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ABSTRACT: Spark performs excellently in large-scale data-parallel computing and iterative processing. However, with
the increase in data size and program complexity, the default scheduling strategy has difficulty meeting the demands of
resource utilization and performance optimization. Scheduling strategy optimization, as a key direction for improving
Spark’s execution efficiency, has attracted widespread attention. This paper first introduces the basic theories of Spark,
compares several default scheduling strategies, and discusses common scheduling performance evaluation indicators
and factors affecting scheduling efficiency. Subsequently, existing scheduling optimization schemes are summarized
based on three scheduling modes: load characteristics, cluster characteristics, and matching of both, and representative
algorithms are analyzed in terms of performance indicators and applicable scenarios, comparing the advantages and
disadvantages of different scheduling modes. The article also explores in detail the integration of Spark scheduling
strategies with specific application scenarios and the challenges in production environments. Finally, the limitations of
the existing schemes are analyzed, and prospects are envisioned.

KEYWORDS: Spark; scheduling optimization; load balancing; resource utilization; distributed computing

1 Introduction
With the rapid development and large-scale popularization of digital technology, the demand for

large-scale data computation and analysis in various industrial fields has been growing exponentially, in
which the efficiency of big data processing is one of the focuses of attention in industry and academia,
and distributed strategies have been widely used in big data efficiency optimization. In applications with
complex dependency-constrained processes and scenarios with dynamically changing data volumes, some
distributed frameworks, such as MapReduce, Flink, and Spark, have shown remarkable adaptability and
superiority, which split a large-scale data job into multiple computational tasks and schedule them to be
executed on different nodes of a cluster in parallel [1]. Among them, Spark is based on in-memory computing,
unifies batch and stream processing, has a vast ecosystem [2], and has become a crucial choice for big
data processing.

Apache Spark is an open-source big data processing framework that abstracts datasets into resilient
distributed datasets (RDDs), divides the computation process into several phases based on the dependencies
between the RDDs, and further decomposes each phase into multiple tasks and assigns them to nodes to
realize the parallel computation, and finally choosing to aggregate or directly store local results according to
specific needs [3]. RDDs can be stored in memory for extended periods and can be directly accessed from
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memory when reused, eliminating the need to recreate or retrieve them from disk [4]. This feature enables
Spark to efficiently reuse recently created intermediate results, making it well-suited for iterative problems
and scenarios with low latency requirements [5].

However, in recent years, the data size and program complexity have been rising, and the rapid update
of hardware resources has made the phenomenon of the uneven computing power of cluster nodes more
and more serious [6]. Spark framework is facing multi-faceted and multi-level optimization needs in terms
of efficiency. Reference [7] summarizes and analyzes the current domestic and international research on
Spark optimization techniques from five aspects: development principles, memory usage, configuration
parameters, scheduling strategies, and the Shuffle process. However, the reference does not propose a more
detailed classification strategy for a certain aspect of the Spark execution process based on different scenario
characteristics and optimization objectives, such as classifying the storage and extraction optimization
strategy for the initial data or classifying the scheduling strategy.

HDFS (Hadoop distributed file system) is often used as a distributed file system responsible for storing
the data to be processed for Spark. Reference [8] summarizes the existing HDFS optimization techniques
from three dimensions: file logical structure, hardware devices, and application load for the Spark data
access phase. The optimized HDFS provides faster data read and write speeds, higher throughput, and
fault tolerance for Spark. However, the Reference does not consider the dynamic resource allocation and
load scheduling during job execution. Reference [9] analyzes the efficiency optimization strategy of Spark’s
general-purpose environment at the JVM level in terms of memory management, cluster collaboration,
storage of data objects, GC algorithm, and hardware assistance. By analyzing the object survival time and
resource utilization on JVM, we can judge the macro status of cluster resource allocation to a certain extent.
However, the factors affecting resource utilization will change depending on the application, stage, and node,
which is difficult for the underlying system to adapt to, and paying too much attention to the underlying
principles of the complex system may reduce the attention to the actual application scenarios, weakening the
mastery of the overall resource utilization of the cluster, utilization of the cluster as a whole.

The scheduling strategy is closely integrated with the actual application scenarios and has a significant
impact on performance [7], which can be directly adjusted based on changes in business requirements and
scenarios to guide program design and effectively coordinate the reasonable allocation of cluster resources
from the macro level. Therefore, this paper analyzes the Reference on Spark scheduling strategy optimization
in recent years and summarizes the scheduling strategy from three aspects, namely load-based, node-based,
and based on the matching of the two, according to the different perspectives when the strategy is designed.

2 Basic Theory of Spark
This section provides an overview of Spark’s basic runtime logic and a foundation for understanding

Spark scheduling principles. It also compares the limitations of common Spark resource managers and their
default scheduling algorithms. Finally, it analyzes how scheduling strategies affect the execution efficiency of
Spark programs.

2.1 Basic Operation Logic of Spark
The entry point of a Spark [10] application is the Driver program, which is responsible for initializing the

SparkContext object as a proxy for communication with the entire cluster. After the user submits the program
to the Spark cluster through SparkContext, the SparkContext typically reads data from storage systems such
as HDFS based on the specified file path. As shown in Fig. 1, the application reads the data, creates an initial
Resilient Distributed Dataset (RDD), and splits it into multiple partitions. The RDD undergoes a series of
transformation operations (e.g., map, reduce) to form a chain of RDD transformations, generating a Directed
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Acyclic Graph (DAG) as a job. The DAG Scheduler primarily divides the entire job into multiple stages
based on whether the RDD data undergoes re-partitioning (shuffle). Narrow dependency operations, such
as map, filter, pass data from each partition of the parent RDD to a specific partition of the child RDD,
or, through flatMap, map each input partition to multiple output partitions. The data remains local but is
logically mapped to multiple sub-items. These operations do not trigger data re-partitioning and therefore
will be assigned to a single stage. In contrast, wide dependency operations like reduceByKey, and join, cause
data to be transferred from one partition to another, and this data movement triggers a shuffle. As a result,
the scheduler will use this as a boundary to divide into new stages. Additionally, resetting the number of
partitions and some data skew correction algorithms can also lead to shuffle operations. Each stage is further
divided into multiple tasks, which are packaged into a TaskSet, with each task running on a single partition.
The Task Scheduler receives the TaskSet and assigns the tasks to available Executors in the cluster according
to scheduling policies such as FIFO. The Resource Manager manages and allocates computing resources in
the cluster throughout this process.

Figure 1: Spark basic execution logic diagram

2.2 Resource Manager and Its Default Scheduling Strategy
Resource managers can provide efficient and flexible resource management functions at multiple levels

in a multi-job and multi-user environment. The resource managers supported by Spark include Standalone,
YARN, and Mesos [11]. Among them, Standalone is the default manager for Spark, but due to its relatively
poor performance in terms of resource management flexibility, multi-user support, and scheduling policies,
it is more suitable for the simple configuration and management of small clusters. YARN is a general-purpose
resource management system and scheduling platform that can dynamically and flexibly manage resources in
a cluster. By supporting multiple scheduling strategies, such as FIFO, Capacity Scheduler, and Fair Scheduler,
YARN can meet resource management requirements in different scenarios and supports the simultaneous
operation of multiple users and multiple frameworks. Mesos dynamically allocates CPU, memory, and other
resources among multiple frameworks through a resource offer mechanism and a fair resource allocation
algorithm (e.g., Dominant Resource Fairness, DRF) to ensure efficient and fair resource utilization. While
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similar to YARN in terms of architecture and functionality, Mesos offers greater versatility and is capable of
managing resources for multiple frameworks and applications.

FIFO [12] is the simplest and most basic scheduling strategy, where the scheduler queues all jobs
uniformly and schedules resources in the order of submission. If the current job does not occupy the
entire cluster, the scheduler allocates these idle resources to subsequent jobs, achieving a certain degree
of parallelism. FIFO is suitable for scenarios with limited resource demand and more balanced resource
requests, but when jobs are heterogeneous, long jobs will occupy more resources and time. FIFO cannot
adjust the order of resource allocation according to the priority or importance of the jobs, resulting in long
waiting times for subsequent tasks.

Capacity [13] establishes multiple job queues with defined capacity ratios to plan resource allocation,
and manages resources controllably through pre-defined resource capacities and queue management mech-
anisms, avoiding serious resource grabbing. However, there is some subjectivity in users’ setting of capacity
guarantees and limits, even though the system can flexibly use idle resources from other queues to some
extent, the accuracy of the prediction is difficult to guarantee, which can easily lead to resource wastage, etc.

Fair [14] allows users to define queues based on job requirements. In addition to setting the minimum
shares for each queue, it also sets queue weights based on user needs. The larger the weight, the more
resources the queue will obtain under the same conditions. Therefore, jobs have fairness in resource
acquisition. In a multi-tenant environment, jobs with different priorities or resource requirements can
compete and fairly utilize resources. However, in a multi-resource environment, Fair may not handle the
complex relationships between multiple resources well, leading to some unbalanced resource allocation.

DRF [15] derives a resource quota vector for each object by calculating the dominant resource
requirements of a job or queue and allocates the resources proportionally or by priority. When the resource
requirements of jobs vary significantly, DRF can ensure that the occupancy ratios of different resources
remain fair. This process may have problems such as proportionality bias, reflecting the actual resource
requirements not accurately enough, and mixing of multiple resource types that cannot fully and fairly satisfy
the resource requirements, leading to room for improvement in the efficiency optimization of the framework.

