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ABSTRACT: Global climate change, along with the rapid increase of the population, has put significant pressure on
water security. A water reservoir is an effective solution for adjusting and ensuring water supply. In particular, the
reservoir water level is an essential physical indicator for the reservoirs. Forecasting the reservoir water level effectively
assists the managers in making decisions and plans related to reservoir management policies. In recent years, deep
learning models have been widely applied to solve forecasting problems. In this study, we propose a novel hybrid deep
learning model namely the YOLOv9_ConvLSTM that integrates YOLOv9, ConvLSTM, and linear interpolation to
predict reservoir water levels. It utilizes data from Sentinel-2 satellite images, generated from visible spectrum bands
(Red-Blue-Green) to reconstruct true-color reservoir images. Adam is used as the optimization algorithm with the
loss function being MSE (Mean Squared Error) to evaluate the model’s error during training. We implemented and
validated the proposed model using Sentinel-2 satellite imagery for the An Khe reservoir in Vietnam. To assess its
performance, we also conducted comparative experiments with other related models, including SegNet_ConvLSTM
and UNet_ConvLSTM, on the same dataset. The model performances were validated using k-fold cross-validation
and ANOVA analysis. The experimental results demonstrate that the YOLOv9_ConvLSTM model outperforms the
compared models. It has been seen that the proposed approach serves as a valuable tool for reservoir water level
forecasting using satellite imagery that contributes to effective water resource management.
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1 Introduction
The water level in reservoirs is necessary to evaluate water resources for different purposes such as

irrigation, agriculture, early flood warning, and hydroelectricity [1]. Forecasting water level is important
for hydrological studies, significantly affecting water resource management, flood forecasting, and environ-
mental protection. Traditional methods used for forecasting the water level often rely on statistical models.
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This approach is useful to solve the problem but it still has some limitations in capturing complex and non-
linear relationships inherent in water processes, leading literature to low accuracy [2,3]. Recent advances
in machine learning have led to the development of various models for hydrological and environmental
studies [4,5]. For the forecast of the reservoir water level, many types of traditional and classic models have
been evaluated, such as Artificial Neural Network (ANN) [6–8], Adaptive Neuro Fuzzy Inference System
(ANFIS) [9–11], and Extreme Learning Machines (ELM) [12–14]. For these models, hydrological data of the
reservoir is required.

In recent years, satellite imagery has become a valuable resource in various fields. For instance, Shahab
Ul Islam et al. [15] employed remote sensing imagery to assess changes in the spatial distribution and scale
of infrastructure in Peshawar District, Pakistan. Similarly, Song et al. [16] used remote sensing imagery for
maritime vessels. Another application of remote sensing imagery is in hydrology, where satellite imagery
has been widely used. In the studies [17,18], water level forecasting was conducted by providing detailed
and continuous spatial data, enabling researchers and experts to monitor water level fluctuations over large
areas. Besides, leveraging remote sensing capabilities, satellite imagery can be used to gather water level
information in difficult-to-access regions where direct measurements are unfeasible, including flood-prone
areas, remote rivers, and large reservoirs [19]. Moreover, satellite imagery offers frequent temporal updates,
allowing for timely detection of minor and sudden changes in water levels, thereby enhancing the accuracy
and reliability of proposed models [20]. The advancement of remote sensing technology and modern data
analysis methods has created new opportunities for extracting data from satellite imagery, improving the
effectiveness of research outcomes and water resource management.

Several advanced satellite image segmentation models have been extensively developed. In addition to
traditional models such as multiview subspace clustering [21], deep learning models for image segmentation
include UNet, Mask R-CNN, SegNet, and YOLO. UNet [22,23] was designed for biomedical segmentation
and has demonstrated effectiveness in satellite image processing. Mask R-CNN [24] was also applied in ship
detection problem based on satellite remote sensing images. SegNet [25] optimizes the storage of spatial
information in convolutional networks, significantly reducing memory consumption. However, a drawback
of SegNet is its long training time, which affects deployment efficiency in real-world applications. Meanwhile,
YOLO [26] has emerged as a superior solution for image segmentation and water level prediction. Compared
to UNet and SegNet, YOLOv9 significantly improves both the processing speed and accuracy, particularly
in complex segmentation tasks. With its real-time object detection capability and high precision, YOLOv9
is becoming the top choice for applications requiring high performance and instant response.

