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ABSTRACT: Continuous control protocols are extensively utilized in traditional MASs, in which information needs
to be transmitted among agents consecutively, therefore resulting in excessive consumption of limited resources. To
decrease the control cost, based on ISC, several LFC problems are investigated for second-order MASs without and with
time delay, respectively. Firstly, an intermittent sampled controller is designed, and a sufficient and necessary condition
is derived, under which state errors between the leader and all the followers approach zero asymptotically. Considering
that time delay is inevitable, a new protocol is proposed to deal with the time-delay situation. The error system’s stability
is analyzed using the Schur stability theorem, and sufficient and necessary conditions for LFC are obtained, which are
closely associated with the coupling gain, the system parameters, and the network structure. Furthermore, for the case
where the current position and velocity information are not available, a distributed protocol is designed that depends
only on the sampled position information. The sufficient and necessary conditions for LFC are also given. The results
show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed
in the paper. Finally, the correctness of the obtained results is verified by numerical simulations.

KEYWORDS: Intermittent sampled control; leader-following consensus; time delay; second-order multi-agent system

1 Introduction
In recent years, MASs have always been at the forefront of control and network science research. The

rapid development of MASs owes mainly to their widespread applications in formation control of UAVs [1],
spacecraft attitude coordination control [2], distributed control in microgrids [3], and so on.

Serving as a basis for the control of MASs, studies on consensus are of great practical and theoretical
significance. Up to now, many meaningful research results have been obtained. For example, studies [4]
and [5] discussed the consensus in first-order MASs under switching and dynamically changing topologies,
respectively. Since second-order dynamics is more usual than first-order in applications, consensus on
second-order MASs has drawn the interest of an increasing number of researchers. Authors in [6] proposed
several second-order algorithms to solve the consensus problems. The consensus of heterogeneous second-
order nonlinear MASs was studied in [7–9], whereas studies [10] and [11] discussed the consensus problems
for discrete-time MASs under directed information exchange.

Under the continuous control framework, communication between agents must always be maintained.
The intermittent control strategy was proposed to overcome the excessive consumption of limited resources
in continuous control. Using the intermittent control technique, studies [12] and [13] studied the consensus
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problems of linear and nonlinear MASs, respectively. Intermittent control was also used in [14–16] to study
the second-order consensus of time-delay MASs. The distributed consensus problem for leader-following
MASs was investigated in [17] via directed intermittent communication.

Although intermittent control can shorten the controller’s running time, the frequency of information
transmission cannot be decreased. Sampled-based intermittent controllers were introduced to improve
control efficiency and solve second-order consensus problems [18–20]. LFC in second-order MASs was
analyzed in [18] by designing an intermittent controller based on a filter with relative state information.
In particular, the topology graph in [18] is undirected; however, it is virtually impossible to guarantee
bidirectional communication between agents. Therefore, studying MASs with directed topologies of one-way
communication is more practical. Reference [19] discussed the consensus of directed second-order MASs by
employing current and sampled information. For the containment control problem, the proof of consensus
for MASs has been given in [20] under a directed communication topology. Studies [19] and [20] both used
the current and sampled state information to design the intermittent communication control protocols.

Sampled data can be used to design control protocols when real-time information is unavailable. For
second-order leaderless MASs, periodic intermittent control protocols using sampled information were
designed in [21] and [22]. Study [21] considered a consensus protocol with sampled position and velocity
information. A protocol with sampled and past sampled position information was proposed in [22] to
overcome the dependence on velocity information. By analyzing the relationship of the system parameters,
sufficient and necessary conditions have been obtained to ensure the consensus of MASs.

It should be pointed out that none of the above references explored the LFC problems for directed MASs
by taking an intermittent sampled control strategy. Based on these analyses, it is valuable to delve deeply into
the intermittent sampled LFC control problems for second-order MASs under weighted directed graphs.

The key contributions made by this paper are outlined below. Firstly, a distributed intermittent
controller is proposed, which guarantees the second-order LFC and effectively reduces the energy loss of
the MAS. Secondly, time delay is considered when designing the controller. Based on the relations of the
communication bandwidth, the sampling period, and the time delay, sufficient and necessary conditions for
LFC are derived by analyzing the error dynamics of the MAS. Furthermore, following the idea in [23], an
intermittent controller based only on sampled position information is designed, under which LFC can still
be reached if and only if control parameters, time delay, communication bandwidth, and sampling period
satisfy certain conditions.

Before proceeding, we need to introduce some symbols: R, Rn , Rn×n , and N indicate the set of real
numbers, the n-dimensional real vector space, the n × n real matrix set, and the natural number set,
respectively. Let 0 stand for an appropriate dimension zero vector or zero matrix, and In refers to the n × n
identity matrix. For a complex number u, its real part, imaginary part, and modulus are denoted by R(μ),
J(μ), and ∣μ∣, respectively. ∥z∥ means the Euclidean norm of a vector z. ∣X∣ denotes the determinant of a
square matrix X. i and diag(⋅) are the imaginary unit and the diagonal matrix, respectively.

2 Preliminaries
This part will briefly introduce some necessary basics.

2.1 Graph Theory
Basic graph theory is introduced by considering a MAS, which includes one leader and N followers.
G̃ represents the network topology of the considered MAS. G = {W, E, A} is a subgraph of G̃, which

describes the data exchange among all the followers, where W = {ω1 , ω2, ⋅ ⋅ ⋅ , ωN}, E, and A are the set of
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follower nodes, the set of directed edges, and the adjacency matrix, respectively. A directed path from node
ω j to ωi in G is composed of a series of directed edges (ωi , ωi1), (ωi1 , ωi2), ⋅ ⋅ ⋅ , (ωi l , ω j), where ωi k(k =
1, 2, ⋅ ⋅ ⋅ , l) are distinct from each other.

If there is a node (defined as the root node) such that directed paths exist from this node to every other
node in the graph, we say that the directed graph has a directed spanning tree. If e ji ∈ E, then ai j > 0; or else
ai j = 0; ai i = 0 for all i = 1, 2, ⋅ ⋅ ⋅ , N . L = [li j] ∈ RN×N denotes the Laplacian matrix associated with graph G,
where li i = ∑N

j=1, j≠i ai j and li j = −ai j(i ≠ j). D=diag(d1 , d2, ⋅ ⋅ ⋅ , dN ) is utilized to state whether the followers
can receive the information from the leader. di > 0 means that the ith follower can obtain the information
from the leader directly; otherwise, di = 0.

