentation of the lidar point cloud. The Graph-RCNN [62] model fuses
the 2D proposal generated by image 2D object detection with the 3D proposal of lidar point cloud based on
voxelization. The Fusion-RCNN [63] and TransFusion [64] models proposed an image-point cloud proposal
fusion scheme based on Transformer [65], and the two proposals were fused through the Transformer
module of the attention mechanism. These methods make use of the high-level semantic features extracted
by deep learning, which makes the fusion process more efficient and more informative, and enhances the
performance of object detection.

(3) Late Fusion: Late fusion is a method that integrates the decision-making results of different network
modules independently on different data modes according to specific rules to produce a comprehensive and
better detection result. The general flow of post-fusion is shown in Fig. 12. For the first time, the CLOCs [66]
model proposes a 3D detection mode based on image-point cloud post-fusion, in which the 2D and 3D
candidate boxes of the target object are generated through independent 2D and 3D detectors, and then these
candidate boxes are fused according to the geometric relationship between the 2D–3D bounding boxes to
improve the accuracy of the model output. Subsequently, the Fast-CLOCs [67] model improved the 2D and
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3D detectors in CLOCs, and proposed a more efficient and lightweight post-fusion 3D detection mode, which
further improved the detection accuracy and computing speed.

Figure 11: Middle fusion framework

Figure 12: Late fusion framework

5 How to Fuse?
This section summarizes typical fusion operations in deep neural networks according to different types

of sensor fusion strategies, including Camera-Lidar fusion, Camera-Radar fusion, Camera-Lidar-Radar
fusion, and other sensor fusions.

5.1 Camera-LiDAR Fusion
The Camera-Lidar fusion technology combines the camera’s high-resolution image information with

the lidar’s accurate distance measurement capabilities to provide more comprehensive environmental
perception, enhance the robustness of the autonomous driving system under different lighting and weather
conditions, and improve the accuracy of object detection and positioning, so as to achieve safer and more
reliable decision-making and control in complex traffic scenarios. The existing image and point cloud fusion
technologies are mainly divided into early fusion, feature-level fusion, decision-level fusion and BEV fusion.
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5.1.1 Data-Level Fusion
Data-level fusion can make full use of the information of each sensor at the data level, so that the

data of different sensors can complement each other and enhance the overall perception ability. This fusion
strategy allows for the elimination of uncertainty and redundancy in the sensor data at an early stage of
data processing, preserving more of the original information, thereby reducing the complexity of subsequent
processing, helping to speed up the response of the system and improve the accuracy and reliability of the
detection results.

Many of today’s advanced 3D detection algorithms are dedicated to effectively fusing images and lidar
point cloud data. Cao proposed a multi-view object detection method, MVFP [68], which effectively reduces
the missed detection rate and improves the performance by adding a bird’s-eye view (BEV) detection module
on the basis of F-PointNet [55]. The network structure is shown in Fig. 13. Firstly, F-PointNet is used to
generate preliminary 3D target detection results by combining RGB images and lidar point clouds. The lidar
point cloud is then encoded into a BEV feature map, which is used to predict the 2D bounding box. By
calculating the intersection union ratio, the detection results were matched with the BEV prediction results.
For unmatched targets, their 2D bounding boxes are projected back into the F-PointNet network, where
detection and fusion continue until all targets in the BEV feature map find a match in the detection results.
The robustness of 3D detection is significantly improved by the joint optimization of multi-modal features.

Figure 13: The architecture of MVFP

In order to better realize the fusion of different sensor data and improve the detection performance,
Wei proposed a method called ConCs-Fusion [69], which uses a contextual clustering network to learn the
multi-scale features of radar point clouds and images and performs upsampling and fusion of feature maps.
The multi-layer perceptron is used to perform nonlinear representations of the fused features to reduce the
feature dimension and improve the model inference speed. The context clustering network aggregates sensor
feature points based on their similarity, fusing them into radar-camera feature fusion points for two-way
cross-modal fusion. In order to reduce the feature dimension and improve the model inference speed, Ku
proposed an aggregate view object detection network AVOD for autonomous driving scenarios [70]. The
network uses lidar point clouds and RGB imagery to generate features shared by two sub-networks: the
regional suggestion network (RPN) and the Stage 2 Detector Network. Among them, RPN can learn the high-
resolution feature map after data fusion, and generate reliable suggested regions for different targets in the
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scene. By learning from these regions, the second-stage detection network can achieve accurate 3D bounding
boxes and category classification. In order to enhance environmental perception and improve robustness and
accuracy, Liu et al. [71] proposed a large-scale 3D object detection algorithm that fuses 2D visual information
and 3D lidar data. In this algorithm, a calibration module based on EPnP is proposed for data alignment
to improve the performance of data association. A 2D bounding box of the object is generated through
visual inspection, and the corresponding 3D point cloud is extracted. After ground fitting and point cloud
clustering, an innovative scoring mechanism was introduced to identify the clusters belonging to the target.
Finally, an accurate lidar point cloud is generated in the 3D frustum. This method does not require a large
number of 3D point cloud datasets to be trained and is suitable for lidar with any number of lines to achieve
real-time 3D object detection.