Table 1 compares the default scheduling algorithms of the four managers. FIFO adopts a simple
first-come, first-served strategy, suitable for scenarios with homogeneous workloads and simple resource
demands. Both Capacity and Fair are multi-queue resource allocation strategies, with the key difference being
that Capacity predefines the minimum and maximum queue capacities, making it suitable for scenarios
requiring fixed resource reservations, while Fair dynamically adjusts queue weights based on fairness
principles, making it suitable for priority scheduling scenarios with complex urgent tasks. DRF ensures fair
use of multiple resources through “dominant resource” allocation, making it suitable for complex computing
environments constrained by multiple resources such as CPU, memory, and bandwidth.

Table 1: Comparative analysis of common spark scheduling strategies

Scheduling
strategy

Algorithm description Limitations Suitable scenarios

FIFO Allocates resources in the
order of job submission

Long tasks consume large
amounts of resources,

making it difficult to handle
sudden high-priority jobs

Scenarios with balanced
resource demands and

no obvious priority
distinctions

(Continued)
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Table 1 (continued)

Scheduling
strategy

Algorithm description Limitations Suitable scenarios

Capacity Allocates resources based
on predefined resource

capacities and multi-queue
management

Inaccurate resource
demand estimation or

significant demand
fluctuations may lead to

resource idle

Multiple queues manage
resources separately, and

resource demands are
stable

Fair Allocates resources based
on resource capacities and

weight settings

Unbalanced resource
allocation in heterogeneous

clusters

Few types of resource
demands with unstable

requirements
DRF Allocates resources based

on the dominant resource
demand ratio of each task

Struggles to respond
promptly to drastic changes

in resource demand

Scenarios with multiple
stable resource demands

2.3 Common Performance Metrics for Evaluating Scheduling Strategies
In the Spark distributed computing framework, the performance metrics commonly used to evaluate the

effectiveness of scheduling strategies include load execution time, resource utilization, system throughput,
and task failure rate, as well as some derived metrics.

2.3.1 Load Execution Time
Spark load execution time includes job completion time, stage completion time, and task completion

time, it is the most intuitive performance metric for evaluating scheduling strategy efficiency. Execution
time is influenced by a combination of other performance metrics and external factors. When scheduling
improves resource utilization and system throughput or reduces task failure rates, the execution time of
different Spark workloads decreases to varying degrees, demonstrating the effectiveness of the scheduling
strategy. Additionally, an important metric in distributed systems, speedup, can be calculated based on
execution time and parallelism (number of nodes or processes).

In Spark, the SparkListener mechanism monitors certain execution details of a program. By recording
and calculating the start and end timestamps of a workload, it determines the execution time, which is then
displayed in the Spark UI or History Server.

2.3.2 Resource Utilization
Resource utilization reflects the efficiency of Spark’s scheduling strategy in utilizing cluster resources,

specifically whether the allocated resources are fully utilized. If scheduling fails to fully utilize cluster
resources, it can lead to idle resources and waiting time, increasing unnecessary queuing time for workloads
and thus affecting efficiency.

Resource utilization mainly includes the utilization rates of CPU, memory, and transmission channels
(such as network bandwidth). CPU utilization is typically calculated as the proportion of Executor CPU Time
to the total available CPU time for tasks, as collected by monitoring tools. Memory utilization is determined
by the ratio of actually used memory to the total allocated memory. Transmission channel utilization is
calculated based on the ratio of actual transmission rates, such as network bandwidth, to their theoretical
maximum values. These runtime data can be found on the executor page and memory page of the Spark UI.



3848 Comput Mater Contin. 2025;83(3)

2.3.3 System Throughput
Spark system throughput is primarily used to measure the system’s capability to complete operations

such as data loading, communication, and caching within a unit of time, reflecting the overall processing
capacity of the system. Throughput can be measured and calculated based on the amount of data processed
per unit time, including key parameters such as input data volume, output data volume, and shuffle data
volume. These metrics can be viewed on the Jobs page of the Spark Web UI or manually calculated from
log files.

2.3.4 Task Failure Rate
During job execution, the ratio of failed tasks to the total number of tasks represents the task failure rate,

which reflects the stability and fault tolerance of the scheduling strategy. A high task failure rate indicates
unreasonable resource allocation or network congestion, which can significantly extend the execution time
of the overall job or stage, and may even require resubmission. The measurement method is consistent with
the aforementioned metrics, where failure counts are collected by monitoring tools and can be viewed on
the Jobs page of the Spark UI or analyzed using external log analysis tools.

2.4 The Impact of Scheduling on Execution Efficiency
Scheduling affects the efficiency of Spark program execution from several aspects, involving Data Skew,

task parallelism, execution order, data locality, node resource evaluation, and fault tolerance mechanism,
leading to different degrees of resource underutilization, scheduling delays, and low throughput.

2.4.1 Data Skew
Data skew refers to the situation in Spark jobs where certain partitions contain significantly more

data than others, leading to an uneven task load. This results in varying execution times across partitions,
where some tasks may be completed earlier, leaving resources idle while waiting for other unfinished
tasks. Additionally, data skew significantly increases network transmission and disk I/O overhead during
the Shuffle phase. When an imbalanced distribution encounters wide dependency operations, data from
overloaded partitions must be scheduled and transferred to other partitions in sequence, further increasing
transmission costs.

2.4.2 Parallelism
Task Parallelism refers to the number of concurrent executions of a task, which defines the number of

tasks to be scheduled and is based on the RDD’s partitioning. When the number of tasks is increased, tasks
can be processed by more Executors simultaneously, thus improving execution efficiency. However, Spark, as
a parallel computing framework, has a parallelism bottleneck, which, to some extent, aligns with Amdahl’s
law as expressed in the following formula:

S = 1
1 − P + p

N
(1)

where S is the speedup ratio when the parallelism is N, p is the proportion of the parallelizable part of the
computation, and N is the number of processors or threads (number of nodes) for parallel computation.
It should be noted that Spark’s task parallelism is not equivalent to the number of nodes, but Amdahl’s
law discusses the impact of the non-parallelizable part of the program and the degree of parallelism on the
speedup ratio. Non-parallelizable computation includes serial computation that relies on the results of the
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previous task, data transmission in the network and coordination between nodes, and I/O operations in non-
distributed storage systems [16], while a Spark task may contain all of the above operations. For example,
when parallelism increases, although the degree of simultaneous data execution improves and smaller,
denser data blocks reduce resource waiting time caused by imbalanced execution, the management over-
head of scheduling and transmission also increases. This includes connection establishment, transmission
control information, message acknowledgment, memory caching, and garbage collection. These additional
overheads prevent execution efficiency from increasing indefinitely with parallelism, as they belong to the
non-parallelizable computation part in the formula. Therefore, the relationship between the task parallelism,
the number of nodes, and the efficiency conforms to the description of Amdahl’s law to a certain extent after
certain transformations and derivations in the understanding and application. This formula can be used to
guide partitioning, predict the performance improvement limits of the system, and help researchers balance
resource investment and performance returns to enhance resource utilization.

2.4.3 Execution Order
DAG is used to describe the structure and logical flow of the Spark execution program, where RDDs

may have complex dependencies, especially in wide dependencies, where tasks depend on the output data
of the preceding tasks, and if the execution of a preceding task is delayed, the downstream task must wait.
The execution order may lead to unnecessary scheduling delays, reduce load waiting time or unnecessary
lag time, and improve overall execution efficiency.

2.4.4 Data Locality
Data locality is one of the key principles of Spark scheduling, which means trying to schedule tasks to

the node where the data resides or as close to it as possible. This is essentially related to network transmission
overhead, unreasonable long-distance scheduling will consume a significant amount of time and network
bandwidth, making it highly prone to performance bottlenecks. As shown in Fig. 2, Spark defines locality
levels from near to far as follows: PROCESS_LOCAL, where tasks and data are in the same JVM process;
NODE_LOCAL, where tasks and data are in the same node; RACK_LOCAL, where tasks and data are in
the same rack; No_PREF, where locality is meaningless, and the data is stored in an external storage system
such as HDFS within the same node; and ANY, where tasks can run on any node, often a cross-rack node.
Taking NODE_LOCAL and RACK_LOCAL as examples, when a task executes on the same node, Spark
typically uses the Netty network application framework for inter-process communication. In this case, no
network transmission is involved; instead, data is transferred via the operating system’s loopback interface
or even shared memory. When task execution requires cross-node communication but remains within
the same rack, communication is generally carried out over Ethernet. Due to limitations such as unstable
network bandwidth, the overhead of the network protocol stack, and switch performance, the amount of data
transmitted per unit time is lower than that of intra-node communication, resulting in lower throughput.

DAG Scheduler will choose the nearest scheduling target as much as possible to minimize the data
transmission overhead, frequent long-distance transmission will reduce the system throughput. In addition,
to realize data local processing as much as possible, Spark will adopt a delay scheduling strategy when there
is no high-priority local task, expecting to find a task that meets the current locality level by waiting, and this
process will lead to a certain waiting time. Therefore, locality directly affects system throughput and latency.
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Figure 2: Spark locality diagram

2.4.5 Node Resource Evaluation
To alleviate data skew caused by operations such as initial partitioning, shuffle, or key-value imbalance,

Spark schedules tasks to nodes with sufficient resources. The system periodically monitors the resource
usage of each node and assigns tasks to the node with the most abundant resources. However, this model
performs poorly in scenarios with complex task dependencies, dynamic node loads, or significant changes
in computing power, often leading to severe task lag. As a result, some studies propose making long- and
short-term predictions of resource and load changes for each node.

In addition to the number of resources, the resource characteristics of the node also affect the efficiency
of task execution: CPU-intensive tasks require a large number of computational operations, and the target
nodes for such tasks are usually multi-core processors or servers with powerful computational capabilities;
memory-intensive tasks require a large amount of memory space for processing and storing data, and the
tasks usually include large-scale datasets or tasks requiring frequent access and operation; I/O-intensive tasks
rely on a large number of data read and write operations, such as database queries, large-scale log processing,
and result saving. When designing the scheduling strategy, it is necessary to analyze the type of nodes and
node characteristics of tasks in the application scenario, otherwise, the cluster resource utilization will be
seriously affected.