The Convolutional Long Short-Term Memory (ConvLSTM) network has been introduced as a powerful
tool for image forecasting tasks [27]. ConvLSTM combines the strengths of Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks to effectively capture spatial and temporal
dependencies in image sequences [28]. This enables ConvLSTM to forecast water levels based on satellite
imagery over time [29]. Studies have demonstrated the effectiveness of ConvLSTM in various forecasting
problems. Wang et al. [30] introduced a novel precipitation forecasting model using ConvLSTM for three-
dimensional, four-channel weather radar data. These findings illustrate the adaptability and effectiveness of
ConvLSTM in handling time-series data for forecasting applications.

Unlike large reservoirs, continuous and systematic hydrological observations for small reservoirs are
often unavailable. Additionally, some reservoirs have a limited number of hydrological monitoring stations,
making hydrological data collection challenging. In transboundary river basins, access to hydrological data
among countries sharing water resources is a main concern. Meanwhile, satellite imagery of reservoirs is
freely available. The forecasting models utilizing satellite imagery for water level forecasting have not been
widely developed. To overcome these challenges and leverage the outstanding advantages of the YOLOv9 and
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ConvLSTM networks that were depicted in the previous studies, along with the flexibility of satellite imagery,
this research proposes a hybrid model, denoted as YOLOv9_ConvLSTM, for reservoir water level forecasting.

The main contributions of this paper include:

- This paper integrates YOLOv9, ConvLSTM, and linear interpolation methods to improve the quality
of prediction.

- The proposed model is implemented on collected satellite image data and compared with two other
forecasting models, including SegNet_ConvLSTM and UNet_ConvLSTM.

- Additionally, the k-fold cross-validation [31] and ANOVA analysis [32] were employed to evaluate
the performance of the proposed model. The findings showed that the proposed model outperformed
the others.

The following is organized as: Section 2 presents related knowledge, while Section 3 introduces the
environment setup, experimental scenarios and outcomes, ANOVA analysis of the collected results, and
comments on the findings. Section 4 summarizes the findings and suggests future study areas.

2 Materials and Methods

2.1 Materials
This study aims to deal with the issues related to the An Khe hydroelectric reservoir in Vietnam (Fig. 1). It

is located in the rugged mountains of Vietnam and is influenced by the severe weather. The reservoir belongs
to An Khe—Ka Nak hydroelectric system. In the hot season, many rivers and streams are dried. However, in
long rainy seasons, floods and flash floods occur that seriously affect human lives. The geographical location
of the reservoir area is shown in Fig. 1. Some validity indices are used to evaluate the performance of the
model, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) as in Eqs. (1) and (2).

RMSE =
�
��� 1

n

n
∑
i=1
(qi − q̂i)2 (1)

MAE = 1
n

n
∑
i=1
∣qi − q̂i ∣ (2)

where:

- n is the number of data points.
- qi is the actual value at the i-th data point.
- q̂i is the predicted value at the i-th data point.

2.2 Proposed Methods
This part highlights each step in the proposed model. The main steps of the model are illustrated in Fig. 2.
In the first stage, satellite images in the reservoir area are collected and labeled to obtain the input dataset.

This dataset is split into two parts, including the training and testing sets. The training set is pre-proceeded
and used to train YOLOv9 and ConvLSTM. The testing set is used to evaluate the proposed model. The model
will generate predicted satellite images of the reservoir based on input images. After that, the surface area of
reservoir is defined. Finally, the predicted water level is estimated using the linear interpolation method. The
role of each module in the framework is given in Table 1 below.
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Figure 1: Geographical location map of the study area

Figure 2: Framework of proposed model for water level prediction

Table 1: The list of modules in proposed framework

Module Description
Data collection and
processing module

Collecting Sentinel-2 satellite images of the reservoir area and
performing preprocessing steps such as resizing, normalization, noise
removal, and data augmentation to create a standardized dataset and

ensure high-quality input for deep learning models
YOLOv9 module Ensures that the water body segmentation process is performed quickly

and accurately, providing a reliable foundation for the subsequent
forecasting step