2.2 Useful Lemmas
Lemma 1 ([24]): L + D is nonsingular if G̃ has a spanning tree where the leader node is the root node.

Lemma 2 ([25]): Consider a block matrix S = [S11 S12
S21 S22

], det(S) = det(S11S22 − S21S12) if S11 and S21 are

commutable, where S11 , S12 , S21 , S22 ∈ Rn×n .
Lemma 3 ([26]): Consider a polynomial of order two with complex coefficients: l(s) = s2 + (p1 + iq1)s + p2 +
iq2, where p1 , q1 , p2, and q2 are real constants. Then, l(s) is stable if and only if p1 > 0 and p1q1q2 + p2

1 p2 −
q2 > 0.
Lemma 4 ([27]): For a third-order complex coefficient polynomial: m(s) = s3 + (p1 + iq1)s2 + (p2 + iq2)s +
p3 + iq3, where pi and qi(i = 1, 2, 3) are real constants. Then, m(s) is stable if and only if p1 > 0, p1q1q2 +

p2
1 p2 − q2

2 − p1 p3 > 0, and p1
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2.3 Problem Formulation
Consider a second-order MAS, which includes N followers and one leader. The ith follower’s dynamical

model can be described as
⎧⎪⎪⎨⎪⎪⎩

ẋi(t) = vi(t)
v̇ i(t) = ui(t), i = 1, 2, ⋅ ⋅ ⋅ , N

(1)

where xi(t) ∈ R, vi(t) ∈ R, and ui(t) ∈ R are the ith agent’s position, velocity, and control input, respectively.
Moreover, the leader’s dynamics can be expressed by

⎧⎪⎪⎨⎪⎪⎩

ẋ0(t) = v0(t)
v̇0(t) = 0, i = 1, 2, ⋅ ⋅ ⋅ , N

(2)

where x0(t) ∈ R and v0(t) ∈ R stand for the leader’s position and velocity, respectively.
Definition 1: For any xi(0) and vi(0) (i = 0, 1, 2, ⋅ ⋅ ⋅ , N), if there exists a control input ui(t) which makes
lim
t→∞
∣xi(t) − x0(t)∣ = 0 and lim

t→∞
∣vi(t) − v0(t)∣ = 0 hold, then the second-order MAS (1)–(2) is said to attain

the LFC.
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The following ISC protocol is introduced to reduce energy consumption:

ui(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1(∑N
j=1, j≠i ai j(x j(tk) − xi(tk)) + di(x0(tk) − xi(tk))) + γ2(∑N

j=1, j≠i ai j(v j(tk)
−vi(tk)) + di(v0(tk) − vi(tk))), t ∈ (tk , tk + δ],
0, t ∈ (tk + δ, tk+1], i = 1, 2, ⋅ ⋅ ⋅ , N

(3)

where γ1 > 0 and γ2 > 0 are the coupling gains, δ, tk , and T are the communication bandwidth, the sampling
instant, and the sampling period, respectively. And the sampling instants satisfy tk+1 − tk = T , lim

k→∞
tk = +∞,

0 = t0 < t1 < ⋅ ⋅ ⋅ < tk < ⋅ ⋅ ⋅ , and 0 < δ < T .
Remark 1: Continuous control protocols, which are widely applied in the study of consensus-related problems
of second-order MASs, will cause excessive consumption of limited resources. Controllers using current and
sampled state information were designed in [18–20] to decrease the control cost. Reference [18] considered the
LFC problems of undirected MASs; however, the obtained results do not apply to MASs under directed graphs.
References [19] and [20] address the leaderless consensus of MASs in directed topologies. The controller (3)
proposed in this paper only uses the sampled data to deal with the LFC problems of directed MASs.

3 Leader-Following Consensus without Time Delay
In this part, ISC protocol (3) is applied to study the LFC problem of MAS (1)–(2).
Let ζi(t) = xi(t) − x0(t) and ηi(t) = vi(t) − v0(t). With (3), we obtain that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ζ̇ i(t) = ηi(t)

η̇i(t) =
⎧⎪⎪⎨⎪⎪⎩

−γ1(∑N
j=1 li jζ j(tk) + di ζi(tk)) − γ2(∑N

j=1 li jη j(tk) + di ηi(tk)), t ∈ (tk , tk + δ]
0, t ∈ (tk + δ, tk+1], i = 1, 2, ⋅ ⋅ ⋅ , N .

(4)

Let ζ(t) = [ζ1(t), ζ2(t), ⋅ ⋅ ⋅ , ζN(t)]T , η(t) = [η1(t), η2(t) ⋅ ⋅ ⋅ , ηN(t)]T and H = L + D, (4) can be
converted to
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ζ̇(t) = η(t)

η̇(t) =
⎧⎪⎪⎨⎪⎪⎩

−γ1Hζ(tk) − γ2Hη(tk), t ∈ (tk , tk + δ]
0, t ∈ (tk + δ, tk+1], i = 1, 2, ⋅ ⋅ ⋅ , N .

(5)

Eq. (5) can be further reworded to

ξ̇(t) =
⎧⎪⎪⎨⎪⎪⎩

P1 ξ(t) + P2 ξ(tk), t ∈ (tk , tk + δ]
P1 ξ(t), t ∈ (tk + δ, tk+1]

(6)

where ξ(t) = [ζT(t), ηT(t)]T , P1 = [
0 IN
0 0 ], P2 = [

0 0
−γ1H −γ2H ].

For matrix H, there is a nonsingular matrix K such that H = KJK−1, and J denotes the Jordan form

corresponding to H. Let ξ̂(t) = [K
−1 0

0 K−1 ] ξ(t), we can derive that

˙̂ξ(t) =
⎧⎪⎪⎨⎪⎪⎩

P1 ξ̂(t) + P̃2 ξ̂(tk), t ∈ (tk , tk + δ]
P1 ξ̂(t), t ∈ (tk + δ, tk+1]

(7)
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where P̃2 = [
0 0
−γ1 J −γ2 J ]. From Lemma 1, if G is directed, some of the eigenvalues of H may be complex and

J = diag(J1 , J2, ⋅ ⋅ ⋅ , Jw), where Jv(v = 1, 2, ⋅ ⋅ ⋅ , w) have the following form: Jv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

μv 0 0 0
1 ⋱ 0 0
0 ⋱ ⋱ 0
0 0 1 μv

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nv×Nv

,

in which μv are the nonzero eigenvalues of H with algebraic multiplicity Nv(v = 1, 2, ⋅ ⋅ ⋅ , w) and N1 +
N2 + ⋅ ⋅ ⋅ + Nw = N . Besides, if G is undirected, J becomes a diagonal matrix with all diagonal elements
being positive.