2.4.6 Fault-Tolerance Mechanism
Spark’s fault-tolerance mechanism is implemented in RDD and related mechanisms. First is the lineage

mechanism, where Spark records RDD lineage (i.e., dependency) information. When partition data is lost
or fails, the DAG Scheduler recalculates the failed task by replaying the RDD lineage from the starting
data of that stage or the intermediate results persisted in memory (similar to an archive) and schedules it,
allowing the program to continue executing normally [2]; however, task retransmission incurs additional
time overhead and has difficulty handling abnormally slow tasks. To further enhance tolerance, Spark and
the supporting storage system use speculative execution, where if certain tasks are found to be running
abnormally slow, Spark launches several replica tasks on other idle nodes, and the result of the first completed
replica is taken. When a node completes the task, the remaining unexecuted replicas are immediately released
to reduce the number of task recalculations. The two fault tolerance mechanisms are shown in Fig. 3.
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Figure 3: Spark lineage mechanism and speculative execution mechanism

While this mechanism improves reliability, it also introduces additional resource overhead. Firstly,
two types of delays are introduced: one is the additional task waiting time caused by pedigree tracking
during task recalculation, which becomes significant with long DAG chains; the other is the extra queuing
time for replicas, as the redundant replicas increase the total queuing time. Secondly, recalculation and
speculative execution occupy resources originally reserved for other queues or jobs. Launching additional
processes consumes CPU time slices, memory, and communication channels, which may cause tasks
originally scheduled in a certain order to be delayed or executed earlier due to resource competition, reducing
execution efficiency. Additionally, persisting intermediate results in memory, while reducing computational
load and improving efficiency, requires additional memory space for caching data, which may lead to more
frequent GC. The design of fault-tolerance mechanisms should be handled with great care, as a well-designed
mechanism can reduce task failure rates but could also increase unnecessary task waiting time.

2.4.7 Multi-Factor Collaborative Optimization Effect
To enhance efficiency, some researchers adopt a combination of multiple optimization strategies to

achieve multi-factor collaborative optimization. In some cases, the overall effect can exceed the simple sum
of the effects of each strategy applied individually. Certain combinations of the aforementioned factors can
complement and reinforce each other.

For example, parallelism and node resource evaluation have a natural complementary relationship.
Parallelism determines the number of task splits. If the parallelism is too high, the data volume of each
task block becomes small, leading to intense resource competition and high scheduling and transmission
costs. If the parallelism is too low, the data volume of each task block becomes large, potentially resulting in
the underutilization of cluster resources. Node resource evaluation aims to dynamically assess the resource
status of each node in the cluster, thereby providing a basis for task allocation. When these two factors are
optimized collaboratively, the number of task splits can be adjusted based on the remaining resources of
nodes to avoid resource waste, and the parallelism can be determined based on the bandwidth resources of
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nodes to balance scheduling overhead and data movement costs. Parallelism and fault tolerance also have
significant potential for collaborative optimization. Under high parallelism, the data volume of task blocks is
small, and the computational consumption along the DAG chain of lineage relationships is reduced. When
speculative execution is performed, task replicas do not occupy excessive node resources. On the other
hand, when important intermediate values need to be solidified, the larger data volume of tasks under low
parallelism can effectively retain a significant amount of useful intermediate values, avoiding frequent read
and write operations.

Additionally, collaborative optimization involving dual or even triple strategies targeting other factors
can also lead to significant improvements in Spark scheduling performance. For instance, combining locality
and node resource evaluation can balance data transmission costs while avoiding resource contention on
nodes. Combining parallelism, node resource evaluation, and fault tolerance can allocate more resources and
replicas to high-priority tasks, preventing resource shortages and ensuring task execution while enhancing
fault tolerance.

3 Research Progress on Spark Scheduling Strategy Optimization
To improve program execution time, Spark researchers generally optimize the performance metrics

for one or more influencing factors, so it is difficult to directly generalize the Reference from this. Spark
monitors the load status through the DAG Scheduler and Task Scheduler and schedules the load based on
predetermined policies. The computing resource status of cluster nodes is monitored and managed by the
resource manager, which evaluates the node’s arithmetic power and schedules resources based on factors such
as remaining resources or resource consumption trends. Therefore, scheduling strategies can be summarized
from three models based on load characteristics, node characteristics, and matching of the two, which helps
researchers and developers to understand the performance advantages, applicable scenarios, and potential
shortcomings of different scheduling strategies based on actual scenarios and modules.

3.1 Scheduling Strategy Optimization Based on Load Characteristics
The nodes of homogeneous clusters have similar arithmetic power, so the focus of such scheduling

strategy optimization is to accurately evaluate the characteristics of loads such as jobs and tasks, including
obtaining accurate data volumes and execution times, dynamic prediction, and analyzing the linkages
between loads.

3.1.1 Scheduling Optimization Based on Job Characteristics
A job represents the overall computational logic of an application submitted by a user, often consisting of

one or more stages. Its characteristics focus more on comprehensively describing and planning the resource
requirements, execution order, and time constraints of large work units. Therefore, job scheduling takes a
macroscopic view of resource allocation, considering factors such as fairness, capacity limits, multi-user
isolation, and data characteristic isolation to determine the priority, resource quotas, and data processing
strategies for different jobs based on business attributes. For example, Fair and Capacity allocate specific
resources to jobs from different users or set job priorities based on the value density of different jobs [14],
ensuring that certain critical jobs receive higher priority or a larger share of resources.

To optimize the scheduling efficiency of jobs, Reference [17] employs a greedy strategy and a one-step
look-ahead strategy, using the shortest job first (SJF) strategy for scheduling when the candidate set of jobs
has the same scheduling gain. The proposed PAS algorithm introduces a timeout mechanism to ensure that
jobs are prioritized for execution after the waiting time exceeds the predicted value. However, this strategy
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may increase meaningless waiting time for long jobs when job lengths vary greatly, or cause delays for high-
priority long jobs. Reference [18] defines the computational cost of wide dependencies, resource vacancy
rate, and overflow write probability, and demonstrates that task parallelism can impact the execution time of
a job. The designed parallelism deduction algorithm (PDA) iterates in each stage to optimize the solution by
constructing multiple base datasets, including total data, execution area reservation ratio, operation closure
set, and resource table, among others. While the algorithm improves resource utilization, the computation
of complex formulas may increase system execution overhead. Reference [19] considers the imbalance and
spatial heterogeneity of large-scale air quality data, and during partitioning, divides the data based on
spatiotemporal features to improve the prediction efficiency of the distributed random forest algorithm for
air quality.

3.1.2 Scheduling Optimization Based on Task Characteristics
A task is the smallest execution unit obtained by subdividing a job, typically corresponding to a partition

of the data. It has a finer granularity and a smaller scope, with characteristics that focus more on the specific
operational details and execution properties of small-scale data. Task scheduling optimization strategies aim
to improve execution efficiency within a single stage, primarily focusing on data locality, fault tolerance,
parallelism, and load balancing. The goal is to meticulously plan resource allocation during execution,
prevent slow or failed tasks, and optimize transmission costs in a structured manner.

At the task scheduling level, Reference [20] addresses the issue by transforming it into a Minimum
Weighted Bipartite Matching (MWBM) problem to minimize overall communication costs. A location-
aware actuator assignment strategy is also proposed to further enhance data locality and reduce the amount
of data that needs to be transferred over the network. Reference [21] provides a foundation for preemptive
scheduling of prioritized tasks based on the overall deadline specified by the user when submitting the
application and utilizes Docker containers for fine-grained dynamic allocation of computing resources. The
container later compensates computational resources based on the task’s preemption progress and expected
progress, thereby improving the overall task completion time. Reference [22] firstly abstracts the task of
financial foreign exchange market monitoring indicators into a market-level directed acyclic graph (M-
DAG) and prunes it while caching important nodes, making full use of the key nodes to reduce the waste
of resources during scheduling. Secondly, Reference proposes a market-level resource dynamic allocation
strategy (MYARN) based on dimensions such as transaction mode, product type, and transaction behaviour,
which divides the market into multiple sub-markets according to the complexity of the task and allocates
computing resources proportionally to the computational complexity among the sub-markets, while the
default YARN fair scheduling algorithm is used within the sub-market. Targeted multi-level scheduling
reduces costs while improving the resource utilization rate of scheduling. Reference [23] abstracts the
scheduling problem of hyperspectral image (HSI) classification tasks into an integer programming model,
determines the optimal node mapping, and influences the number of partitions based on the number
of subtasks, task dependencies, and communication overheads of the divisible task. It further utilizes
the improved quantum heuristic algorithm (QEA) to find the optimal solution and determine the best
task-to-partition (PE) mapping. Reference [24], similar to Reference [23], formulates a multi-objective
optimal scheduling model by considering the total energy consumption of computational tasks as the
optimization objective.