(Continued)
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Table 1 (continued)

Module Description
ConvLSTM module Captures the variation trends of the water body, thereby enhancing the

accuracy of water level forecasting
Training and evaluating

module
Ensures the training process of both YOLOv9 and ConvLSTM is

conducted with optimal parameters
Testing and evaluating

module
ensures that the training process of both YOLOv9 and ConvLSTM is

conducted with optimal hyperparameters
Linear interpolation
module (Prediction)

Linear interpolation is applied to estimate the forecasted water level.
This step transforms image data into meaningful numerical values for

practical applications

2.2.1 Data Collection and Processing
This section describes the steps related to collection of Sentinel-2 satellite images for the study area

illustrated in Fig. 3.

Figure 3: Examples of satellite images captured from An Khe

Data used in this research include the satellite images collected from the Copernicus program1 which
belongs to the European Union’s space program. Images were collected from the Sentinel-2 satellite.
Currently, the Copernicus program allows global users to access the open-source Open Hub1 free of charge.
In this research, the following criteria were applied to retrieve satellite imagery from Copernicus: (i) the
processing level was selected as Level 2A; the cloud cover threshold was set to <20%; (ii) the acquisition
period was from 1 January 2018, to 31 December 2023; (iii) and the selected color bands were R4, G3, and B2.
A total of 34 satellite images are included in this dataset. The satellite images are downloaded and extracted

1https://dataspace.copernicus.eu/ (accessed on 1 January 2025).

https://dataspace.copernicus.eu/
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from the area of An Khe reservoir by using SNAP software2. The labeling process of images is performed by
using consistent and suitable criteria to create a data set and its corresponding labels for each image. In the
SNAP software, the following steps were used to get the coordinates of the reservoir area:

Step 1: Select the zip file and open it with the R4 (red), G3 (green) color bands, and B2 (blue). Zooming
in the image displayed to the location of reservoir An Khe.

Step 2: Use a rectangular drawing tool to draw borders around An Khe reservoir area.
Step 3: Get the coordinates with WKT from Geometry and save it into temporary memory.
Step 4: Open GraphBuilder3, create subset (band 4, 3, 2), and save chart.
Step 5: Modify the polygon in the graph with the coordinates of the reservoir area.
Step 6: The final output is the Mygraph.xml file.
Data files are downloaded from the Copernicus website to SNAP software. The polygon coordinates

were applied to the reservoir area, then the software automatically created the cut images in PNG format.
The obtained images are from the area of An Khe reservoir. Fig. 3 presents several examples of the
captured images.

Using the collected images, the next step is to label the water area of An Khe reservoir with the CVAT4

tool with the labeling environment for object segmentation for a task that includes 1 class (reservoir). Next, we
upload the satellite image files and label them according to the following principles: The area to be segmented
is the water area, characterized by continuously uniform colors. Place points to define the boundary between
the water area and the non-water area. Assign these points to form a polygon that most accurately resembles
the shape of the reservoir, as shown in Fig. 4. After labeling, the data is stored in MongoDB with two fields:
‘images’ and ‘labels’.

Figure 4: Satellite image after being labeled

2.2.2 Data Preprocessing
In this section, the data preprocessing steps for the proposed model is presented.
After being collected, the data has been organized in chronological order. This new dataset is used for

preprocessing for each model, including YOLOv9 and ConvLSTM.

2https://step.esa.int/main/download/snap-download/ (accessed on 1 January 2025).
3https://docs.yworks.com/yfiles-html/dguide/graph_builder/graph_builder-GraphBuilder.html (accessed on 1 January 2025).
4https://www.cvat.ai/ (accessed on 1 January 2025).