Before proceeding, the following assumption and proposition need to be given.
Assumption 1: G̃ is a digraph and it has a directed spanning tree with the leader as the root node.
Proposition 1: When Assumption 1 holds, system (1)–(2) with protocol (3) can reach LFC if and only if
lim
t→∞

ξ̂ i(t) = 0(i = 1, 2, ⋅ ⋅ ⋅ , N), and ξ̂i(t) is the ith component of ξ̂(t).

Proof of Proposition 1 (Necessity): If lim
t→∞

xi(t) = x0(t) and lim
t→∞

vi(t) = v0(t) for i = 1, 2, ⋅ ⋅ ⋅ , N , then
ζi(t) → 0 and ηi(t) → 0 as t →∞ for i = 1, 2, ⋅ ⋅ ⋅ , N . Thus, the system (7) exhibits asymptotic stability.
(Sufficiency): If lim

t→∞
ξ̂ i(t) = 0 for i = 1, 2, ⋅ ⋅ ⋅ , N , then lim

t→∞
∥ξ(t)∥ = 0 since K is nonsingular. It means that

system (1)–(2) realizes LFC. ◻
Corollary 1: Under Assumption 1, MAS (1)–(2) can reach LFC if and only if the following N systems are
asymptotically stable:

ḣi(t) = {
A1hi(t) + μi A2hi(tk), t ∈ (tk , tk + δ]
A1hi(t), t ∈ (tk + δ, tk+1]

(8)

where hi(t) = [ξ̂ i(t), ξ̂ i+N(t)]T , ξ̂ i(t) and ξ̂i+N(t) represent the ith and the (i + N)th components of ξ̂(t),

respectively; A1 = [
0 1
0 0 ] and A2 = [

0 0
−γ1 −γ2

].

Proof of Corollary 1 (Necessity): If MAS (1)–(2) reaches LFC, it follows from Proposition 1 that lim
t→∞

ξ̂ i(t) =
0 for i = 1, 2, ⋅ ⋅ ⋅ , N . For t ∈ (tk , tk+1], because the variables in the system (8) are the first terms of the Jordan
blocks in (7), it is straightforward to get that lim

t→∞
hi(t) = 0 for i = 1, 2, ⋅ ⋅ ⋅ , N , which means that system (8)

is asymptotically stable.
(Sufficiency): When the N systems in the (8) are asymptotically stable, then lim

t→∞
hi(t) = 0 for i = 1, 2, ⋅ ⋅ ⋅ , N .

Based on the characteristics of the Jordan form, the LFC of (8) is determined by the diagonal entries. Thus,
lim
t→∞

ξ̂ i(t) = 0 holds for i = 1, 2, ⋅ ⋅ ⋅ , N . ◻
Although Proposition 1 and Corollary 1 provide some conditions for ensuring LFC, they do not show

how consensus behavior is affected by relevant parameters of the system. Therefore, the following theorem
is given to show the relationship among them.
Theorem 1: With (3), MAS (1)–(2) can reach the LFC if and only if

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ < 2γ2

γ1

T < Ξ i

(9)
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where Ξ i = [δ2(γ1δ − 2γ2)3∣μi ∣4 + 4δ(2γ2 − γ1δ)2R(μi)∣μi ∣2]/[γ1δ2(2γ2 − γ1δ)2∣μi ∣4 + 16γ1I
2(μi)], μi is

the eigenvalue of H.
Proof of Theorem 1: From (8), we can obtain

hi(t) =
⎧⎪⎪⎨⎪⎪⎩

eA1(t−tk)hi(tk) + μi ∫
t

tk
eA1(t−n)A2hi(tk)dn, t ∈ (tk , tk + δ]

eA1(t−tk−δ)hi(tk + δ), t ∈ (tk + δ, tk+1].
(10)

When t = tk + δ, it is obvious that hi(tk + δ) = eA1 δ hi(tk) + μi ∫
tk+δ

tk
eA1(tk+δ−n)A2hi(tk)dn.

Solving the first equation of (10) and substituting its solution into the second equation of (10), it can be
obtained that

hi(t) =
⎧⎪⎪⎨⎪⎪⎩

Ei(t − tk)hi(tk), t ∈ (tk , tk + δ]
Fi(t − tk − δ)hi(tk), t ∈ (tk + δ, tk+1]

(11)

where Ei(s) = −[
γ1 μi s2/2 − 1 γ2 μi s2/2 − s

γ1 μi s γ2 μi s − 1 ], Fi(s) = [
Q1i(s) Q2i(s)
−γ1 μi δ 1 − γ2 μi δ

] with Q1i(s) = 1 −

γ1 μi δ(δ/2 + s) and Q2i(s) = s + δ − γ2 μi δ(s + δ/2).
Hence, we have

hi(t) =
⎧⎪⎪⎨⎪⎪⎩

Ei(t − tk)F k
i (T − δ)hi(t0), t ∈ (tk , tk + δ]

Fi(t − tk − δ)F k
i (T − δ)hi(t0), t ∈ (tk + δ, tk+1].