3.1.3 Comprehensive Scheduling Optimization Based on Load
There is a strong correlation between the various levels of Spark, and a more accurate evaluation model

can be obtained by comprehensively considering the connections between different levels of load when
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analyzing the factors affecting load characteristics. Reference [25] estimated the resource requirements of a
task based on the resource usage of tasks at the same stage, designed a semi-predictive task scheduler called
COBRA, and developed a task scheduling algorithm by setting task waiting time thresholds and resource
utilization thresholds. Reference [26] proposed the xSpark manager, which calculates the minimum number
of CPU cores required for a stage based on its execution time, the number of programs expected in the job,
and the deadline determined by the amount of data written by the parent node in the DAG. The study also
proposed resource scheduling strategies such as earliest deadline priority, proportional allocation of resource
requirements, and performance metrics priority, enabling users to independently select the appropriate
strategy based on their goals, whether minimizing deadline violations or minimizing resource usage. Refer-
ence [27] optimizes cache management from task dependencies by calculating the caching and prefetching
priorities of RDDs based on their unprocessed workloads and caching urgency (CU), which depends on the
completion time and resource requirements of the previous stage. It further adjusts the task scheduling order
by calculating CU as well as the resource utilization of the set of stages containing long-running tasks, aiming
to maximize the cache hit rate and mitigate computational resource fragmentation.

The Spark task scheduling algorithm based on data skew and deadline constraints proposed in Refer-
ence [28] consists of three parts: the stage ordering component, which sorts tasks based on the degree of
data skew, skew rate, and data volume; the task scheduling component, which classifies tasks into skewed,
small, and normal tasks, prioritizing the fastest VMs to execute skewed tasks or those with the largest data
volume; and finally, the study improves scheduling economy and efficiency by merging fragmented time slots
on VMs and filling idle time slots on VMs. Reference [29] integrates the PAC monitoring framework into
the Spark core. By analyzing decompression key indicators, input data characteristics, and resource usage, it
identifies factors that affect the performance of Spark compression algorithms, including compression and
decompression speed, compression ratio, input data type and size, and resource utilization. Optimizing the
integration of Zlib into Spark can significantly reduce I/O overhead, thereby indirectly improving scheduling
efficiency. Reference [30] proposes a new system, Tripod, based on Tez, which enhances the job scheduling
and data cache synchronization capabilities in the framework. The cache-driven scheduling algorithm in
Tripod optimizes the execution order by fully utilizing the bandwidth resource idle periods of non-input
stages in the DAG for prefetching input data. At the same time, a novel cache strategy, CAP, is introduced,
which promptly caches task data blocks that cannot be prefetched and identifies and reduces cache misses
on the critical path to shorten the DAG execution time.

3.1.4 Comparison of Representative Algorithms
A comparison of the three representative strategies is shown in Table 2. As a job scheduling strategy,

Reference [17] focuses on overall job optimization, which adopts a more macroscopic approach compared
to task scheduling and load-integrated scheduling strategies. However, in scenarios with non-uniform job
lengths, the scheduling latency increases significantly due to the larger job volume. Reference [23] focuses
on fine-grained task optimization, which is more granular compared to job optimization and is better suited
to handling complex task dependencies. However, the algorithm has high complexity, leading to additional
runtime overhead. Reference [25] combines the advantages of job and task scheduling and achieves multi-
dimensional optimization through dynamic resource demand estimation and threshold setting. Compared
to pure job scheduling or task scheduling strategies, this approach achieves a better balance between resource
utilization and scheduling efficiency. However, the model design is highly dependent on the accuracy of the
analysis of the linkages between loads and requires adjustment according to the specific environment.
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Table 2: Comparison of load-based scheduling optimization strategies

Load
scheduling

strategy

Reference Influencing
factors

Performance
evaluation metrics

Applicable scenarios

Job scheduling
optimization

[17] Execution
order

Improves resource
utilization to a certain
extent, reduces latency

Batch processing tasks where
job lengths are relatively

uniform
Task

scheduling
optimization

[23] Parallelism,
execution

order

Significantly improves
resource utilization

Scenarios with uneven task
lengths and complex

structures, where tasks can be
further decomposed

Integrated
scheduling

optimization

[25] Execution
order

Dynamically improves
resource utilization
and reduces latency

Large-scale parallel computing
environments and real-time
task scheduling with uneven

loads

3.2 Scheduling Strategy Optimization Based on Node Characteristics
In heterogeneous environments, cluster nodes vary in computing power, storage performance, and

transmission capability, as well as their changing trends. Scheduling strategies that disregard node character-
istics can result in the underutilization of high-performance nodes and the overloading of low-performance
nodes. Researchers typically begin by constructing an accurate model to describe node characteristics. For
example, node characteristics can be categorized into static and dynamic attributes: resources such as the
number of CPU cores, memory size, and network bandwidth are considered static attributes, while CPU
utilization, memory usage, and system throughput are classified as dynamic attributes. Alternatively, node
characteristics can be divided into computing resources, storage resources, and transmission capability.
Once the model is established, concrete and accurate data are required for materialization. Researchers
utilize systems like Spark Metrics to monitor real-time node metrics, including CPU utilization, memory
usage, task execution time, and GC time. For resource information that is difficult to collect directly,
calculations and derivations can be employed. For instance, fluctuating network bandwidth is challenging to
measure precisely in real-time but can be estimated indirectly through indicators such as the average system
throughput over a period. Finally, based on the characteristics of the collected node resource data, researchers
select appropriate evaluation methods for resource allocation optimization. For static resources, decision
trees, clustering, and other techniques can be used to assess node priority and other scheduling factors.
For dynamic resources, reinforcement learning or deep learning based on time series analysis can be viable
choices. The flexible application of these methods enables an effective evaluation of node characteristics to
optimize resource allocation in Spark.

3.2.1 References on Scheduling Optimization Based on Node Characteristics
Reference [31] divided the computational power metrics of nodes into static metrics (e.g., CPU cores,

memory size) and dynamic metrics (e.g., CPU load and residual rate, task queue length, memory, and
disk residual rate). A linear weighting model for node priority was established to ensure a reasonable
balance between static and dynamic metrics in the evaluation of node priority. The Spark Dynamic Adaptive
Scheduling Algorithm (SDASA) assigns tasks based on real-time node priorities, ensuring that nodes
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with higher priorities receive tasks first. The utilization-aware resource allocation method proposed in the
Reference [32] can identify the causes of insufficient resource utilization based on monitoring components
and inference modules and elastically adjust the number of actuators according to real-time resource usage.
When performing iterative computation in a multi-tenant cloud environment, iSpark characterizes virtual
nodes based on I/O rate and CPU steal time, extending the two-dimensional resource constraints to three
dimensions to evaluate node scheduling priority.

With the development of machine learning technology and improvements in hardware computational
power, the prediction of dynamic indicators has become increasingly accurate and adaptable. Reference [33]
focuses on performance metrics such as CPU, memory, and bandwidth, and uses quadratic smoothing to
predict the average load value of nodes in future cycles. Weighting is achieved by constructing a judgment
matrix to measure the relative importance between different factors through hierarchical analysis, while the
entropy method is applied to further adjust the weights of the metrics. Based on the predicted node load
value and processing capacity, nodes are labeled as high or low load and parallel migration is used to transfer
data to low-load nodes. Neural network models can reduce subjective bias and improve the consistency and
accuracy of the assessment. Therefore, Reference [34] uses the indicator weights obtained from AHP as the
output of the neural network, node dynamic performance indicators as the inputs, and the judgment matrix
obtained through expert scoring as the expectation to train and iterate the model. However, the model also
has certain limitations, such as the need for a large number of training samples, dependency on initial weight
values, and the difficulty in ensuring the objectivity of expectations, as well as the complexity of the model
structure. Reference [35] classified nodes into new computing nodes, computing nodes with the least load,
and computing nodes with the maximum probability of completing the task, and found that directing tasks
more toward new and less-loaded nodes helps improve the performance of the spatio-temporal adaptive
reflectivity fusion model.

3.2.2 Comparison of Representative Algorithms
As shown in Table 3, Reference [31] assigns static and dynamic indicators to nodes through a manually

designed linear weighting model to improve system resource utilization. This method is suitable for
environments with relatively fixed resource demands but cannot meet the requirements of complex dynamic
change models. Reference [33] utilizes feature analysis and machine learning methods for load prediction
and weight adjustment, making it suitable for cluster environments with significant load changes and
more complex models. Reference [34] further combines AHP weights and neural networks to achieve
dynamic and intelligent evaluation of node priorities, significantly improving resource utilization and system
throughput with higher generalization capabilities. However, it faces challenges such as model complexity,
high computational resource requirements, and additional time consumption for sample training.

Table 3: Comparison of node-based scheduling optimization strategies

Reference Influencing
factors

Applicable scenarios CPU
cores

Memory
size

CPU
utilization

Memory
utilization

Bandwidth
utilization

[31] Resource
evaluation

Scenarios with relatively stable
resource types and demands

√ √ √ √

[33] Resource
evaluation

Cluster environments with
significant dynamic changes in

node resources

√ √ √

[34] Resource
evaluation

Complex scenarios with
dynamic resource demands and

high task parallelism

√ √ √ √
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3.3 Scheduling Strategy Optimization Based on Load and Node Matching
Under circumstances where both the load and nodes exhibit heterogeneity, scheduling based solely on

the characteristics of either one makes it difficult to accurately allocate loads to suitable nodes, resulting
in resource waste. The performance of the Spark system largely depends on the accurate calculation and
comprehensive configuration of parameters [36]. This is a highly dynamic and complex process, where
scheduling is influenced by multiple factors such as task type, node resources, and data distribution.
In addition to constructing more advanced traditional evaluation models, researchers leverage machine
learning to analyze historical scheduling data and real-time system states, uncovering potential correlations
and patterns between load prediction and resource allocation. This is not merely about predicting future
load fluctuations to pre-allocate resources or forecasting changes in remaining node resources to adjust
allocations, but rather about achieving a comprehensive matching of both characteristics. For example,
clustering methods can be used to intelligently group nodes, enabling batch scheduling of specific workloads
and allocation of designated resources based on the characteristics of sub-node groups. Alternatively, neural
networks can be employed to learn from load data and resource adjustment records, revealing the causal
relationship between load variations and resource allocation, thereby providing more precise guidance
for scheduling strategies. Therefore, to more effectively address the challenges posed by load and node
heterogeneity, it is essential to comprehensively consider the matching patterns between loads and resources
and design an integrated scheduling mechanism.