https://step.esa.int/main/download/snap-download/
https://docs.yworks.com/yfiles-html/dguide/graph_builder/graph_builder-GraphBuilder.html
https://www.cvat.ai/
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Data processing for the YOLOv9 model:
The data processing workflow for the YOLOv9 model is described in detail in Fig. 5. The steps are taken

as follows: First from the collected image series will create the matrix of images and resize all images of
320 × 320 size to ensure consistency. Next, use Minimum Mean Square Error (MMSE) algorithm to restore
image quality and reduce noise. Next, we use the methods of flipping horizontal images, flipping vertical
images, flipping horizontally and flipping, turning the image clockwise, reversing the clock, and randomly
cutting images to enhance the diversity of the object. After that, weadd the coordinates of the object in the
label so that the object corresponds to the image after strengthening. Finally, we summarize the original
images and images after strengthening into a set of training images for YOLOv9 and divide this data set into
3 data sections: train YOLOv9, val YOLOv9, test YOLOv9 with a ratio of 7:2:1.

Figure 5: Data preprocessing for the YOLOv9 models
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Data processing for ConvLSTM model:
The data processing procedure for the ConvLSTM model is detailed in Fig. 6. The sequential steps are

as follows: First, from the collected image dataset, create a matrix of images and resize all images to 320 × 320
to ensure uniformity. Adjust the object coordinates in the labels to correspond to the objects in the resized
images. Next, create a mask for the images with pixel values of 255 for regions containing the reservoir
objects and pixel values ‘0’ for regions without reservoir objects, highlighting the features of the area of
interest. Subsequently, for pixel points on the boundary, check the percentage of the reservoir object region
at that point. If this percentage is larger than 50%, mark the pixel point as a reservoir object (value 255);
otherwise mark it as not a reservoir object (value 0). Then, we perform monthly data statistics for the images
over the years, identifying the number of images missing for each month in each year. We use the multi-
point interpolation to augment the missing data for the months with missing images in the years, with the
mathematical interpolation formula used from Eqs. (3)–(6) as follows:

- Calculate weights based on the Pearson correlation coefficients.

wi = corr (Ii , Ii+1) =
cov (Ii , Ii+1)

σIi σIi+1

(3)

- Calculate the images that need interpolation.

Iinterp =
n−1
∑
i=1

wi ⋅ Ii (4)

- Normalize the interpolated images.

Iinterp =
Iinterp

∑n−1
i=1 wi

(5)

- Calculate the value range limits of the pixels.

Iinterp = clip (Iinterp, 0, 255) (6)

where:
- Cov (Ii, Ii+1): The variance values of the i-th and (i+ 1)-th images are needed for interpolation calculation.
- σIi and σIi+1: The standard deviation of the pixel values of the i-th and (i + 1)-th images.

Finally, some slices of images and labels were created with a random time step from 3 to 10 and stride = 1
to prepare the data for the training process. Each batch includes 3 to 10 consecutive images; for example,
with a time step of 4, it consists of images at times t − 3, t − 2, t − 1, and t, with the corresponding label
at time t + 1. After creating batches and labeling the data, divide the data into three sets: train_ConvLSTM,
val_ConvLSTM, and test_ConvLSTM with a ratio of 7:2:1.
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Figure 6: Data preprocessing for the ConvLSTM models

2.2.3 Build and Train the YOLOv9 and ConvLSTM Model
The process of building and training the YOLOv9 model:
In this section, the YOLOv9 model will be built and trained. The process of building and training the

model is described in Fig. 7. The YOLOv9 model is designed with three main components: Backbone, Neck,
and Head. The Backbone utilizes convolutional layers, normalization, activation, and pooling to extract and
process features from the data. Next, the Neck, with its FPN (Feature Pyramid Network) and PAN (Path
Aggregation Network) architecture, aggregates features from the processed data of the Backbone. Finally, the
Head is responsible for predicting bounding boxes, segmentation regions, object classes, and the confidence
scores of the predicted areas.
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Figure 7: The training diagram of the YOLOv9 model

After completing the design of the YOLOv9 model, the parameters for the training process are set. The
optimization algorithm used is Adam with a learning rate of ‘1 × 10−3’. The loss functions include localization
loss, confidence loss, and classification loss. The YOLOv9 model will be trained on the train YOLOv9 dataset,
with a batch size of 4300 epochs, and an IoU threshold of 0.7. Throughout the training process, the model
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computes the loss function and updates the weights after each epoch. Early stopping is employed: if the loss
function does not improve significantly over 10 consecutive epochs, the training process will be halted.