5.1.2 Feature-Level Fusion
Feature-level fusion is usually the integration of features extracted from the original data for subsequent

3D object detection. In the multimodal fusion model, different sensors usually have different resolutions,
coordinate systems, and sampling densities, and how to achieve the matching and alignment of different
modal data is crucial. Chen et al. proposed a feature fusion strategy called AutoAlign [72] to solve the
challenge of RGB images and lidar point clouds complementing each other in autonomous driving, and
its structure is shown in Fig. 14. Unlike the fixed mapping relationship based on the camera projection
matrix, AutoAlign dynamically models the feature mapping between the image and the point cloud through
a learnable alignment map. Through the cross-attention feature alignment module, the image and point
cloud features can be adaptively aggregated, and then combined with the self-supervised feature interaction
module, the semantic information is used to guide the process of feature alignment, which enhances
the semantic consistency. This dynamic feature alignment enables more efficient cross-modal information
fusion. AutoAlignV2 [73] uses a projection matrix to guide the automatic alignment of cross-modal features,
and implements sparse sampling between modalities, so as to establish the association between image
features and point cloud features for each voxel. Alaba et al. [74] proposed an end-to-end framework for
sparse interaction fusion. In this method, the noise radar filter (NRF) module is introduced to extract the
foreground features, the query semantic features are used to filter out the noise radar features from the image,
and then the sparse cross attention encoder (SCAE) is used to fuse the foreground radar and the image,
which solves the problem of position ambiguity at the sparse level. Xu et al. [75] proposed a Multi-Sem Fusion
model. The model reprojects the 2D semantic information into a 3D point cloud with calibration parameters,
introduces the AAF attention module to learn the fusion score to solve the problem of mismatch, and inputs
the fused data to the 3D object detector to generate the final detection results.

There are also methods that focus on performing fusion operations on the features of the input. For
example, FUTR 3D [55] uses a query-based feature sampler and a Transformer decoder, equipped with a
set-to-set loss function, to achieve feature fusion and perform 3D object detection, showing strong flexibility.
UVTR [76] transforms image features into a predefined space and constructs an image voxel space to achieve
cross-modal interaction, enhance the fused modal information, and improve the accuracy of the detection
results. Song et al. [77] proposed the VoxelNextFusion model, which projects point clouds onto images to
obtain pixel and region-level features, and uses the self-attention mechanism to fuse these features, effectively
correlating sparse point clouds with dense images, thereby reducing association errors and improving
detection accuracy. Liu et al. [78] proposed the BAFusion module, which uses cross-attention to adaptively
fuse lidar and camera information, optimizes computational complexity and facilitates high-level interaction
of image and point cloud data, improving the flexibility and robustness of the algorithm. Deng et al. [79]
proposed a multimodal 3D object detection framework, PoIFusion. This is different from the approach of
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transforming multi-sensor data into a unified view or leveraging global attention mechanisms to facilitate
fusion. The method follows the query-based object detection paradigm, where the target query is represented
as a dynamic 3D box. For each query box, a set of points of interest (PoI) is generated and these points
are projected into views of different modalities to sample the corresponding features. Through the dynamic
fusion module, the multi-modal features of each group of PoI are integrated. Finally, all PoI features in the
same query box are aggregated to update the query features.

Figure 14: The architecture of AutoAlign

In order to improve the detection performance of fusion algorithms in complex environments and
the ability to detect small targets, Wang proposed an embedded fusion three-dimensional object detection
network based on deep learning (VoPiFNet) [80], which can receive data streams from lidar and camera
sensors at the same time. The key module is the voxel binning (VPF) layer, which combines voxel and
pixel features, uses appropriate mechanisms for fusion, and can be guided and enhanced by adjusting
hyperparameters. Guo et al. [81] proposed a multi-layer fusion three-dimensional object detection network.
In this method, the feature extractor with adaptive fusion module (AFM) is used to perform weighted fusion
of different feature layers, which effectively reduces the interference of background on small targets. At
the same time, AFM can filter information that is not relevant to the task, thereby improving the training
efficiency of the network and speeding up the convergence speed.

Some other studies focus on learning better feature representations to improve detection performance.
The Transformer architecture has been widely used in this field due to its powerful parallel computing and
feature modeling capabilities. In the task of object detection, the Transformer can capture global features
and long-distance dependencies through the self-attention mechanism, thereby achieving more accurate
object positioning and classification. For example, DETR [82] (DEtection TRansformer) is the first algorithm
to apply the Transformer to 2D object detection. It regards object detection as a set prediction problem
and directly outputs the detection results in parallel through the Transformer encoder-decoder architecture.
DETR simplifies the detection process and does not require traditional steps such as anchor generation or
non-maximum suppression (NMS), but requires a large number of iterations to converge during training.