3.3.1 Traditional Model-Driven Load-Node Matching
Reference [37] classified jobs into CPU-intensive and memory-intensive types. It applied the Analytic

Hierarchy Process (AHP) to construct judgment matrices for the static and dynamic variables of nodes,
building an initial weight model. During the experimental process, the weights were adjusted separately
based on the performance of different types of jobs. Finally, the real-time performance-oriented priority of
each node in the cluster was calculated, and jobs were assigned according to the priority. Reference [38]
proposed a cross-layer optimization system named Clio, which defined an interference factor to quantify
the impact of resource competition among multiple tasks on the same node on performance. At the same
time, it adopted a boundary key partitioning algorithm, dynamically adjusting the allocation of boundary
key partitions based on the predicted execution time of tasks to minimize execution time differences between
tasks and mitigate the impact of lagging tasks. Reference [39] established models for node computational
power, node resource utilization, data bucket skewness, and task memory requirements. It further designed
three-stage optimization objectives: the parallelism estimation algorithm predicts the parallelism for the
next stage by analyzing the data volume from the previous computation stage and the availability of node
resources; the data skew correction algorithm identifies tasks with memory requirements exceeding node
memory, splits and redistributes such tasks to construct data buckets, thereby improving execution efficiency;
the heterogeneous node task allocation algorithm assigns tasks based on the computational power of nodes
and the size of data buckets, improving parallelism and execution efficiency. Reference [40] divided Spark
nodes into large and small nodes, defining resource availability for nodes and resource demand for jobs. The
scheduler also considered the job deadline as a factor influencing priority ranking.

Reference [41] used the computational load of each task and the computational capacity of GPU devices
as scheduling factors, estimating the runtime of different tasks on different devices. Based on this, a time-
cost matrix was constructed to calculate the upper and lower bounds of execution time. Reference [42]
calculates dynamic thresholds based on the current cluster load and performance evaluation, adjusting
the number of replicas to balance performance and fault tolerance. Tasks are categorized into two types:
CPU-sensitive and disk-sensitive. The corresponding tasks are executed on suitable nodes based on the
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resource utilization thresholds of the nodes and the task types. Reference [43] proposes the SimCost
simulation prediction model to optimize Spark scheduling and resource allocation. It uses the Monte
Carlo method and a cost model to predict job execution time. The cost model includes multiple factors
such as parameter modules, resource usage time, shuffle events, etc., to determine the configuration of
factors that result in optimal cost-effectiveness, thereby improving scheduling efficiency. Reference [44]
addresses the issue of heterogeneous communication costs at various scheduling stages and models the
communication cost of tasks transmitting data to executors. This leads to an optimal executor allocation
problem aimed at minimizing total communication costs, where the search for the optimal solution involves
finding the best executor start nodes. A greedy descent heuristic algorithm is proposed to quickly find a set
of high-quality solutions.

3.3.2 Machine Learning-Driven Load-Node Matching
To more precisely allocate loads to corresponding computing nodes, some studies have employed

machine learning techniques for fine-grained classification and feature analysis of loads. Reference [45]
used K-means clustering to group jobs based on factors such as data characteristics, job execution time,
and communication requirements, then submitted the clustered jobs to nodes with similar characteristics,
reducing communication time between clusters. Meanwhile, it improved performance through methods
like task grouping, thread pool management, and execution parameter optimization, compensating for
the communication overhead. Reference [46] developed a task-scheduling system called Stargazer, which
consists of a time inference component and a task-scheduling component. The time inference component
uses an LSTM model to estimate task completion time and makes timely scheduling adjustments for
tasks with predicted excessive completion times. The task scheduling component determines whether tasks
are local or non-local based on the scheduling model and dispatches non-local tasks to other nodes for
processing. Reference [47] proposed a Dynamic Memory-Aware Task Scheduler (DMATS) for Spark, which
considers memory and network I/O as dynamic resource evaluation variables for nodes. Task characteristics
include task locality, input data size, memory resources required for execution, and blocking factor. DMATS
first estimates the initial adaptive task concurrency using variables other than memory, then applies the
AIMD algorithm to adjust concurrency based on real-time feedback on memory usage ratios.

Reference [48], leveraging reinforcement learning and a collaborative locality goodness measurement
algorithm, improves task scheduling efficiency by scheduling repeatedly appearing data. It evaluates the
collaborative locality goodness of jobs based on computational resources such as CPU utilization and I/O
wait time and uses a gradient gambling algorithm to adjust the probability distribution of job selection.
Reference [49] determines the levels of sub-tasks in the workflow through forward and backward breadth-
first search, then uses GBDT to predict the execution time of sub-tasks. By combining the parallel application
of Directed Acyclic Graph (DAG) and critical path algorithms, the critical path of the workflow is identified,
and the sub-tasks on this path are given the highest priority. Different amounts of resources are allocated to
each level based on this priority. Reference [50] optimizes scheduling strategies to reduce costs. It combines
Sparrow Search Algorithm (SSA) and Extreme Gradient Boosting (XGBoost) to predict resource demands
for real-time task flows in heterogeneous clusters. The designed CEBFD placement method starts executors
on reasonable nodes to reduce costs. To ensure efficiency, a Service Level Agreement (SLA) based on job
deadlines is also proposed, which comprehensively improves service quality. Reference [51] proposed the
Hawkeye system, which uses a reinforcement learning model to analyze the current running speed of
tasks and their expected execution time, quickly identifying lagging tasks. The system dynamically adjusts
the lagging task identification threshold and speculative execution trigger threshold using reinforcement
learning to improve recognition accuracy. Subsequently, based on historical data, it intelligently evaluates



Comput Mater Contin. 2025;83(3) 3859

and selects nodes with better performance and fewer lagging tasks to execute speculative tasks (assign task
replicas).

3.3.3 Comparison of Representative Algorithms
As shown in Table 4, all three references aim to improve resource utilization, reduce scheduling

latency, and increase system throughput, thereby comprehensively enhancing program execution time. The
differences lie in their approaches. Reference [39] relies on manually designed models, which have limited
predictive capabilities when the scenario changes. While precise model construction can accurately predict
the overall computational power of nodes, the prediction for highly dynamic computing resources such as
memory is relatively coarse, making it suitable for scenarios where the factors affecting cluster computing
resources are relatively less complex.

Table 4: Comparison of scheduling optimization strategies based on load-node matching

Reference Influencing factors Differences Applicable scenarios
[39] Execution order, data

locality, node resource
evaluation

Limited predictive
capability, highly targeted

Heterogeneous computing
environments with fixed

characteristics and tasks with
data skew

[46] Data locality, node
resource evaluation,

execution order

Additional training
resource consumption,

strong long-term
prediction capability

Environments, where task
execution time is predictable
and intelligent scheduling is

required
[51] Fault-tolerance

mechanism, node
resource evaluation

High algorithm
complexity, significant
system load, high fault

tolerance

Complex cluster environments
requiring high resource

utilization and low scheduling
latency

Reference [46] requires a large amount of training data and computational resources, without the
need for detailed analysis of the underlying principles of resource changes. It focuses on predicting task
execution time and determining task locality from a macro perspective, with strong long-term prediction
capabilities. However, it struggles to handle rapid fluctuations in cluster resources and incurs additional time
consumption for training. Reference [51] learns optimal strategies through interaction with the environment,
enabling dynamic adjustments to task replica scheduling decisions. Despite the high algorithmic complexity,
significant system load, and the need for extensive interaction data and computational resources during the
training process, it effectively balances fault tolerance and additional load during program execution and
demonstrates excellent performance in dynamic environments.

3.4 Comparison of Three Scheduling Strategy Models
The characteristics of three different scheduling modes can be analyzed from dimensions such as

evaluation complexity and flexibility. Evaluation complexity includes data collection overhead, data accuracy,
as well as constraint conditions, and feasible solution space, while flexibility can be divided into scenario
adaptability and applicable scenarios. The comparison results are shown in Table 5.
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Table 5: Comparison of the three scheduling modes

Scheduling mode Collection
overhead

Accuracy Constraints and feasible
solution space

Adaptability Applicable scenarios

Based on load
characteristics

Low Accurate Load constraints:
parallelism, priority, limited

solution space

Low High task heterogeneity,
homogeneous or similar

node resources
Based on node
characteristics

Relatively
high

Inaccurate Resource constraints:
multiple conditions such as
CPU/memory utilization,

larger solution space

Relatively
high

Similar task characteristics,
high heterogeneity in node

resources

Combined
load-node
matching

High Inaccurate Must satisfy both task and
node constraints,

significantly increased
solution space

High High task heterogeneity,
high node resource

heterogeneity, suitable for
most scenarios

In the load-based scheduling optimization mode, tasks and collected data are derived from precisely
abstracted applications and datasets provided by users and developers, resulting in low collection difficulty.
The system can directly extract and use the data from storage systems and memory. When evaluating
load characteristics, the constraints are primarily related to task parallelism and priority, with the solution
space generally being relatively limited. Due to the neglect of node heterogeneity, this model is not suitable
for large-scale heterogeneous clusters. Compared to algorithms that comprehensively consider load and
node heterogeneity, resource utilization during execution tends to be more unstable. This paper conducts a
quantitative analysis of resource utilization for three reference algorithms tested on the HiBench standard
dataset. The experimental results of resource utilization during the mid-peak period in each reference are
collected, and the variance is calculated to reflect the fluctuation differences in resource utilization. The
middle 50% of the indicators are selected to avoid interference from fluctuations at the start and end, and
the variance more accurately reflects the range of data changes.