Model evaluation is conducted on the val_YOLOv9 dataset using the following metrics: mAP (mean
Average Precision), IoU (Intersection over Union), ‘Precision Recall’, and ‘Confusion Matrix’. After training,
the model will be fine-tuned if it does not meet the condition IoU >Min. For the An Khe reservoir dataset, we
choose Min = 90 (%). Adjustable parameters include the optimization algorithm, learning rate, loss function,
number of convolutional layers, Dropout layers, and the number of filters in each convolutional layer. If the
condition is met, the best model weights will be selected. If not, the parameters will be adjusted and training
will be resumed. The experiments are conducted with various parameter sets and the best one that meets the
model’s requirements is selected.

The process of building and training the ConvLSTM model:
In this section, the ConvLSTM model will be built and trained. The process of building and training

the model is illustrated in Fig. 8. The ConvLSTM model consists of three ConvLSTM layers with specific
parameters. The number of filters for each layer is 64, 32, and 1, respectively. Each layer has a stride of 1 and
applies zero padding around the image after each feature extraction to maintain the input size. The activation
function used in the model is ‘tanh’ function, which helps the model learn nonlinear relationships in the data.
The model parameter configuration includes selecting the optimization algorithm and related parameters.

ADAM is used as the optimization algorithm with a learning rate as ‘1 × 10−3’. The loss function used
is MSE (Mean Squared Error) to evaluate the model’s error during training. Training the ConvLSTM model
involves a batch size of 4 and a total of 300 epochs. The model is trained on the train ConvLSTM dataset,
with the loss function being computed and weights updated after each epoch. To prevent overfitting, early
stopping is applied: if there is no significant improvement in the loss function over 10 consecutives epochs,
the training process will be halted. After training, the model is evaluated on the val_ConvLSTM dataset using
evaluation metrics such as R-squared, MAE (Mean Absolute Error), and MSE (Mean Squared Error). These
metrics help assess the model’s performance with specific conditions: MSE < ε. For the An Khe reservoir
dataset, we choose ε = 0.05. If these conditions are met, the weights of the best-performing algorithm, loss
function, the number of ConvLSTM layers, and the number of units in each layer will be adjusted, and
training will be resumed to improve the model.
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Figure 8: The training diagram of the ConvLSTM model
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2.2.4 Predicted Reservoir Water Level
The study collects technical design data of An Khe Reservoir5, including the relationship between water

level, storage capacity, and surface area. Based on the interpretation results of the reservoir’s water surface
area, combined with the established relationship, the water level of the reservoir can be determined. The
following steps show the calculation of the reservoir area and forecast the water level.

Step 1: Count the number of pixels with a value of 255 (representing the reservoir) in the predicted
mask image.

Step 2: Multiply the number of pixels from Step 1 by 100 m2 to calculate the area (since 1 pixel
corresponds to 10 m × 10 m).

Step 3: Convert the area from square meters (m2) to square kilometers (km2) to match the units used
in the An Khe hydroelectric reservoir data table.

Step 4: From the area value calculated in Step 3, compare it with the reference table to find the closest
area range.

Step 5: Once the corresponding area range (Area) is identified, determine the corresponding water level
range (Water Level).

Step 6: Use linear interpolation to calculate the reservoir water level, using Table 2 for interpolation.
The linear interpolation formula is presented in Eq. (7):

y = (x − x1) ∗ (y2 − y1)
(x2 − x1)

+ y1 (7)

where, (y, y1, y2) is the reservoir water levels; (x, x1, x2) is the reservoir areas corresponding to the water
levels; (y, y1, y2) and (x, x1, x2, y1, y2) are the known values, and y is the value to be determined.

Step 7: The final result is the reservoir water level based on the area calculated from the predicted
mask image.