In the field of multimodal object detection, the Transformer architecture has also shown great potential.
For example, Transformer-based frameworks such as CMT [83] can fuse multimodal data such as images and
point clouds, significantly improving detection accuracy. In addition, multimodal pre-trained models learn
universal representations through large-scale data, providing powerful feature extraction capabilities for
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object detection. Transformers can also automatically learn the alignment relationship between modalities,
reducing the complexity of data preprocessing. In terms of specific applications, the CAT-Det [84] network
proposed by Zhang et al. uses the Transformer’s ability to capture global features. It contains Transformer
encoding branches for point clouds and images and a cross-modal Transformer module, and achieves
effective feature learning through dual-branch encoding and cross-modal fusion. In addition, in order to
solve the problem of information loss during modal conversion, Liu et al. [85] proposed a new framework
for 3D object detection that iteratively updates radar and camera features through an interactive module.
This module aggregates radar and image features with a set of sparse 3D object queries when sampling them,
retaining the integrity of the original radar features to prevent information loss, thereby reducing association
errors and improving detection accuracy.

In order to improve the robustness of fusion under inferior image conditions such as poor lighting, Wu
et al. [86] generated pseudo-point clouds through depth completion, extracted their 2D image features and
3D geometric features, and adopted an effective ROI fusion strategy to obtain more accurate features for
detection. Bai et al. proposed TransFusion based on Transformer structure [64], which uses a soft association
mechanism to deal with the situation of inferior images, and adaptively determines the information that
should be obtained from the images, so as to achieve better fusion results. In order to enhance the semantic
information of the point cloud data, FusionPainting [61] uses a simple sequential multimodal fusion structure
to project the point cloud onto the semantic segmented 2D image, and uses the existing 3D detector to realize
the target detection.

5.1.3 Decision-Level Fusion
The advantages of decision-level fusion in multi-sensor information fusion are that it improves the fault

tolerance and anti-interference of the system, enhances the integration ability of multi-source heterogeneous
sensor data, reduces the data transmission and storage requirements, has good error correction ability, and
has fast real-time response and adaptability. These features make decision-level convergence excellent in
complex environments where fast and accurate decision-making is required.

The method of decision-level fusion is usually to perform 3D object detection on image data and point
cloud data, and then merge the two results to obtain a better final output. Kim et al. [87] projected the sparse
point cloud input into a dense front view, and with the help of Fast R-CNN [88], the area suggestion boxes
were generated in the projection view of the image and the point cloud, respectively, and then the suggestion
boxes on the two images were fused to form the final result. Huang et al. [89] proposed an Epnet network
model, which converts the point cloud into a correlation depth map and a reflectivity density map, and uses
YOLO to generate the detection results of the point cloud projection view and image, and then performs
fusion operations. These methods reduce the dimensionality of point cloud data, resulting in information
loss and unsatisfactory detection performance. Pang et al. proposed a low-complexity CLOCs [66] network,
the structure of which is shown in Fig. 15. It combines the 2D and 3D suggestion boxes to extract features
and learn their probabilistic correlations for fusion, which improves the detection performance under multi-
modal data, but it needs to run 2D and 3D detectors at the same time, which is computationally expensive.
In order to reduce the memory footprint, Pang et al. further proposed Fast-CLOCs [67] network, which
removes the two-dimensional detector, extracts image features only with a lightweight network, projects the
three-dimensional suggestion box into the two-dimensional and corrects it with image features, and finally
fuses the two-dimensional and three-dimensional recommendation frames to achieve real-time detection.
Guo et al. proposed the Liga-Stereo [90] model, which first extracted two-dimensional semantic features
from binocular images to generate a suggestion box, and then projected them in three-dimensional space
and combined with the point cloud three-dimensional detector to learn semantic features, realizing the
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integration of semantic and geometric features, and improving the detection effect of large-scale and small-
scale targets. Fan proposed Snow-CLOCs, a multimodal object detection algorithm specifically for snowy
days [91]. The InceptionNeXt [92] network was used to enhance the image feature extraction ability of
YOLOv5 [93], and the Wise IoU algorithm was used to reduce the dependence on high-quality data. On the
basis of the SECOND [94] algorithm, the DROR filter is used to denoiser to improve the accuracy of lidar
point cloud detection. Finally, the detection results of the camera and lidar are integrated into a detection
set, and the sparse tensor representation and 2D convolutional neural network are used to extract features
to achieve target detection and localization.