As shown in Table 6, PAS [17] is based on load characteristics and does not consider node heterogeneity.
The fluctuation range of CPU resource utilization is much larger compared to the algorithms of DMATS [47]
and the reference [42]. PAS lacks adaptability to nodes with different computational capabilities. At the
same time, in the comparison of execution time metrics in the reference, PAS’s execution time is close to
that of DRF, which has a strong adaptability to heterogeneous clusters, further confirming that PAS has a
low adaptability to heterogeneous clusters. In terms of memory utilization, the stability of the scheduling
algorithms in the latter two is only slightly higher than PAS, possibly because memory is typically a
large-capacity resource, and fluctuations are less likely to cause significant differences. When memory
usage does not reach its limit, the caching mechanism may make memory utilization very stable, so the
optimization effect is not significant. Due to interference from uncontrollable factors such as device resource
differences, environmental differences, and data volume, it is difficult to directly compare execution times.
All three algorithm experiments were compared with Spark’s default scheduling strategy, FIFO. Therefore,
this paper uses Spark’s default scheduling strategy as a baseline and compares the execution time ratio of
the optimized algorithm with the execution time of Spark’s default strategy as a reference for the algorithm’s
optimization effect.
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Table 6: Quantitative analysis of resource utilization rates of representative algorithms

Algorithm Scheduling mode CPU
utilization
variance

Memory
utilization
variance

Execution
time ratio

PAS [17] Based on load characteristics 0.0255 0.0017 0.904
DMATS [47] Combined load-node

matching
0.0191 0.0012 0.79

Algorithm in
reference [42]

Combined load-node
matching

0.0020 0.0015 0.77

The scheduling optimization mode that considers node characteristics requires the collection of
various data, such as CPU, memory, and network bandwidth, to evaluate node computational power and
suitability. This requires monitors to collect dynamic data, which has limited accuracy and is difficult to
predict. The numerous constraints further increase the solution space. When combining both load and
node characteristics, in addition to the basic constraints, the interactions between the constraints of both
must also be considered, significantly expanding the solution space. The evaluation overhead may become
unacceptable for both the system and the users. Therefore, although the scheduling mode that considers
node characteristics can adapt to complex cluster environments, it is still necessary to balance the evaluation
complexity of scheduling criteria with the adaptability of the model when optimizing the scheduling strategy.

3.5 Integration of Spark Scheduling Strategies with Specific Scenarios
3.5.1 Existing Scheduling Optimization Based on Specific Scenarios

Current Spark scheduling research focuses on the construction and optimization of general models, as
shown in Fig. 4.

Figure 4: Number of application scenarios in spark scheduling strategies

While general models have broader applicability, their performance in practical scenarios often faces
limitations, making it challenging to meet the specific requirements of diverse and complex application
scenarios.
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In Section 2, some studies propose more adaptive and efficient scheduling methods by deeply analyzing
performance bottlenecks and task characteristics in specific scenarios. Reference [19] analyzed the character-
istics of air quality data collected hourly by monitoring stations with uneven local distribution, partitioning
the data based on temporal and spatial attributes to address the imbalance and spatial heterogeneity of
large-scale air quality data, ensuring balanced computations across the system. Reference [22] focused on
three monitoring indicator calculation tasks in the financial foreign exchange market, constructing a DAG
for the indicator calculation tasks and caching important results that are widely relied upon by subsequent
tasks and computationally expensive to avoid redundant calculations. Additionally, based on different
business scenarios and computational complexity, jobs were divided into different “markets”, with distinct
resource management frameworks applied both between and within markets to adapt to varying resource
fluctuation characteristics. By reducing redundant task scheduling and allocating resources appropriately
based on task characteristics, not only is the scheduling resource utilization significantly improved, but
costs are also effectively controlled. References [23,24] divided pixels in hyperspectral image classification
tasks into sub-pixel, pixel, and super-pixel levels, extracting and processing multiple features. For example,
during super-pixel feature extraction, the original HSI dataset was decomposed into multiple spatial domain
partitions, while at the sub-pixel level, N-FINDR was used to extract endmembers. Tasks were finely
categorized into serial and parallel, or computation-intensive and data-intensive tasks, which not only
improved Spark’s parallel acceleration efficiency but also ensured classification accuracy. Reference [35]
designed experiments based on the characteristics of resource-constrained remote sensing big data to
simulate the computing environment, making the improved Spark framework more targeted. Reference [45]
addressed the characteristics of smart grid big data by clustering data based on transformer IDs, enabling
parallel training and testing within each transformer group, which reduced the number of iterations required
for model training and testing.

3.5.2 Exploration of Scheduling Optimization Based on Specific Scenarios
These studies provide an initial demonstration of how to optimize Spark’s scheduling strategy by

incorporating the characteristics of specific application scenarios. This section will continue to explore in
detail the optimization details of combining scheduling strategies with specific scenario characteristics and
the process of practical application, using scenarios such as user review clustering, power quality monitoring,
healthcare, and finance as examples.

User review mining [52] scenarios have characteristics such as large data volume, diverse text content,
and imbalanced data representation. Simply parallelizing data blocks and scheduling them using general
methods may achieve balanced data distribution but could overlook the differences in the importance of the
data. For example, the key small samples of low-frequency features, such as unique feedback on new products
or potential market trend signals, are critical for business decisions. Uniformly partitioning data blocks
may lead to insufficient resource allocation for key samples like highly-rated reviews or authoritative users’
suggestions for product improvements. To ensure that key small sample data from low-frequency features are
not overlooked, researchers can first perform pre-clustering on the feature dataset using Canopy, creating a
new ordered distance dataset. After dividing it into multiple subsets based on the features and their weights,
the data is stored in HDFS. Then, Spark creates tasks with identifiers for computational complexity, data
volume, and business-related features, which are targeted and assigned to nodes with different characteristics.
For instance, tasks containing key small sample data and having higher computational complexity can be
allocated more CPU resources to ensure each task receives the appropriate resource support.

Power quality monitoring [53] scenario data exhibits more distinct characteristics due to differences in
regional electricity usage structures and industrial activities. Traditional fixed scheduling strategies are prone
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to overlooking regional time differences and task diversity. Key regional tasks may experience delays due to
insufficient resources during execution, leading to power quality issues that cannot be detected and addressed
promptly. By collecting and analyzing historical data, and establishing a time-series analysis model, the
scheduler can predict the timing and trend of regional events. For example, in industrial areas where large
equipment is concentrated and operates 24 h a day, data activity is high during weekdays, causing voltage
fluctuations. Continuing to rely on locality-first scheduling might lead to insufficient resources, resulting in
additional waiting time for tasks. However, during this period, most residents in residential areas are away,
and the power monitoring system’s computational resources are idle. The weight of cross-rack scheduling can
be appropriately increased, and tasks with lower real-time requirements can be transferred to the residential
area’s power system for processing. When the electricity usage peak in the residential area arrives at night, the
number of long-distance transmissions can be reduced. Additionally, this period will vary with the seasons,
and the plan can be adjusted in advance using a time-series analysis model.

Map data mining [54] contains richer spatiotemporal factors. After dividing the area according to the
grid map, not only can the temporal patterns of data flows in different regions be analyzed to establish time
series analysis models, but also a spatiotemporal data flow model with multidimensional features can be
constructed by combining the number and importance of regional facilities. For example, factors such as
population density, traffic accessibility, and key traffic routes with specific topologies can be considered to
capture their characteristics at different times. During school dismissal times, data can be stored locally or
in areas with fewer nearby data to mitigate data skew during computational peaks, or tasks can be scheduled
to nearby region racks during this period. Heuristic algorithms can then be used to calculate the optimal
multi-level locality weights.

The Internet of Things big data scenario [55] involves strict event dependencies and sequencing. In
the prediction of atmospheric pressure and temperature data, the data involves multiple task steps such as
collection, transmission, modeling, and prediction. Critical path identification methods and task priorities
can be designed to ensure the execution order, avoiding resources being excessively occupied by the training
module, which could cause LoRa to stagnate when processing sensor data. At the same time, different sensor
data sizes must be considered, and a multi-level caching structure is used to assist in designing the task
processing priority order.

In the healthcare scenario [56], epidemic outbreak prediction relies on multi-source real-time data,
including social media, public health records, and environmental factors. Spark scheduling strategies should
prioritize processing real-time data flowing in from social media or decompose it into small batches for
quick processing, to avoid delays in real-time data processing caused by resource waiting. For data with lower
update frequencies, such as public health records and environmental factors, fixed resources can be allocated
for stable processing. Furthermore, genomic computation tasks have significant differences in complexity.
Whole genome association studies involve 3 billion base pairs and their association with diseases or traits,
requiring large amounts of data and involving multiple complex situations such as population stratification,
co-expression, and environmental synergy. In contrast, single-gene expression quantification analyzes only
the expression level of a single gene, with a simple data source and analysis method. Spark can allocate tasks
with different data volumes to compute nodes with different resources in batches, preventing data skew.

In the financial field [57], the information system relationship models are diverse, and there are
significant differences in metadata. FIBO is a standardized global ontology that provides universal metadata
definitions for the financial sector, while ISLO is a metadata structure for information systems of specific
companies. Similar to the aforementioned fields, tasks can be tagged according to the metadata of FIBO and
ISLO. For example, financial indicator calculations based on the FIBO standard can be classified as general
tasks important for overall decision-making and assigned the highest priority. For ISLO tasks, priority can
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be sorted based on data volume and business logic. Moreover, the differences between the two can also play
an important role in fault tolerance. When handling cross-system and cross-company computational tasks,
the FIBO standard can quickly identify the same type of data across different data sources, clearly map out
the sources and transformation paths of different data, and identify important results that need to be reused.
This can help avoid redundant computation and data confusion in RDD lineage tracking, thereby improving
computational efficiency.