Table 2: The An Khe hydroelectric reservoir recording (Issued with Decision No. 293/QD-BCT dated 17 January 2012)

Water level Z (m) 413.35 420.00 421.00 422.00 423.00 424.00 425.00 426.00 426.50
Area F (km2) 0.00 0.56 0.73 0.91 1.12 1.36 1.68 2.01 2.18

Water level Z (m) 427.00 427.50 428.00 429.00 430.00 431.00 432.00 433.00 434.00
Area F (km2) 2.36 2.56 2.78 3.39 4.02 5.00 6.13 7.43 9.00

2.2.5 The Overall Process
After completing steps such as data collection, data preprocessing, and model training, the next step

is to run the proposed model. The overall process of the model is detailed in Fig. 9. Using a time series of
collected image data, data preprocessing is performed. This preprocessing step normalizes the input images
by scaling pixel values to a range of ‘0’ to ‘1’, and then resizes the images to 320 × 320. These processed images
are then fed into the YOLOv9 model for reservoir object region.

The sequence of images converted into object region masks is passed through the ConvLSTM model to
forecast the reservoir mask for the next time step. Subsequently, the reservoir area and the forecasted water

5https://en.evn.com.vn/d6/news/An-Khe-Ka-Nak-hydropower-plant-ensures-water-supply-for-Ba-River-downstream-basin-in-the-dry-season-66-
163-2813.aspx (accessed on 1 January 2025).

https://en.evn.com.vn/d6/news/An-Khe-Ka-Nak-hydropower-plant-ensures-water-supply-for-Ba-River-downstream-basin-in-the-dry-season-66-163-2813.aspx
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level are calculated according to Section 2.2.4. The model outputs the forecasted water level based on the
input image sequence of the reservoir.

Figure 9: Illustration of steps in the proposed model

3 Results and Discussions
The experimental results presented in this section demonstrate that the proposed method

(YOLOv9_ConvLSTM) outperforms other methods (SegNet_ConvLSTM, UNet_ConvLSTM) in terms of
accuracy. The test scenarios were designed to compare these methods using the k-fold cross-validation,
ensuring a comprehensive evaluation. Additionally, a two-way ANOVA was performed to analyze the
variance in performance between the proposed method and the benchmark models, providing deeper
insights into the model’s effectiveness.

3.1 Experimental Environments
All experiments were conducted on Google Colab Pro with GPU support. The machine specifications

are detailed in Table 3. In this experiment, satellite images of the An Khe reservoir region were used with each
image representing a month from January to July 2024. Although only one image per month was available for
the experiment, we designed reasonable scenarios to ensure that the quality of the proposed algorithm was
not compromised. To compare the YOLOv9_ConvLSTM method with other reliable methods, we employed
the k-fold cross-validation across three data-splitting scenarios as input for the forecasting methods.

Table 3: Specifications of the machine used for model implementation

Number Parameter name Specifications
1 Environment Google Colab Pro
2 Instance type TPU v3-8
3 System Ubuntu 18.04 LTS-X64
4 Processor 2 CPU Intel Xeon (Cascade

reservoir) 2.3 GHz
5 RAM 25 GB

(Continued)
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Table 3 (continued)

Number Parameter name Specifications
6 GPU 1 GPU NVIDIA Tesla T4 with 16

GB in memory
7 Disk 100 GB

Scenario 1: The input consists of 3 images

• Use the original images from January, February, and March to forecast the image for April and compute
the water level forecast for April.

• Use the images from February, March, and the forecasted image for April as input to forecast the image
for May and the water level forecast for May.

• Use the original image from March and the forecasted images for April and May as input to forecast the
image for June and the water level forecast for June.

• Use the forecasted images for April, May, and June to forecast the image for July and the water level
forecast for July.

Scenario 2: The input consists of 4 images

• Use the original images from January, February, March, and April to forecast the image for May and
compute the water level forecast for May.

• Use the original images from February, March, April, and the forecasted image for May as input to
forecast the image for June and the water level forecast for June.

• Use the original images from March and April, along with the forecasted images for May and June, to
predict the image for July and the water level forecast for July.

Scenario 3: The input consists of 5 images

• Use the original images from January, February, March, April, and May to forecast the image for June
and compute the water level forecast for June.

• Use the original images from February, March, April, May, and the forecasted image for June as input to
forecast the image for July and the water level forecast for July.

Hyperparameter setting: By implementing various values for hyperparameters, the optimized value is
selected as in Table 4 below.