Figure 15: The architecture of CLOCs

5.1.4 BEV Fusion
BEV fusion technology provides an effective solution in the field of autonomous driving, simplifying

the processing of three-dimensional space problems by converting multi-sensor data into a bird’s-eye view,
and its structure is illustrated in Fig. 16. This approach integrates information from different sensors, such as
cameras, lidar, and radar, to provide a global view and enhance understanding of the vehicle’s surroundings.
BEV fusion simplifies object detection and segmentation tasks by representing three-dimensional spatial
data on a two-dimensional plane, while improving the accuracy of positioning. In addition, it enhances the
robustness of the system, as the fusion system provides reliable situational perception even when some sensor
data is missing or inaccurate. BEVFusion [95] retains geometric and semantic information by stitching and
fusing the shared image BEV features with the point cloud features, encoding the camera and lidar functions
into the same BEV, ensuring system stability in the event of sensor failure. Fig. 16 shows the BEVFusion
framework. The model performs single-modal feature extraction on lidar point cloud and camera images,
respectively, and the network that extracts point cloud features generates sparse voxel representations, while
the image feature extraction network encodes image features into multi-scale feature maps. Then, through
geometric alignment, the image features are projected from a 2D plane into a BEV view, sharing a unified
spatial representation with the point cloud features. In the BEV space, a fusion module is designed to integrate
features from multiple modalities, and further improve the feature expression ability through cross-modal
feature enhancement. The fused BEV features are used in the subsequent object detection head to generate
a 3D bounding box and its associated properties (e.g., position, orientation, class, etc.).

In order to realize the joint capture of instance-level and scene-level context information, Yin et al.
proposed a new multimodal fusion framework IS-FUSION by combining instance-level and scene-level
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Figure 16: The architecture of BEVFusion

context information [96]. Fundamentally different from the existing BEV scene-level fusion methods, this
method realizes BEV scene-level fusion by explicitly combining instance-level multimodal information,
thereby simplifying the detection task of 3D objects. In order to enhance the interaction and feature
guidance between lidar and camera, Li et al. [97] proposed a new multimodal 3D object detection method
(GAFusion). By introducing sparse depth guidance (SDG) and lidar occupancy guidance (OHCHR), this
method generates 3D features with rich depth information. At the same time, a lidar-guided adaptive fusion
Transformer (LGAFT) was developed to adaptively enhance the interaction of BEV features of different
modes from a global perspective, and realize the global interaction and adaptive feature fusion based on
lidar. Zhao et al. proposed the Unibevfusion [98] model, which uses a shared module to extract BEV features
across different modalities, integrates radar-specific data into the depth prediction process, and enhances
the quality of visual bird’s-eye view (BEV) features. Kim et al. proposed the RCM-Fusion [99] model, which
attempts to fuse the two modes at the feature level and the instance level. By using a radar-guided BEV
encoder, the camera features are converted into accurate BEV representations, and the combination of radar
and camera BEV features is combined to reduce positioning errors. Zhao et al. proposed BEV-radar [100], a
bidirectional fusion scheme for BEV radar that does not rely on the detection results of prior cameras. The
method follows a BEV-based 3D detection approach, using a bidirectional converter to embed information
from both modalities and enforce local spatial relationships based on subsequent convolutional blocks. After
embedding the features, the BEV features are decoded by the 3D object prediction head. In order to overcome
the difference between the foreground instance and the background area, and make full use of the depth
information of the image to promote the precise alignment of the point cloud with the camera features,
Hao et al. [101] proposed a coarse-to-fine image–point cloud fusion network for 3D object detection. In this
method, a two-stage refinement strategy is used to process virtual point clouds, combined with dynamic
2D Gaussian distribution to achieve more accurate feature matching, and a dynamic density-aware RoI
network is introduced for detailed feature extraction, so as to improve the performance and accuracy of
object detection.

5.2 Camera-Radar Fusion
The Camera-Radar fusion technology combines the camera’s high-resolution visual information with

the all-weather and long-range detection capabilities of radar, providing a powerful solution for envi-
ronmental perception. This convergence significantly enhances the performance of autonomous driving
systems in adverse weather and complex lighting conditions, improving the accuracy of object detection,
especially when dealing with occluded or long-range targets. Radar further improves the safety and reliability
of the system due to its accurate speed and distance measurement capabilities and strong resistance to
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electronic interference. This convergence approach is more cost-effective than lidar while maintaining
superior performance, enabling autonomous vehicles to make safer and more reliable decisions in complex
traffic environments.

However, due to the characteristics of radar, the point cloud information provided by it is relatively
sparse, which limits the accuracy of target detection, and in order to overcome this limitation, Nabati
proposed the CenterFusion [102] model, the structure of which is shown in Fig. 17. Firstly, the RGB image
of the camera is used to generate the center point and its category prediction of the candidate target through
the 2D object detector CenterNet [22], and the features of each center point are extracted. Subsequently, the
radar point is projected onto the image plane, and according to the distance between its projection position
and the detected 2D center point, the radar point is assigned to the corresponding candidate target area.
Through the specially designed fusion module, the speed and range information of the radar are integrated
with the center point feature of the image, so as to enhance the depth perception and motion information
of the target. The fused features are used for subsequent 3D object detection to generate a 3D bounding box
of the target, including properties such as position, orientation, and size. This method effectively realizes the
deep fusion of radar and image information, significantly improves the detection performance in occlusion,
long-distance and complex scenes, and has high real-time performance.