(12)

When tk < t ≤ tk+1, we can easily know that Ei(t − tk) and Fi(t − tk − δ) are bounded. hi(t) → 0 if and
only if all the eigenvalues of Fi(T − δ) have modulus less than 1. Then, let ∣λI2 − Fi(T − δ)∣ = 0, by Lemma
2, we get

λ2 + a1 λ + a2 = 0 (13)

where a1 = μi δ(αT + β − αδ/2) − 2 and a2 = αμi δ2/2 − βμi δ + 1. In order to analyze the Schur stability
of Eq. (13), let λ = (m + 1)/(m − 1), then

m2 + b1m + b2 = 0 (14)

where b1 = (2γ2 − γ1δ)/(γ1T) and b2 = δ/T + 4/(γ1 μi δT) − 2γ2/(γ1T) − 1. It follows from Lemma 3
that (14) is asymptotically stable if and only if (9) holds. Based on the aforementioned analysis, (9)
guarantees that hi(t) → 0 for i = 1, 2, ⋅ ⋅ ⋅ , N . So, MAS (1)–(2) reaches LFC under protocol (3). The proof is
complete. ◻
Corollary 2: When T = δ, system (1)–(2) achieves the LFC if and only if

⎧⎪⎪⎨⎪⎪⎩

δ < 2γ2/γ1

Ξ i > 1
(15)

where Ξ i = [T(γ1T − 2γ2)3∣μi ∣4 + 4(2γ2 − γ1T)2R(μi)∣μi ∣2]/[γ1T2(2γ2 − γ1T)2∣μi ∣4 + 16γ1I
2(μi)].

Proof of Corollary 2: When T = δ, system (1)–(2) becomes a general sampled system. It is straightforward
to get condition (15) from (9). ◻
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Undirected graphs can be considered unique directed graphs. For undirected graphs, the subsequent
corollary can be derived.
Corollary 3: If the communication topology of all the followers is undirected, system (1)–(2) can reach the LFC
if and only if

⎧⎪⎪⎨⎪⎪⎩

δ < 2γ2/γ1

T < Ξ i
(16)

where Ξ i = [δ2(γ1δ − 2γ2)3∣μi ∣ + 4δ(2γ2 − γ1δ)2]/[γ1δ2(2γ2 − γ1δ)2∣μi ∣].
Proof of Corollary 3: When G is undirected, the eigenvalues μi(i = 1, 2, ⋅ ⋅ ⋅ , N) of H are real. Then,R(μi) =
μi and I(μi) = 0 for i = 1, 2, ⋅ ⋅ ⋅ , N . Thus, (9) is equivalent to (16) for undirected graphs, then LFC is reached
if and only if (16) holds. ◻

4 Leader-Following Consensus with Time Delay
It is widely known that time delay has always been present in actual systems and can not be ignored.

For time delay situations, a kind of ISC algorithm is proposed.

ui(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1(∑N
j=1, j≠i ai j(x j(tk − ι) − xi(tk − ι)) + di(x0(tk − ι) − xi(tk − ι))) + γ2(∑N

j=1, j≠i

ai j(v j(tk − ι) − vi(tk − ι)) + di(v0(tk − ι) − vi(tk − ι))), t ∈ (tk , tk + δ]
0, t ∈ (tk + δ, tk+1], i = 1, 2, ⋅ ⋅ ⋅ , N

(17)

where ι represents the time delay and 0 < ι < T .
Remark 2. Since time delay always exists in engineering applications, based on [18], we further consider the
time-delay system and propose a time-delay controller that only uses the sampled information. Literature [13]
and [14] considered the leaderless consensus of linear and nonlinear MASs, respectively, where intermittent
control protocols were designed using sampled information. As a comparison, this paper discusses the ISC
problem of second-order leader-following MASs. An ISC protocol (17) is designed for MAS (1)–(2) with time
delay to achieve LFC.

With (17), by using procedures similar to those in Section 3, we obtain that

ξ̇(t) =
⎧⎪⎪⎨⎪⎪⎩

P1 ξ(t) + P2 ξ(tk − ι), t ∈ (tk , tk + δ]
P1 ξ(t), t ∈ (tk + δ, tk+1].

(18)

Let ξ̂(t) = [K
−1 0

0 K−1 ] ξ(t), system (18) can be cast to

˙̂ξ(t) =
⎧⎪⎪⎨⎪⎪⎩

P1 ξ̂(t) + P̃2 ξ̂(tk − ι), t ∈ (tk , tk + δ]
P1 ξ̂(t), t ∈ (tk + δ, tk+1].

(19)

Let hi(t) = [ξ̂ i(t), ξ̂ i+N(t)]T . (19) can be further reformulated as

ḣi(t) =
⎧⎪⎪⎨⎪⎪⎩

A1hi(t) + μi A2hi(tk − ι), t ∈ (tk , tk + δ]
A1hi(t), t ∈ (tk + δ, tk+1].

(20)
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Theorem 2: When Assumption 1 holds, MAS (1)–(2) with the protocol (17) achieves the LFC if and only if one
of the following conditions hold:

1) ι <min{δ, T − δ}or δ < ι < t − δ(δ < t/2),
⎧⎪⎪⎨⎪⎪⎩

δ < 2γ2/γ1 − 2ι
T < Φ1i/Φ2i

(21)

where Φ1i = δ2(γ1δ − 2γ2 + 2γ1 ι)3∣μi ∣4 + 4δ(2γ2 − γ1δ − 2γ1 ι)2R(μi)∣μi ∣2 and Φ2i = γ1δ2(2γ2 − γ1δ −
2γ1 ι)2∣μi ∣4 + 16γ1I

2(μi).
2) T − δ < ι < T(δ > T/2) or ι >max{δ, T − δ},

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T − 2ι/3 + 2γ2/(3γ1) > 0
p2

1 p2 − q2
2 − p1 p3 > 0

Λ i > 0
(22)

where Λ i = p1






















q1 −p2 −p3 0
p1 q2 −p3 0
1 q1 −p2 −q3
0 p1 q2 −p3






















−






















q2 −p3 0 0
p1 q2 −p3 0
1 q1 −p2 −q3
0 p1 q2 −p3






















with p1 = 2γ1T(γ2 − γ1 ι) + 3, q1 = 0, p2 =

4R(μi)/(γ1δT ∣μi ∣2) + 2[(T − ι)2 − 2γ2]/(γ1T) + 4γ2(T − ι)/(γ1δT) + 2(δ + 2ι)/T − 5, q2 = q3 =
4I(μi)/(γ1δT ∣μi ∣2) and p3 = 4R(μi)/(γ1δT ∣μi ∣2) + 2[(T − ι)2 − γ2]/(γ1T) + 4γ2/(γ1δ) − 4γ2 ι/(γ1δT) +
(δ + ι)/T − 3.
Proof of Theorem 2: Based on Eq. (20), we deduce that

hi(t) =
⎧⎪⎪⎨⎪⎪⎩

eA1(t−tk)hi(tk) + ∫
t

tk
eA1(t−n)A2i hi(tk − ι)dn, t ∈ (tk , tk + δ]

eA1(t−tk−δ)hi(tk + δ), t ∈ (tk + δ, tk+1].
(23)