Table 4: Hyperparameter selection

Hyperparameter Experimentation range Selected value
Learning rate [1 × 10−5; 1 × 10−3] 1 × 10−3

Epochs [100; 300] 300
Batch size [2; 16] 4

IoU [0.5; 0.9] 0.7
Optimization algorithm Adaptive Moment Estimation (ADAM);

Stochastic Gradient Descent (SGD); Root
Mean Square Propagation (RMSprop)

ADAM
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3.2 Experimental Results
In this section, we describe the results of the proposed model compared to those of the other benchmark

models. The training results of the YOLOv9, SegNet, and UNet image segmentation models are presented
in Table 5, showcasing the performance evaluation metrics of each model. Although YOLOv9 does not out-
perform SegNet in the image segmentation phase, when integrated with the ConvLSTM forecasting network,
the YOLOv9_ConvLSTM model demonstrates superior performance compared to the other models.

Table 5: Performance evaluation metrics for segmentation models YOLOv9, SegNet, and UNet

YOLOv9 SegNet UNet
F1 score 0.7192 0.8241 0.7389

Precision 0.7336 0.7091 0.7018
Recall 0.7053 0.9835 0.7801
IoU >90% >90% >90%

Note: Bold values are the best value in each row

The results of empirical testing across three scenarios for the selected forecasting models, includ-
ing Yolov9_ConvLSTM, SegNet_ConvLSTM, UNet_ ConvLSTM, are shown. The forecast results will be
presented alongside the actual measured results at the corresponding time points in Figs. 10–12.

Figure 10: Results obtained from three models and actual water level under scenario 1

Figure 11: Results obtained from three models and actual water level under scenario 2
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Figure 12: Results obtained from three models and actual water level under scenario 3

Based on Figs. 10–12, the YOLOv9_ConvLSTM model demonstrates higher forecasting accuracy com-
pared to those of the SegNet-ConvLSTM and UNet-ConvLSTM models. Among them, the UNet-ConvLSTM
model exhibits the lowest forecasting performance.

Apart from the comparison in Figs. 10–12, the evaluation metrics, including MAE and RMSE, are
also calculated. After conducting experiments according to the described scenarios, the evaluation metrics
of YOLOv9_ConvLSTM model, SegNet_ConvLSTM model and Unet_ConvLSTM model are given in
Tables 6–8, respectively. In Tables 6–8, the authors present the MAE and RMSE evaluation results using a
5-fold approach for each scenario of the YOLOv9_ConvLSTM, SegNet_ConvLSTM, and Unet_ConvLSTM
forecasting models. To ensure fair evaluation, we calculated the average value of the folds for each scenario,
which is shown in the ‘Average’ row in Tables 6–8.

In Table 6, the ‘Average’ row for each scenario shows MAE values of 1.5678, 1.4493 and 1.3348, while the
corresponding RMSE values are 1.6135, 1.5340 and 1.4113, respectively. A decreasing trend in both MAE and
RMSE is observed, indicating that as the input images transition from original images to predicted images,
the forecasting accuracy of the model gradually declines.

In Table 7, the ‘Average’ row for each scenario shows MAE values of 1.7106, 1.5522, and 1.3728, while the
corresponding RMSE values are 1.7663, 1.6636, and 1.5066, respectively. A decreasing trend in both MAE and
RMSE is observed, indicating that as the input images transition from original images to predicted images,
the forecasting accuracy of the model gradually declines.

Table 6: Evaluation metrics of the YOLOv9_ConvLSTM forecasting model

MAE RMSE

Input 3 images 4 images 5 images 3 images 4 images 5 images
Fold 1 1.2976 1.3031 1.3529 1.3335 1.3463 1.3885
Fold 2 1.6455 1.4493 1.3795 1.6958 1.5484 1.4801
Fold 3 1.6038 1.4827 1.2513 1.6621 1.6007 1.3554
Fold 4 1.6862 1.4919 1.4092 1.7326 1.5421 1.2833
Fold 5 1.6060 1.5623 1.4942 1.6433 1.6234 1.5493

Average 1.5678 1.4493 1.3348 1.6135 1.5340 1.4113
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Table 7: Evaluation metrics for SegNet_ConvLSTM model