Figure 17: The architecture of CenterFusion

Based on the CenterFusion model, Shi proposed the CenRadfusion [103] network model. The model
projects a radar point cloud onto the image plane and feeds it into the CenterNet inspection network as an
additional channel to form a preliminary 3D inspection frame. Radar point clouds are processed through
density-based clustering to improve data quality and eliminate irrelevant point clouds and noise, so as to
enhance the reliability of target detection. Finally, the attention module of extrusion and excitation network
is introduced to weight the feature channels and improve the influence of key features. This method not only
ensures the integrity of the fusion architecture, but also enhances the network’s ability to recognize important
features through the attention mechanism, thereby improving the accuracy of 3D object detection.

In order to better fuse images and radar data to achieve more accurate object detection, Liu et al. [85]
proposed a new framework to iteratively update the 3D object detection of radar and camera functions
through interactive modules. The module samples radar and image features while aggregating them with a
set of sparse 3D object queries, preserving the integrity of the original radar features to prevent information
loss, thereby reducing correlation errors and improving detection accuracy. Kalgaonkar proposed an efficient
camera-radar fusion network NeXtFusion [104], which uses the attention module method to enhance the
representation of key features of target detection, while also minimizing the information loss from multi-
modal data. Wang et al. proposed a network framework called MWRC3D [105], which improves the ability
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to characterize image features by learning global associations and dependencies between individual pixels
in an image through the attention-based Deep Aggregation (ADLA) module. The deformable convolutional
network (DCN) is introduced to model the geometric transformation, and the data augmentation module
is used to correct the 3D offset between the radar point cloud and the image center point. Finally, the image
features are stitched and fused with the radar feature map as the input of the secondary return head to obtain
an accurate 3D target detection frame.

In order to improve the correlation between images and point cloud data and make full use of the
complementary characteristics of the two, Kong et al. [106] proposed a time-enhanced radar-camera fusion
network model. In this model, a temporal fusion model is introduced to fuse radar features at different
moments, thereby alleviating the problem of millimeter-wave sensor point target mismatch caused by object
motion. In addition, this method proposes a new correlation-based fusion module, which uses mask cross-
attention to more effectively fuse Radar and visual features. Lin et al. [107] proposed a high-precision
millimeter-wave radar-camera fusion 3D perception network (RCBEVDet++). This method encodes sparse
radar points into dense BEV features through a radar feature extractor, and introduces a deformation
attention mechanism to align the BEV features of the radar and camera. Subsequently, multimodal features
are further integrated through channel and spatial fusion layers. RCBEVDet++ not only supports 3D object
detection, but also extends to BEV semantic segmentation and 3D multi-object tracking tasks, showing
strong multi-task adaptability. Lei et al. [108] proposed the HVDet Fusion model. In order to fully utilize the
advantages of radar signals, this method introduced prior information based on the positions of different
objects to filter out false positive information in the original radar data. At the same time, the BEV features
generated by the original camera data were supplemented and fused according to the positioning information
and radial velocity information recorded by the radar sensor. During the fusion training process, these
improvements further improved the detection effect.

In order to more intuitively compare the detection effects of different detection methods, we list the
performance of these methods on the nuScenes dataset in Table 4. Among these detection methods, we found
that the Lidar-based detection method FocalFormer3D achieved the highest mAP and the highest NDS. The
detection methods based on cameras and millimeter-wave radars scored at lower levels in terms of mAP
and NDS, mainly because the millimeter-wave radar has low accuracy and cannot generate accurate point
cloud data.

Table 4: Detection effects of various detection methods in the nuScenes dataset

Method Sparse
4D-

v3 [33]

Far3D
[34]

Focal
Former
3D [39]

FSTR-
L [42]

BEV
Fusion [95]

Auto
Align [72]

RCBEV
Det++ [107]

HVDet
Fusion [108]

Year 2023 2024 2023 2023 2022 2022 2024 2024
Modalities Camera Camera Lidar Lidar Camera

Lidar
Camera

Lidar
Camera
Radar

Camera
Radar

mAP 0.668 0.635 0.705 0.702 0.702 0.684 0.673 0.609
mATE 0.346 0.432 0.243 0.254 0.261 0.245 0.341 0.379(m)
mASE 0.234 0.237 0.238 0.266 0.239 0.233 0.234 0.243(1-IOU)
mAOE 0.279 0.278 0.321 0.282 0.329 0.311 0.241 0.382(rad)
mAVE 0.142 0.227 0.2 0.213 0.26 0.258 0.147 0.172(m/s)
mAAE 0.145 0.130 0.130 0.131 0.134 0.113 0.13 0.132(1-acc)