From the above content, it can be seen that in different application scenarios, many aspects such as
initial data distribution, node resource changes, and so on, have distinct characteristics. By deeply analyzing
specific application scenarios, potential optimization directions can be further identified, thus improving the
Spark scheduling strategy in a more specific and fine-grained manner.

3.6 Challenges in Implementing Scheduling Strategies in Production
Despite the significant theoretical advancements and notable performance improvements achieved by

existing scheduling optimization strategies, their implementation in real-world production environments
still faces numerous challenges.

3.6.1 Initial Data Skew
Data sources in production environments are highly diverse, ranging from scattered personal uploads

to large-scale datasets collected in bulk by organizations. Due to the lack of unified standards and rigorous
preprocessing, these datasets often exhibit high randomness and unpredictable skewness. If preprocessing is
performed in advance, the overhead of computing and storing statistical distributions of large-scale data can
be prohibitively expensive. On the other hand, applying post-processing adjustments poses major challenges
to correction models, as they must dynamically adapt to the characteristics of data skewness, and the same
model may perform inconsistently across different datasets, or even fail. Furthermore, as the program
executes, the data distribution may dynamically change, adding to the complexity of handling skewness.

The existing solutions generally first identify skewed tasks and then handle them specifically. The
handling method can be as shown in reference [28], where after identification, no re-partitioning is
performed. Instead, skewed tasks are executed first, with a large amount of resources allocated to them during
resource-abundant phases to avoid normal tasks from competing for resources, while also avoiding the
high overhead caused by large-scale data re-distribution. However, in scenarios with extremely severe skew,
data re-distribution, as shown in reference [39], is required. By decomposing and reconstructing severely
skewed large tasks, data can be evenly distributed across nodes, greatly improving resource utilization and
optimizing locality.

3.6.2 Severe Cluster Heterogeneity
Except for dedicated high-performance computing centers or large-scale enterprise server clusters,

most multi-user production environments suffer from severe cluster heterogeneity. The lack of uniform
hardware models, the mixed usage of old and new devices, and the dynamic fluctuations in node load
make resource utilization efficiency difficult to predict and control. Additionally, the uncertainty in user
behavior and regional variations in workloads make load prediction extremely challenging, rendering real-
time scheduling adaptation difficult. If a per-node resource evaluation and prediction model is used, it can
incur significant computational overhead, especially when deployed on low-performance nodes, potentially
offsetting the benefits of optimization.



Comput Mater Contin. 2025;83(3) 3865

In extreme heterogeneous scenarios where each node in the cluster has different characteristics, using
a sub-cluster division strategy based on distinct features is insufficient to assess the computational power of
each node. The neural network model shown in reference [34] obtains the computational power of individual
nodes through dynamic performance indicators of the nodes, and although it can also handle extreme
heterogeneity, it has problems such as complex models, high computational resource consumption, and
difficulty in ensuring the objectivity of labels. The lightweight time-series analysis-based model, represented
by reference [33], can predict the future computational power trends of each node based on a small amount
of historical data, but it is challenging to capture complex causal relationships.

3.6.3 Lack of Historical Data
Machine learning models rely on large-scale historical data samples for training, but in new domains

and with new users, the lack of historical data is a common issue. Prediction models without sufficient
historical data support struggle to accurately capture dynamic data characteristics, leading to unstable
optimization results. Moreover, designing models from scratch based on scenario characteristics is not only
time-consuming but also costly, making it less cost-effective in the short term.

3.6.4 Security and Privacy
In multi-user environments, privacy protection requirements may prevent certain users from sharing

critical security- and business-sensitive data for centralized processing, thereby increasing the complexity
of global optimization. Techniques such as secure multi-party computation, including fully homomorphic
encryption (FHE) [58], significantly increase computational overhead far beyond that of raw data processing.
Additionally, most existing FHE libraries are implemented in C++, while the Spark framework is based on
Scala, necessitating additional serialization and conversion processes at the data structure interaction layer,
further increasing processing latency and difficulty.

Beyond the challenges outlined above, the deployment of Spark scheduling strategies in production
environments often encounters unforeseen issues. These challenges demand that scheduling optimization
methods possess greater adaptability, scalability, and efficiency to provide viable solutions for complex envi-
ronments.

4 Future Research Directions
Existing Spark task scheduling algorithms have made significant progress in areas such as resource

utilization, alleviating scheduling delays, and fault recovery. However, with the rapid increase in cluster
scale and complexity in emerging scenarios, there is still room for optimization and innovation in Spark
scheduling algorithms.

4.1 Applications in Emerging Fields
Although existing general Spark scheduling models consider heterogeneous characteristics such as

cluster computing and network resources to some extent, the significant variations in data characteristics,
task priorities, and local cluster resource demands across different scenarios make it difficult for a universal
model to meet the scheduling optimization needs of all use cases.

In future research, scheduling strategies can be optimized from the perspective of “domain awareness”,
adapting to different industries or scenarios by considering data distribution, workload characteristics, and
node distribution patterns. For example, in the smart grid scenario [59], the cluster structure is complex,
and as new nodes are added, their operating states and characteristics change dynamically. Neural networks
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or knowledge graphs can be leveraged to assess the regional operational characteristics of power systems
in real-time, enabling Spark to dynamically schedule workloads to nodes with more available resources
or lower failure rates, thereby improving efficiency. In the Supply Chain Finance scenario [60], upstream
and downstream enterprises exhibit significant differences in support policies, resource boundaries, and
geographic locations, leading to varying levels of digitalization. Clustering methods can be used to analyze
the correlation between enterprise digitalization levels and their geographic distribution, such as regional
bandwidth patterns. Based on this analysis, Spark can formulate a more flexible data locality strategy,
balancing transmission distance and computational resource allocation.

Therefore, when applying Spark to emerging scenarios, it is essential to incorporate research findings
and practical insights from the specific domain to determine the key optimization directions for Spark’s
scheduling strategy.

4.2 Execution Time Prediction for Distributed System Loads
Load execution time prediction is crucial for optimizing Spark scheduling strategies, and many studies

have adopted deadline-based scheduling priority models. However, existing solutions over-rely on historical
data, which may be unavailable in real-world production environments, making it difficult to accurately
capture changing patterns and make reliable predictions. At the same time, some machine learning models
can provide accurate predictions, but they introduce additional training time, significantly increasing
scheduling delays. In scenarios with high demands for efficiency and low cost, low-cost prediction models
are needed.

Time-series analysis-based models are a type of statistical or machine-learning model that does not
rely on large amounts of training data. They can summarize patterns by understanding the changes in data
over time, enabling the prediction of future load execution times. Common models include ARIMA and the
exponential smoothing method mentioned in Section 3.2, which model the data using previous observations
and estimate parameters using simple mathematical formulas to predict the load execution time within a
certain period. Compared to machine learning models that need to capture causal relationships, time-series
analysis-based models require fewer computational steps.

Traditional static execution time prediction formulas (such as Amdahl’s Law, Gustafson’s Law, etc.) are
a more resource-efficient prediction method. They perform polynomial extrapolation based on resource
configurations such as the number of nodes, node computational power, and parallelism, fitting a specific
nonlinear formula to represent the relationship between load execution time and resource amount, with the
resource amount as the input parameter to predict execution time. However, these formulas are becoming
less suitable for the current complex environments, and some researchers have begun exploring low-cost
distributed execution time prediction formulas that are better suited to current big data environments.
Reference [61] employs a two-dimensional plane heat transfer model, using the boundary size growth rate
to measure the communication cost between nodes and constructing a relationship between the number
of nodes and program execution time in the Spark framework. During fitting tests on various programs,
the coefficient of determination (R2) for almost all programs exceeded 0.9. When determining whether the
execution time of subsequent loads will exceed the deadline, one can first determine whether the load is a
simple count or a different program such as machine learning, and then use the corresponding polynomial
calculation to predict the load execution time. Additionally, in Reference [62], the authors demonstrated
through multi-feature model experiments that execution time prediction models designed based on program
characteristics such as computational complexity have higher accuracy when using extrapolation methods
compared to machine learning models. This indicates that, in scheduling models requiring task execution
time prediction, the relationship between other specific characteristics of the program, such as the number
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of partitions, heap memory allocation, etc., and load execution time can be explored. By deriving and fitting
different prediction formulas, prediction accuracy can be improved, inference time can be shortened, and
prediction costs can be minimized as much as possible.

4.3 Relationships between Loads
Current research mostly focuses on static, single-level load scheduling optimization. Even the integrated

studies listed in Section 3.1.3 only analyze the relationships between stages and tasks or between stages and
jobs. While these studies propose effective optimization solutions at their respective levels, they do not fully
explore the interconnections among jobs, stages, and tasks. As a result, scheduling strategies may achieve only
local optimization, without sufficiently investigating whether Spark scheduling strategies have the potential
to balance and coordinate all three levels for global optimization.

Tez [63] is a DAG-based computational framework in the Apache ecosystem that optimizes resource
utilization and execution order through classical graph processing methods such as topological sorting
and path analysis. It also incorporates reinforcement learning and online learning to optimize allocation
and scheduling from an overall performance perspective. However, Tez’s optimization analysis mainly
focuses on multiple stages and tasks within a single job and does not explicitly address multi-job, multi-
stage, multi-task optimization. Systematically constructing a multi-user, multi-level association model can
help enhance the adaptability and robustness of scheduling algorithms in dynamic scenarios of multi-job
coordination. Nevertheless, from the principles and advantages of Tez, it efficiently utilizes resources and
flexibly handles task dependencies. After optimization, it can be integrated with Spark to be applied in
multi-job environments. For example, meteorological monitoring, analysis, and early warning correspond
to multiple jobs, and each job contains multiple stages such as data collection, cleaning, modeling, and
analysis. Based on the original model of single-job stage tasks, additional dependency relationships and
priority evaluation modules for meteorological jobs can be added to avoid consuming too many resources
during single-job optimization, which could sacrifice the overall meteorological business efficiency.