Therefore, hi(tk + δ) = eA1 δ hi(tk) + ∫
tk+δ

tk
eA1(tk+δ−n)A2i hi(tk − ι)dn. For t ∈ (tk + δ, tk+1],

it is obvious that hi(t) = Φ3(t − tk − δ)hi(tk) + μi Φ4(t − tk − δ)hi(tk − ι) where Φ3(s) =

[γ1δ(δ/2 + s) γ2δ(δ/2 + s)
γ1δ γ2δ ] and Φ4(s) = [

1 s + δ
0 1 ]. Then

hi(t) =
⎧⎪⎪⎨⎪⎪⎩

Φ1(t − tk)hi(tk) + μi Φ2(t − tk)hi(tk − ι), t ∈ (tk , tk + δ]
Φ3(t − tk − δ)hi(tk) + μi Φ4(t − tk − δ)hi(tk − ι), t ∈ (tk + δ, tk+1]

(24)

where Φ1(s) = [
1 s
0 1 ] and Φ2(s) = [

γ1s2/2 γ2s2/2
γ1s γ2s ].

Let ĥi(t) = [hi(t), hi(t − ι)]T . According to the relationship of ι, δ, and T, the following four cases are
discussed to obtain the detailed expressions of hi(tk − ι).

Case 1: ι <min{δ, T − δ}.
For t ∈ [tk , tk + ι), hi(t) = Φ1(t − tk)hi(tk) + μi Φ2(t − tk)hi(tk − ι), hi(t − ι) = Φ3(t − ι − tk−1 −

δ)hi(tk−1) + μi Φ4(t − ι − tk−1 − δ)hi(tk−1 − ι). For t ∈ [tk + ι, tk + δ), hi(t) = Φ1(t − tk)hi(tk) + μi Φ2(t −
tk)hi(tk − ι), hi(t − ι) = Φ1(t − ι − tk)hi(tk) + μi Φ2(t − ι − tk)hi(tk − ι). For t ∈ [tk + δ, tk + δ + ι),
hi(t) = Φ3(t − tk − δ)hi(tk) + μi Φ4(t − tk − δ)hi(tk − ι), hi(t − ι) = Φ1(t − ι − tk)hi(tk) + μi Φ2(t −
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ι − tk)hi(tk − ι). For t ∈ [tk + δ + ι, tk+1), hi(t) = Φ3(t − tk − δ)hi(tk) + μi Φ4(t − tk − δ)hi(tk − ι),
hi(t − ι) = Φ3(t − ι − tk − δ)hi(tk) + μi Φ4(t − ι − tk − δ)hi(tk − ι).

By letting V1i(s) = [
E1i(s) F1i(s)

Φ3(s − ι + T − δ) μi Φ4(s − ι + T − δ)], V2i(s) = [
Φ1(s) μi Φ2(s)

Φ1(s − ι) μi Φ2(s − ι)],

V3i(s) = [
Φ3(s) μi Φ4(s)

Φ1(s − ι) μi Φ2(s − ι)], V4i(s) = [
Φ3(s − δ) μi Φ4(s − δ)

Φ3(s − δ − ι) μi Φ4(s − δ − ι)], E1i(s) = Φ1(s)Φ3(T −

δ) + μi Φ2(s)Φ4(T − δ − ι) and F1i(s) = μi(Φ1(s)Φ4(T − δ) +Φ2(s)Φ4(T − ι − δ)), we have hi(tk+1) =
Φ3(T − δ)hi(tk) + μi Φ2(t − tk)hi(tk − ι) and hi(tk+1 − ι) = Φ3(T − δ − ι)hi(tk) + μi Φ4(t − tk)hi
(tk − ι).

Therefore, for t ∈ [tk , tk + ι), ĥi(t) = V1i(t − tk)ĥi(tk−1) = V1i(t − tk)V k−1
4i (T)ĥi(t0). For t ∈ [tk +

ι, tk + δ), ĥi(t) = V2i(t − tk)ĥi(tk−1) = V2i(t − tk)V k
4i(T)ĥi(t0). For t ∈ [tk + δ, tk + δ + ι), ĥi(t) =

V3i(t − tk)ĥi(tk) = V3i(t − tk)V k
4i(T)ĥi(t0). For t ∈ [tk + δ + ι, tk+1), ĥi(t) = V4i(t − tk)ĥi(tk) = V4i(t −

tk)V k
4i(T)ĥi(t0).
Case 2: When T − δ < ι < δ(δ > T/2), the analysis is similar to that in Case 1.

Let V6i(s) = [
E2i(s) F2i(s)

Φ3(s − ι + T − δ) μi Φ4(s + T − ι − δ) ], V7i(s) = [
Φ3(s − δ) μi Φ4(s − δ)
Φ1(s − ι) μi Φ2(s − ι) ],

V5i(s) = [
E2i(s) F2i(s)

Φ1(s + T − ι) μi Φ2(s − ι + T) ], E2i(s) = Φ1(s)Φ3(T − δ) + μi Φ2(s)Φ4(T − ι) and F2i(s) =

μi(Φ2(s)Φ2(T − ι) +Φ1(s)Φ4(T − δ)).
For t ∈ [tk , tk−1 + ι + δ), ĥi(t) = V5i(t − tk)ĥi(tk−1) = V5i(t − tk)V k−1

7i (T)ĥi(t0). For t ∈ [tk−1 +
ι + δ, tk + ι), ĥi(t) = V6i(t − tk)ĥi(tk−1) = V6i(t − tk)V k−1

7i (T)ĥi(t0). For t ∈ [tk + ι, tk + δ), ĥi(t) =
V2i(t − tk)ĥi(tk) = V2i(t − tk)V k

7i(T)ĥi(t0). For t ∈ [tk + δ, tk+1), ĥi(t) = V7i(t − tk)ĥi(tk) = V7i(t −
tk)V k−1

7i (T)ĥi(t0).
Case 3: δ < ι < T − δ(δ < T/2).