(Continued)
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Table 4 (continued)

Method Sparse
4D-

v3 [33]

Far3D
[34]

Focal
Former
3D [39]

FSTR-
L [42]

BEV
Fusion [95]

Auto
Align [72]

RCBEV
Det++ [107]

HVDet
Fusion [108]

NDS 0.719 0.707 0.687 0.736 0.729 0.724 0.727 0.674

Note. mAP (mean Average Precision) represents the average detection accuracy of the model on different categories.
mATE (mean Average Translation Error) measures the deviation between the center of the detection box and the
center of the true box. mASE (mean Average Scale Error) is used to measure the scale difference between the detection
box and the true box. mAOE (mean Average Orientation Error) is used to measure the orientation accuracy of the
detection box. mAVE (mean Average Velocity Error) measures the accuracy of detecting the target speed. mAAE
(mean Average Attribute Error) is used to measure the accuracy of target attribute prediction. NDS is the nuScenes
Detection Score, which is used to comprehensively evaluate the performance of the detection model.

5.3 Camera-LiDAR-Radar Fusion
The Camera-Lidar-Radar fusion technology integrates the unique advantages of the three sensors to

achieve a comprehensive improvement in environmental perception in the field of autonomous driving.
The camera provides rich visual detail, the lidar accurately captures three-dimensional spatial information,
and the radar maintains stable detection in bad weather, ensuring the system’s all-weather capability. This
fusion not only improves the accuracy and robustness of obstacle detection, but also optimizes the vehicle’s
decision-making and navigation capabilities. In addition, it enhances the system’s performance in a wide
range of lighting and weather conditions, improving safety, while reducing reliance on a single sensor failure,
improving overall reliability and adaptability.

Camera-LiDAR-Radar fusion needs to process data from three different sensors at the same time, which
puts forward higher requirements for the computing power of the processor and the real-time performance
of the algorithm, especially in high-precision and low-latency application scenarios. In order to improve the
accuracy and robustness of 3D object detection, Nobis et al. [109] proposed a 3D object detection network
based on radar Voxel Fusion Net (RVF-Net), which is capable of fusing lidar, camera, and radar data. In this
model, lidar points are first projected onto an image plane and combined with the camera image to create a
simulated depth camera to generate 3D data points. Information from radar, lidar, and analog depth cameras
is then combined into a discrete voxel framework. In order to effectively process the sparse voxel mesh input,
RVF-Net adopts the sparse 3D convolution technology, which can improve the training efficiency of the
network and accelerate the convergence speed. To solve the uncertainty problem in multi-target detection
of autonomous vehicles, Ravindran et al. [110] proposed a Bayesian neural network (CLR-BNN) that fuses
camera, lidar, and radar. The method first preprocesses the input data (such as camera images, lidar point
clouds, and radar signals) to remove noise and extract key features. Then, the deep neural network is used to
extract features from each modal data. In the Bayesian inference stage, the network weights are expressed in
the form of probability distributions, and the weights are generated multiple times by variational inference
or Monte Carlo sampling, and multiple prediction results and corresponding uncertainty estimates are
output. The features of different modalities are integrated through the fusion module, so as to enhance the
complementarity of information. The fused features are fed into the object detection head, which is used to
predict the target class, the 3D bounding box, and the corresponding uncertainty. Through multiple forward
propagations, BNN performs distribution statistics on the model output to generate the final detection
results. Redundant test results were removed by non-maximum suppression and uncertainty estimation
was further optimized using calibration curves. The final output includes the target class, 3D bounding
box and its uncertainty, which can meet the needs of object detection and decision-making in autonomous
driving scenarios.
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In addition, the response time and safety of autonomous driving systems are also affected by the
accuracy and reliability of multi-sensor fusion, which requires more efficient data fusion strategies. In
order to better integrate the data of these three types of sensors, Li et al. [111] studied the advantages and
disadvantages of each data mode, compared the performance of different fusion strategies, and proposed a
simple and effective multimodal 3D object detection and tracking framework (EZFusion). This method pays
special attention to the processing of radar data, fuses it with lidar and image data, and presents the fused
data in the form of BEV for target detection and re-identification, which improves the detection performance
and reduces the blind spot in the field of view. FishingNet [112] used a multilayer perceptron (MLP) for view
transformation to handle the fusion of data from different sensors. Convert features from cameras, lidars,
and radars into generic features and top-down semantic grid representations, which are then aggregated
for downstream object detection tasks. The automatic labeling process is used to generate the training data
through the 3D tracking bounding box and semantic labels, which improves the object detection ability of
the algorithm. The FishingNet structure is shown in Fig. 18.