4.4 Insights from Other Distributed Domains
Compared with other distributed parallel computing fields, Spark’s scheduling strategies have the

following limitations: there is a lack of fine-grained modeling for different levels of network transmission
distances, making it difficult to precisely define transmission overhead, and it is insufficiently adaptable
to mobile devices; the connection between stage division and program functional modules is not deeply
explored, making it difficult to adaptively decompose and lightweight based on the program structure in
multi-level mobile devices when the job size and stage gap are significant; in the DAG of complex programs,
Spark lacks a priority scheduling mechanism for tasks with complex and tight dependencies.

Spark scheduling optimization can draw inspiration from other distributed parallel computing domains.
For example, based on research in edge computing [64], Spark can refine locality parameters to differentiate
network overhead at varying levels, such as different transmission distances or rack hierarchies. It can also be
deployed on highly mobile IoT devices [65], by integrating task offloading and hierarchical decomposition
techniques, Spark can deeply explore the relationships between stage partitioning and program functional
modules, enabling lightweight computation. For priority scheduling in complex dependencies, Spark can
draw inspiration from the critical path method in high-performance computing [66] and the scheduling
algorithms in multi-core embedded systems [67], providing a more fine-grained preemptive execution order
optimization approach based on data dependencies and computational complexity.
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4.5 Integration of Spark with Blockchain
Spark faces the risk of Driver central node failure, which can cause the entire job to be immediately

interrupted, requiring the standby Driver to resubmit the job. At the same time, cross-rack transmissions are
often unavoidable, leading to a significant increase in system transmission overhead. Therefore, Spark can
be optimized by integrating with blockchain [68]. In the event of a Driver failure, a new Driver node can be
selected from the existing cluster through a consensus mechanism, similar to the view change mechanism
in consortium blockchains for re-electing a Leader [69].

To reduce transmission overhead, smart contracts can be used to dynamically allocate computational
tasks to appropriate nodes, transmitting the required data indices to the nodes. The original metadata
transmission work is performed by the blockchain system during the initial data synchronization, which not
only improves efficiency but also ensures data security. Reference [70] stores the hash values of structured
and unstructured data in agricultural data are stored in the blockchain, and unstructured data is stored in
HDFS, avoiding the efficiency issues associated with centralized storage. When using Spark to reorganize and
integrate structured data, data can be directly extracted from the blockchain based on the index, reducing
unnecessary transmission costs.

4.6 SDN Empowered Spark Scheduling
SDN [71] technology, with its unique architectural concepts and strong flexibility, has become a

cutting-edge topic and is very popular in cloud computing task scheduling. Fig. 5 shows the co-occurrence
relationship between the keywords SDN, Cloud Computing, and Scheduling in 797 SDN-related journal
papers from the past three years in the Web of Science, indicating that the application of SDN in cloud
computing task scheduling is one of the current hot research directions. However, as a research area highly
similar to cloud-computing scheduling, Spark scheduling has a certain gap in the research on the integration
of the two.

4.6.1 Core Concepts of SDN
SDN [72] is a new network paradigm designed to overcome the limitations of traditional networks. It

separates the control attributes of each independent decision-making decentralized network device (such as
routers) from the data transmission attributes, leaving only the data transmission attributes, while the control
device implements centralized network management, giving the network architecture a global network
perspective. The SDN architecture is divided into three layers: the data plane, composed of transmission
devices lacking intrinsic control or decision-making software; the control plane, responsible for monitoring
the data plane information and transmitting application-level decisions; and the application plane, which is
responsible for formulating and adjusting task scheduling and resource allocation based on the information
provided by the control plane.

The SDN infrastructure has a certain degree of universality and achieves communication and collabora-
tion between planes through standardized interfaces. Therefore, under different optimization requirements,
it can integrate various software to make more accurate scheduling decisions. For example, to find the optimal
task scheduling solution, Reference [73] defines formulas such as the expected computation time of tasks at
each node in the scheduling model of the fog IoT system. The AWOA algorithm, which combines AO and
WOA, seeks the optimal solution and integrates AWOA into the SDN framework to optimize the service
quality of IoTFS. As can be seen, SDN can integrate with advanced technologies such as heuristic algorithms
to improve overall network performance.
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Figure 5: Co-occurrence network of research hotspots on SDN and cloud computing task scheduling

4.6.2 How SDN Empowers Spark Scheduling
Spark task scheduling involves data transmission along different paths. Existing locality mechanisms

lack dynamic optimization of overall network topology information. Unreasonable cross-rack scheduling
and local scheduling can increase network latency and bandwidth consumption due to external complex
factors, thereby reducing scheduling efficiency.

The integration of SDN with Spark can directly optimize the locality mechanism. By constructing
models based on network bandwidth, latency, and other metrics, along with dynamic network topology
information, SDN, in combination with heuristic algorithms, graph algorithms, or reinforcement learning
methods, can be integrated into Spark’s resource manager and scheduler. This enables Spark to more
accurately determine the locality levels between nodes, with cross-rack scheduling receiving more granular
evaluations. For example, when a rack experiences severe attacks and its network bandwidth becomes
highly unstable, the SDN control core, integrated with heuristic algorithms, can promptly assess whether the
abstract topology of multi-rack clusters needs to be changed and choose adjacent racks instead.

Moreover, it is not just the locality mechanism—SDN’s characteristics can also indirectly affect other
factors influencing Spark’s scheduling efficiency. For instance, when a node is mitigating data skew but
overcorrecting, resulting in excessive network traffic, SDN can limit data re-partitioning to balance resource
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utilization and transmission overhead. In adaptive dynamic parallelism scheduling algorithms, SDN can
evaluate network transmission quality to decide on increasing or decreasing parallelism. When quality
is poor, parallelism can be appropriately increased to prevent task scheduling failures and the need for
retransmitting large amounts of data. In terms of resource evaluation, SDN can combine time-series models
to more flexibly and accurately assess the trend of node network bandwidth resource changes.

4.7 Insights from Classic Cluster Management Systems
4.7.1 Insights from Borg for Spark Scheduling

The resource allocation method in Spark based on computational or lightweight model predictions
can adapt to most scenarios. However, in scenarios where the resource demands of tasks exhibit highly
complex variations and latency, strictly allocating resources based on predictions may lead to performance
bottlenecks. Borg’s [74] oversubscription resource mechanism has significant advantages in dealing with
complex and dramatic changes in scenarios. It allows a certain degree of over-allocation of resources based
on resource demand prediction and analysis, thereby improving resource utilization. Spark can combine
advanced technologies like reinforcement learning to build multi-factor prediction models in complex
environments, allowing hierarchical scheduling on nodes with more abundant resources. For example,
in epidemic prediction scenarios, if reinforcement learning assesses factors such as repeated IP network
comments, increased local hospital visits, and a surge in traffic during holidays, and determines that an
epidemic might break out in a certain area, local evaluation tasks can allow the over-allocation of nodes
for scheduling.

4.7.2 Insights from Kubernetes for Spark Scheduling
Currently, the vast majority of Spark scheduling mechanisms primarily allocate resources based on task

or node priorities. If priority calculations and sorting are performed for each node, it will generate significant
computational overhead, and this method lacks flexibility at the node level, making it difficult to handle
special scheduling requirements. The container scheduling system Kubernetes [75], derived from Borg, can
implement affinity and anti-affinity scheduling strategies or taints and tolerations strategies using Pods as
scheduling units, isolating specific types of tasks from certain nodes, and achieving goal-oriented scheduling
in a multi-user environment. Spark can combine reinforcement learning to batch plan task scheduling from
the perspectives of task adaptation, privacy protection, local cluster stability, and other factors, optimizing
resource allocation. For example, users can restrict tasks involving sensitive information to a specific sub-
cluster for regular scheduling, or, if reinforcement learning assesses a node’s stability as low and the pattern
is difficult to discern, this node can be shielded and wait for it to return to normal operation.

5 Conclusion
With the development of information technology, the complexity and scale of big data environments

have reached unprecedented levels. As one of the popular distributed parallel computing platforms, opti-
mizing the performance of Spark has become a key research focus at present. Among these, scheduling
strategy optimization plays a significant role by optimizing resource allocation from the perspective of
clusters, analyzing performance bottlenecks at a macro level, and closely integrating with the characteristics
of real-world application scenarios, making it a topic worth further investigation.

This paper first provides a brief introduction to the basics of Spark, introduces common Spark schedul-
ing efficiency evaluation metrics, compares several common Spark scheduling strategies, and analyzes how
scheduling affects program execution efficiency. Then, it details and compares the optimization approaches
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of existing Spark scheduling strategies from three perspectives: load, nodes, and the matching of the
two. Several representative algorithms are discussed to highlight the connections and differences between
different strategy characteristics. Subsequently, the advantages and disadvantages of the three scheduling
modes are compared, along with an exploration of how Spark improves scheduling strategies for specific
application scenarios. Finally, the limitations of existing research are analyzed, and the future is envisioned
from aspects such as applications in emerging fields, prediction of execution time for distributed-system
loads, relationships between loads, inspirations from other distributed fields, integration with blockchain,
SDN-enabled Spark scheduling, and inspirations from classic cluster management systems.
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