Let V8i(s) = [
E3i(s) F3i(s)

Φ3(s − ι + T − δ) μi Φ4(s − ι + T − δ) ], E3i(s) = Φ3(s − δ)Φ3(T − δ) + μi Φ4(s −

δ)Φ3(T − ι − δ) and F3i(s) = μi(Φ3(s − δ)Φ4(T − δ) +Φ4(s − δ)Φ4(T − ι − δ)).
For t ∈ [tk , tk + δ), ĥi(t) = V1i(t − tk)ĥi(tk−1) = V1i(t − tk)V k−1

4i (T)ĥi(t0). For t ∈ [tk + δ, tk + ι),
ĥi(t) = V8i(t − tk)ĥi(tk−1) = V8i(t − tk)V k−1

4i (T)ĥi(t0). For t ∈ [tk + ι, tk + δ + ι), ĥi(t) = V7i(t −
tk)ĥi(tk) = V7i(t − tk)V k

4i(T)ĥi(t0). For t ∈ [tk + δ + ι, tk+1), ĥi(t) = V4i(t − tk)ĥi(tk) = V4i(t −
tk)V k

4i(T)ĥi(t0).
Case 4: ι >max{δ, T − δ}.

Let V9i(s) = [
E2i(s) F2i(s)

Φ1(s + T − ι) μi Φ2(s − ι) ], V10i(s) = [
E2i(s) F2i(s)

Φ3(s + T − ι − δ) μi Φ4(s + T − ι − δ) ],

V11i(s) = [
E4i(s) F4i(s)

Φ3(s − ι + T − δ) μi Φ4(s − ι + T − δ) ], E4i(s) = Φ3(s − δ)Φ3(T − δ) + μi Φ1(T − ι)Φ4(s −

δ) and F4i(s) = μi(Φ3(s − δ)Φ4(T − δ) +Φ1(T − ι)Φ4(s − δ)).
For t ∈ [tk , tk−1 + δ + ι), ĥi(t) = V9i(t − tk)ĥi(tk−1) = V9i(t − tk)V k−1

7i (T)ĥi(t0). For t ∈ [tk−1 + δ +
ι, tk + δ), ĥi(t) = V10i(t − tk)ĥi(tk−1) = V10i(t − tk)V k−1

7i (T)ĥi(t0). For t ∈ [tk + δ, tk + δ + ι), ĥi(t) =
V11i(t − tk)ĥi(tk−1) = V11i(t − tk)V k−1

7i (T)ĥi(t0). For t ∈ [tk + δ + ι, tk+1), ĥi(t) = V7i(t − tk)ĥi(tk) =
V7i(t − tk)V k

7i(T)ĥi(t0).
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If t ∈ (tk , tk+1], we have that Vji(t − tk)( j = 1, 2, ⋅ ⋅ ⋅ , 11, j ≠ 4, 7) are all bounded. h(t) → 0 if and only
if ĥ(t) → 0, in other words, h(t) → 0 is equivalent to the modulus of λ(V4i(T)) or λ(V7i(T)) being less
than 1.

For Cases 1 and 3, let ∣λI4 − V4i(T)∣ = 0, from Lemma 2, we have

λ4 + c1 λ3 + c2 λ2 = 0 (25)

where c1 = μi δ(γ1T − γ1 ι + γ2 − γ1δ/2) − 2 and c2 = μi δ(γ1 ι − γ2 + γ1δ/2) + 1. Obviously, V4i has two eigen-
values λ1 = λ2 = 0. Let λ = (m + 1)/(m − 1), we get

m2 + d1m + d2 = 0 (26)

where d1 = 2(γ2/γ1 − δ/2 − ι)/T and d2 = 4/(γ1δT μ2
i ) + 2(δ/2 + ι − γ2)/T − 1. It is apparent that the modu-

lus of λ is less than 1 if and only if R(m) < 0. So, a sufficient and necessary condition for hi(t) → 0 is that all
the roots of (26) have negative real parts. According to Lemma 3, the system (26) is stable if and only if (21)
holds. The LFC of MAS (1)–(2) with protocol (17) can be reached if and only if (21) holds.

For Cases 2 and 4, let ∣λI4 − V7i(T)∣ = 0, based on Lemma 2, we get

λ4 + e1 λ3 + e2 λ2 + e3 λ = 0 (27)

where e1 = γ1 μi(ι − T)(2 + ι − T)/2, e2 = μi(ι − T)(2γ2 − γ1(1 + ι − T)) + (γ1δ/2 + γ1(T − δ) + γ2)δμi and
e3 = μi(T − ι)(γ2 − γ1δ + γ1(T − ι)) + (γ1δ/2 − γ2)δμi . Clearly, λ1 = 0 is an eigenvalue of V7i . Let λ = (m +
1)/(m − 1), we have

m3 + f1m2 + f2m + f3 = 0 (28)

where f1 = μi[γ2(T − ι) + γ1(T − ι)2/2] − 2, f2 = μi(T − ι)[γ1 − 2γ2 − γ1(T − ι)] + μi δ(γ1T − γ1δ/2) + 1
and f3 = μi(T − ι)[γ2 − γ1δ + γ1(T − ι)/2] − μi(γ2 − γ1δ/2). hi(t) → 0 holds if and only if all the roots
of (28) have negative real parts. By Lemma 4, the polynomial in (28) is stable if and only if (22) holds. The
proof is complete. ◻
Remark 3: In Theorem 2, sufficient and necessary conditions are provided under which system (1)–(2) achieves
LFC with protocol (17). From the relationship of ι, δ, and T − δ, four cases are considered, i.e., ι <min{δ, T − δ},
δ < ι < t − δ(δ < t/2), T − δ < ι < δ(δ > T/2), and ι >max{δ, T − δ}. Notably, for 0 = ι <min{δ, T − δ}, the
condition (21) reduces to (9). Thus, Theorem 1 is a special case that fits within the framework of Theorem 2.
Remark 4: The second-order LFC of MAS (1)–(2) with time delay can be reached if and only if (21) holds. In
Case 1, we can first set the values of γ1, γ2, and ι, then select the value of δ satisfying δ > ι. By combining the
network topology, we can select the range of the sampling period T so that (21) is satisfied. Finally, further refine
the extent of the sampling period such that ι < min{δ, T − δ}. In the other three cases, the parameters can be
chosen similarly.
Corollary 4: For the undirected topology, the second-order MAS (1)–(2) reaches the LFC if and only if one of
the following is satisfied:

1) ι <min{δ, T − δ}or δ < ι < t − δ(δ < t/2),
⎧⎪⎪⎨⎪⎪⎩

δ < 2γ2/γ1 − 2ι
T < Φ1i/Φ2i

(29)

where Φ1i = δ2(γ1δ − 2γ2 + 2γ1 ι)3 μi + 4δ(2γ2 − γ1δ − 2γ1 ι)2 and Φ2i = γ1δ2(2γ2 − γ1δ − 2γ1 ι)2 μi .
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2) T − δ < ι < δ(δ > T/2) or ι >max{δ, T − δ},
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T − 2ι/3 + 2γ2/(3γ1) > 0
p2

1 p2 − p1 p3 > 0
Λ i > 0

(30)

where Λ i = p1






















q1 −p2 −p3 0
p1 0 −p3 0
1 q1 −p2 0
0 p1 0 −p3






















−






















0 −p3 0 0
p1 0 −p3 0
1 q1 −p2 0
0 p1 0 −p3






















with p1 = 2γ1γ2T − 2γ2
1 ιT + 3, p2 = 4/

(γ1δT μi) + 2(T − ι)2/(γ1T) + 4γ2(T − ι)/(γ1δT) − 4γ2/(γ1T) + 2δ/T + 4ι/T − 5 and p3 = 4/(γ1δT μi) +
2(T − ι)2/(γ1T) + 4γ2/(γ1δ) − 4γ2 ι/(γ1δT) − 2γ2/(γ1T) + (δ + ι)/T − 3.
Proof of Corollary 4: For undirected graph G, we can easily get R(μi) = μi and I(μi) = 0 (i = 1, 2, ⋅ ⋅ ⋅ , N).
So, (21) and (22) are equivalent to (29) and (30), respectively. LFC can be achieved if and only if
inequalities (29) and (30) hold. ◻

5 Leader-Following Consensus Based Only on Position Information
Obtaining velocity information is difficult in engineering applications, so we propose the following ISC

protocol based only on position information.

ui(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1(∑N
j=1, j≠i ai j(x j(tk) − xi(tk)) + di(x0(tk) − xi(tk))) − γ2(∑N

j=1, j≠i ai j(x j(tk − ι)−
xi(tk − ι)) + di(x0(tk − ι) − xi(tk − ι))), t ∈ (tk , tk + δ]
0, t ∈ (tk + δ, tk+1], i = 1, 2, ⋅ ⋅ ⋅ , N .

(31)

Remark 5: Velocity information was used in designing the controllers in [18,19] and [21]. However, it is usually
hard to get the velocity information. When velocity is unavailable, systems need to rely on position data to reach
consensus. This motivates us to explore whether LFC can still be reached when protocols are designed based only
on position data. In fact, most studies regard the time delay as a detrimental factor due to its significant impact on
system stability (examples include references [4,14–16], and [21]). When velocity information is absent, the LFC
cannot be achieved by relying solely on position information. In such cases, incorporating time delay information
can be beneficial for reaching consensus. Reference [23] proved that under some circumstances, time delay is
beneficial to achieving the consensus of MASs, in which a continuous time-delay control algorithm was designed
to reach second-order consensus. ISC protocol (31) employing the time-delay sampled position information is
proposed in this paper for second-order MASs to achieve LFC, which can effectively reduce the energy loss of
MASs and solve the problem that the velocity information is unavailable.

After similar calculations as in Theorem 2, we obtain that

ḣi(t) =
⎧⎪⎪⎨⎪⎪⎩

A1hi(t) + μi B1hi(tk) + μi B2hi(tk − ι), t ∈ (tk , tk + δ]
A1hi(t), t ∈ (tk + δ, tk+1]

(32)

where B1 = [
0 0
−γ1 0] and B2 = [

0 0
0 γ2

].

Theorem 3: Suppose that Assumption 1 holds. MAS (1)–(2) with control protocol (31) reaches LFC if and only
if one of the following holds:
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1) ι <min{δ, T − δ}or δ < ι < t − δ(δ < t/2),
⎧⎪⎪⎨⎪⎪⎩

δ < 2γ2 ι/(γ1 − γ2)
T < Δ1i

(33)

where Δ1i = [4R(μi)/((γ1 − γ2)∣μi ∣2δ)] − 16I(μi)(γ1 − γ2)∣μi ∣2δ/[2γ2 ι/(γ1 − γ2) − δ]2.
2) T − δ < ι < δ(δ > T/2) or ι >max{δ, T − δ},

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p1 > 0
p1q1q2 + p2

1 p2 − q2
2 − p1 p3 > 0

Δ2i > 0
(34)

where Δ2i = p1






















q1 −p2 −p3 0
p1 q2 −p3 0
1 q1 −p2 −q3
0 p1 q2 −p3






















−






















q2 −p3 0 0
p1 q2 −p3 0
1 q1 −p2 −q3
0 p1 q2 −p3






















with p1 = [γ2δ(δ/2 − T) − γ2/2(ι − T)2 −

γ1/2δ2]R(μi)/(κ∣μi ∣2/2) − 3, q1 = [γ2δ(δ/2 − T) − γ2/2(ι − T)2 − δ2γ1/2]I(μi)/(κ∣μi ∣2/2), p2 = −4
[[(γ1 − γ2)δT + γ2δ2]R(μi) + [R2(μi) − I2(μi)]∣μi ∣2]/(κ∣μi ∣4) + 3, q2 = −4[[(γ1 − γ2)δT + γ2δ2]∣μi ∣2
I(μi) + 2R(μi)I(μi)]/(κ∣μi ∣4), p3 = 2[[(γ1 + γ2)δ(δ/2 − T) + γ2/2(T − ι) − γ1δγ1T]R(μi)∣μi ∣2 + 2
[R2(μi) − I2(μi)]]/(κ∣μi ∣4), q3 = 2[(γ1 + γ2)δ(δ/2 − T) + γ2/2(T − ι) − γ1δγ1T]I(μi)∣μi ∣2 + 4R(μi)
I(μi)]/(κ∣μi ∣4) and κ = γ1δ/4(Tδ − 2T2 − δι + 2Tι)(2γ2δ − γ1T2 + γ1 ιT).
Proof of Theorem 3: The steps of the proof for this part are akin to that of Theorem 2, so it will not be
repeated here. ◻
Remark 6: By following the same line as in Remark 4, we can select proper parameters for (33) and (34) to
be satisfied under which LFC in MAS (1)–(2) can still be reached.
Corollary 5: For undirected graphs, MAS (1)–(2) with the protocol (31) can achieve the LFC if and only if one
of the following conditions is valid:

1) ι <min{δ, T − δ} or δ < ι < t − δ(δ < t/2),
⎧⎪⎪⎨⎪⎪⎩

δ < 2γ2 ι/(γ1 − γ2)
T < Δ1i

(35)

where Δ1i = 4/((γ1 − γ2)μi δ).
2) T − δ < ι < δ(δ > T/2) or ι >max{δ, T − δ},

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p1 > 0
p2

1 p2 − p1 p3 > 0
Δ2i > 0

(36)



Comput Mater Contin. 2025;83(3) 4847

where Δ2i = p1






















0 −p2 −p3 0
p1 0 −p3 0
1 0 −p2 0
0 p1 0 −p3






















−






















0 −p3 0 0
p1 0 −p3 0
1 0 −p2 0
0 p1 0 −p3






















with p1 = −[γ2δ(T − δ/2) + γ2/2(ι2 −

2Tι + T2) − γ1/2δ2]μi/(κ∣μi ∣2/2) − 3, p2 = −4[(γ1 − γ2)δT + γ2δ2 + μ2
i ]/(κ∣μi ∣3) + 3 and p3 = 2[[(γ1 +

γ2)δ(δ/2 − T) + γ2/2(T − ι) − γ1δγ1T]∣μi ∣ + 2]/(κ∣μi ∣2).
Proof of Corollary 5: A similar proof follows from Corollary 4. ◻
Remark 7: Both [19] and [20] used the current and sampled state information to design the control protocols,
while this paper only uses the sampled information to improve the control efficiency further. In addition,
considering that velocity information is difficult to obtain, this paper proposes an ISC protocol (31) that only
utilizes the sampled position information, and the sufficient and necessary conditions for LFC are obtained. This
approach can avoid the control cost resulting from the velocity measurement.

6 Simulation
Consider a second-order MAS, which includes 5 followers (nodes 1–5) and 1 leader (node 0). Different

from the undirected graph in [18], this paper employs a weighted directed graph, whose communication
topology is illustrated in Fig. 1. x̃i and ṽ i(i = 1, 2, ⋅ ⋅ ⋅ , 5) stand for position errors and velocity errors between
the followers and the leader, respectively. To show the effectiveness of the obtained theories, we select several
scenarios from the proof of Theorems 1–3 as representatives for numerical simulations.

Figure 1: Communication graph of MAS (1)–(2)

Example 1: Consider system (1), (2) with protocol (3). According to Theorem 1, we choose γ1 = 0.7, γ2 =
1.5, and δ = 0.5 in the simulation. Obviously, the first inequality in (9) holds. We get T < 1.62 from the second
inequality of (9). Thus, MAS (1)–(2) can reach LFC if and only if 0.5 < T < 1.62. The position and velocity
errors between the followers and the leader are presented in Figs. 2 and 3, respectively. LFC in MAS (1)–(2)
can be achieved when T = 1.1. However, it cannot be reached when T = 1.63.
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Figure 2: State errors between the followers and the leader when T = 1.1

Figure 3: State errors between the followers and the leader when T = 1.63

Example 2: In this example, simulations in two different cases (Cases 1 and 2 in Theorem 2) are given
to check the validity of the theoretical results.
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When ι < min{δ, T − δ}, we select γ1 = 0.5, γ2 = 1.9 and ι = 0.1. Since ι < min{δ, T − δ}, δ = 0.3 is
selected. According to (21), 0.4 < T < 1.12 should be satisfied. From Fig. 4, LFC can be achieved when T = 0.8.

Figure 4: The error trajectories of system (1)–(2) with protocol (17) in Case 1

When T − δ < ι < δ(δ > T/2), γ1 = 0.3, γ2 = 1.5 and ι = 0.5 are chosen to verify the correctness of Case
2 in Theorem 2. From (22), we have 0.6 < T < 1.1 when δ = 0.6. Fig. 5 shows the position and velocity error
trajectories when T = 0.9.

Under protocol (17), the position and velocity errors between all the followers and the leader tend to 0
when time delay exists, which means that MAS (1)–(2) achieves LFC asymptotically.

Example 3: The other two different cases (Cases 3 and 4 in Theorem 3) are considered to verify the
effectiveness of protocol (31) in this example.

When δ < ι < T − δ(δ < T/2), we choose γ1 = 2.1, γ2 = 1.4, ι = 0.5, and δ = 0.4. From (33) in Theorem
3, we get 0.9 < T < 2.11. Fig. 6 illustrates that LFC is reached when T = 1.

When ι >max{δ, T − δ}, γ1 = 2.2, γ2 = 1.8, ι = 0.65, and δ = 0.54 are chosen. By (34), MAS (1)–(2) can
reach consensus if and only if 0.54 < T < 1.19. It can be observed from Fig. 7 that LFC is achieved when
T = 0.94.

In these two cases, the state errors between all the followers and the leader converge to 0, even if the
time delay exists. That is to say, MAS (1)–(2) with protocol (31) achieves LFC.
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Figure 5: The error trajectories of system (1)–(2) with protocol (17) in Case 2

Figure 6: The error trajectories of system (1)–(2) with protocol (31) in Case 3
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Figure 7: The error trajectories of system (1)–(2) with protocol (31) in Case 4

7 Conclusion
Second-order LFC problems in MASs are investigated in this work. Firstly, a new ISC protocol is

proposed, and consensus conditions are analyzed to ensure the LFC. A sufficient and necessary condi-
tion dependent on coupling gain, sampling period, communication bandwidth, and network structure is
obtained. Besides, input delay is taken into account, and a time-delay protocol is proposed. According to
the relationship of system parameters, four cases are discussed separately, and it is concluded that MAS can
reach the LFC if and only if system parameters satisfy certain conditions. Furthermore, considering it is
hard to get the velocity information, an intermittent sampled protocol only with position information is
proposed. A sufficient and necessary condition is also acquired to guarantee the LFC. In the future, we will
further investigate the second-order LFC of MASs with quantized communication or stochastic switching
topologies, etc.
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