Figure 18: The architecture of fishing net

5.4 Other Sensor Fusion
In addition to the commonly used camera and radar fusion, there are also methods that focus on the

fusion of other sensors such as drive test units, ultrasonic sensors, high-definition maps, etc. In order to
solve the problem of insufficient single-sensor tracking accuracy caused by complex road environment and
occlusion problems, Liu et al. [113] proposed a new multi-sensor data fusion method, which incorporates
the drive test unit into the fusion strategy to improve the interactive perception level between road targets.
This method introduces the image information of the drive test unit to solve the key problem of multi-sensor
trajectory tracking data fusion. By analyzing the variation characteristics of the reflection intensity of the
lidar point cloud and the high-precision detection ability of radar, the weight parameters of lidar and radar
in the fusion process are dynamically determined. This method significantly improves the perception ability
of the vehicle-road cooperation system, enhances the accuracy and reliability of target tracking, and provides
important support for efficient object detection in complex traffic scenarios.
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Fisheye cameras are commonly used for panoramic perception, but their performance is degraded in
low light or strong sunlight. In contrast, ultrasonic sensors are stable under these conditions. Das et al. [114]
proposed the first end-to-end multimodal fusion model, which combines a fisheye camera and an ultrasonic
sensor to detect obstacles from a bird’s-eye perspective. The model used ResNeXt-50 [115] to extract features,
convert image features into BEV, and fuse them with ultrasonic features. Extended convolution is used to
reduce sensor misalignment, and finally a two-level semantic occupancy decoder is used to generate grid
prediction. The experimental results demonstrate the robustness and effectiveness of the method. Aniobi
et al. [116] proposed a system based on sensor fusion that combines a camera with an ultrasonic sensor to
detect an object and calculate its relative position relative to the vehicle. The system uses the YOLOv8 [117]
object detection algorithm to detect and classify the objects in the camera’s field of view, and combines the
camera imaging formula with the bounding box information of YOLOv8 to design a positioning module
for calculating the precise spatial coordinates of the objects. This method effectively improves the navigation
accuracy and obstacle detection accuracy of unmanned vehicles, and provides support for the realization of
safer and more reliable autonomous driving.

Infrared cameras are able to use the thermal radiation emitted by the object itself for imaging, which
allows it to detect targets at night or in low visibility conditions, such as fog, rain and other bad weather.
Infrared imaging technology is not limited by visible light conditions, so infrared cameras can provide
richer target information when the performance of traditional optical sensors is limited, especially for
detecting ambiguous or indistinguishable targets, especially small targets. In addition, the temperature
information contained in the infrared image is abundant, which helps to highlight the target in complex
backgrounds, improving the accuracy and robustness of detection. Therefore, infrared cameras play an
irreplaceable role in object detection, especially in conditions where traditional vision systems are difficult
to work. Zhong et al. [118] integrated infrared cameras into sensor suites for autonomous vehicles to cope
with sensor limitations in adverse weather and low-visibility conditions such as nighttime, rain, snow, and
haze, improving the ability to control vehicles and pedestrians. By combining infrared thermal imaging
technology with the YOLOv5 [93] deep learning algorithm, a balance between detection accuracy and real-
time performance is achieved, especially in challenging visibility conditions, which significantly improves
target detection capabilities. Studies have shown that the integration of infrared thermography with YOLOv5
in ADAS can reduce the risk of accidents and improve road safety by providing more reliable scenario analysis
at lower visibility.

High-definition maps can provide accurate geographic and environmental information in object
detection, enhance feature extraction and sensor fusion, and improve the accuracy and robustness of
detection. As prior knowledge, it assists the vehicle in maintaining performance in adverse weather and
lighting conditions, reducing environmental impact. In addition, high-definition maps can reduce the search
space, reduce the computational burden, improve the processing speed, and provide global positioning for
the vehicle, support prediction and planning, and enhance scene understanding. Yang et al. [119] introduced
high-definition map data (HD Map) into the object detection task and designed a single-stage detector
that can extract geometric and semantic features from HD maps. In addition, a map prediction module is
proposed, which can estimate the map in real time based on the original lidar data. This method proves that
high-definition maps can provide powerful prior knowledge and improve the robustness of the network. Fang
proposed the MapFusion [120] framework to integrate map information into the object detection network.
The HD Map feature extraction, FeatureAgg fusion module, and mapseg detection module were designed,
and the fusion of HD Map features, image and point cloud features was realized through the information
conversion of different modules.
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6 Summary and Outlook
Three-dimensional object detection is essential for autonomous driving technology, as it is not only

the basis for perceiving the environment in autonomous driving systems, but also known as the eyes of
autonomous vehicles. In this paper, we comprehensively review the 3D object detection methods based on
multimodal fusion in recent years, and discuss the advantages and limitations of these methods. At the same
time, this paper also introduces in detail the datasets and evaluation indexes used in the field of 3D object
detection, discusses the shortcomings of the current field of 3D object detection in images, and puts forward
the prospect of future research directions. With the continuous advancement of deep learning technology
and autonomous driving technology, 3D object detection based on multimodal fusion has the potential to
perform higher than single modal data due to its advantages of combining image and point cloud data. There
is a growing need for this fusion approach in scenarios where detection performance is critical. We foresee
that the research on multimodal fusion technology will continue to deepen, and the number of projects in
its practical application will gradually increase, indicating that the future development of this field is full
of hope.

Based on the analysis and summary of the relevant literature in recent years, this paper looks forward
to the future research directions in the field of 3D object detection based on multimodal fusion, which can
be divided into the following five directions:

(a) Convolutional operators suitable for non-Euclidean data feature extraction: Convolutional operators
are the core of deep learning networks, and they perform well in the processing of regularized data such as
images. However, the existing mainstream convolution operators are not suitable for non-Euclidean data,
such as point clouds, which do not have a fixed grid structure in 3D space. At present, the research on feature
extraction operators for non-Euclidean data is still in its infancy, but there are some preliminary results, such
as models such as PointFormer [121] and GraphFormer [122]. These new operators are specifically designed
to process non-Euclidean data such as point clouds, and can extract features directly from point clouds
without having to convert them into regular data forms, thus preserving more spatial information. Therefore,
the research and development of convolution operators suitable for non-Euclidean data will bring new
breakthroughs in the field of 3D object detection and is an important way to improve detection performance.

(b) Exploration of semi-supervised learning and unsupervised learning: Compared with other visual
fields, there are relatively few studies on semi-supervised and unsupervised learning in the field of 3D object
detection, which limits the development of this field. Semi-supervised learning avoids the performance
degradation of traditional supervised learning when the training samples are insufficient. In the field of 3D
object detection, semi-supervised learning can use a small number of labeled samples and a large number of
unlabeled samples to jointly train stronger models. Unsupervised learning does not rely on pre-labeled labels,
it trains on unlabeled datasets to mine structures and patterns in the data to improve detection performance.
Therefore, it is of great significance to explore the application of semi-supervised and unsupervised learning
in 3D object detection.

(c) Multimodal object detection in polar coordinates: Traditional object detection uses the Cartesian
coordinate system to characterize the target position, and although it excels in 2D object detection, it limits
the potential of the sensor in 3D object detection. For lidar, the Cartesian coordinate system fails to make full
use of the non-uniform spatial distribution of point clouds, resulting in low feature extraction efficiency. In
the case of cameras, the physical world imaging of a surround camera has a wedge-shaped geometry and the
axis is basically not perpendicular. In the Cartesian coordinate system, the camera image encoding ignores
the symmetry of the target at different viewing angles and the loss of information when the convolutional
kernel is downsampled, which is not conducive to feature fusion and accurate object detection. In contrast,
polar coordinate systems have shown significant advantages in 3D object detection, but current research
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has mainly focused on single-modal sensors. The camera-lidar fusion method in the polar coordinate
system has not been widely studied, but theoretically, this method has obvious advantages. Therefore, the
design of camera-lidar fusion method in polar coordinate system is expected to become a new trend in the
development of fusion perception.

(d) Adaptive implicit multi-modal spatial fusion: Current multi-modal spatial fusion methods often
project lidar point clouds to camera images, but this process is easy to cause geometric distortion, resulting
in incorrect matching of 3D point cloud features to 2D images, resulting in semantic errors. The existing
methods based on projection mapping are linear, explicit and absolute, but in fact, the correspondence
between point clouds and pixels should be nonlinear, implicit and relative. This mandatory 3D-to-2D
mapping can lead to position mapping errors and geometric distortions, affecting the quality of multimodal
feature alignment and reducing detection accuracy. In the future, the lidar point cloud features and 3D
position information can be used as a priori to allow the network to learn the coordinate correspondence
between different modalities, realize adaptive feature fusion and alignment, and avoid the loss of feature
information in the process of converting camera images into bird’s-eye views. This method can improve the
accuracy of multimodal fusion, thereby improving the accuracy of object detection.

(e) Efficient real-time detection: Efficient real-time detection is an important development direction of
multimodal object detection, especially in scenarios that require low latency, such as autonomous driving and
intelligent surveillance. With model lightweighting techniques such as quantization and model distillation, it
is possible to reduce computational costs while maintaining accuracy. Efficient intermodal fusion strategies,
such as dynamic weighted fusion and cross-modal attention mechanisms, can significantly reduce the
complexity of multimodal processing. At the same time, optimizing network architectures (such as single-
stage detectors and sparse networks) and data flows (such as block processing and real-time ROI extraction)
can improve inference efficiency. In addition, hardware acceleration (GPU, FPGA, ASIC) and software
optimization (model compilation, memory management) are combined to achieve software and hardware
synergy to improve performance. In practical applications, real-time performance evaluations (such as frame
rate testing, latency analysis) ensure that the system meets the requirements of real-time. Future development
should continue to balance accuracy and efficiency, combined with emerging hardware and algorithms, to
further improve the detection speed and robustness in complex scenarios.
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