MAE RMSE

Input 3 images 4 images 5 images 3 images 4 images 5 images
Fold 1 1.3070 1.3124 1.3697 1.342 1.3677 1.4182
Fold 2 1.8311 1.6121 1.4765 1.8967 1.7398 1.6609
Fold 3 1.7966 1.6292 1.2609 1.8692 1.7836 1.4273
Fold 4 1.8510 1.4821 1.1651 1.9128 1.6045 1.3479
Fold 5 1.7673 1.7251 1.5916 1.8109 1.8226 1.6789

Average 1.7106 1.5522 1.3728 1.7663 1.6636 1.5066

Table 8: Evaluation metrics for Unet_ConvLSTM model

MAE RMSE

Input 3 images 4 images 5 images 3 images 4 images 5 images
Fold 1 2.4457 2.3459 2.0807 2.4691 2.3818 2.1218
Fold 2 2.9615 2.6099 2.1056 3.0115 2.7082 2.0335
Fold 3 2.9006 2.6159 1.9029 2.9527 2.7082 2.0335
Fold 4 3.0138 2.6633 1.9262 3.0454 2.7375 2.0396
Fold 5 2.9193 2.7015 2.3078 2.9458 2.7616 2.3751

Average 2.8482 2.5873 2.0646 2.8849 2.6595 2.1577

In Table 8, the ‘Average’ row for each scenario shows MAE values of 2.8482, 2.5873 and 2.0646, while
the corresponding RMSE values are 2.8849, 2.6595 and 2.1577, respectively. A decreasing trend in both MAE
and RMSE is observed, indicating that as the input images transition from original images to predicted
images, the forecasting accuracy of the model gradually declines. Table 9 summarizes the average MAE
and RMSE values for each fold of the YOLOv9-ConvLSTM, SegNet-ConvLSTM, and Unet-ConvLSTM
forecasting models.

The results in Table 9 indicate that the proposed YOLOv9-ConvLSTM model achieves the lowest MAE
and RMSE values across all three scenarios. Specifically, the MAE values are 1.5678, 1.4493, and 1.3348, while
the RMSE values are 1.6135, 1.5340, and 1.4113, respectively. This demonstrates that the YOLOv9-ConvLSTM
model provides more accurate forecasting results compared to the benchmark models.

Table 9: Summarized results of evaluation metrics for forecasting models

MAE RMSE

Input 3 images 4 images 5 images 3 images 4 images 5 images
YOLOv9_ConvLSTM 1.5678 1.4493 1.3348 1.6135 1.5340 1.4113
SegNet_ConvLSTM 1.7106 1.5522 1.3728 1.7663 1.6636 1.5066
UNet_ConvLSTM 2.8482 2.5873 2.0646 2.8849 2.6595 2.1577

Note: Bold values are the best value in each column
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3.3 ANOVA Analysis
A two-way ANOVA with a significance level of α = 0.05 is utilized to evaluate our proposed

approach (YOLOv9_ConvLSTM) across multiple scenarios and compare it to other related methods
(SegNet_ConvLSTM and Unet_ConvLSTM). The two null hypotheses H0 and H1 are stated below:

- H0: There are no statistically significant differences in performance between the groups of models
- H1: There are no statistically significant differences in performance between the groups of scenarios

ANOVA analyses are performed regarding the values of MAE and RMSE measurements. The analysis
results in MAE are shown in Table 10.

Table 10: ANOVA analysis in term of MAE values

Source of variation SS df MS F p-value F crit
Models 2.0219 2 1.0109 43.6405 0.0019 6.9443

Scenarios 0.3101 2 0.1550 6.6922 0.0529 6.9443
Error 0.0927 4 0.0232
Total 2.4246 8

As in Table 10, by the groups of models, the p-value is less than the significance level (0.0019 vs. 0.05).
It means that hypothesis H0 is rejected. In other words, the performance in groups of models is significantly
different via MAE. By the groups of scenarios, the p-value is greater than alpha (0.0529 vs. 0.05). Thus, the
hypothesis H1 is accepted. This indicates that the mean of MAE in various scenarios is not significantly
different. To identify models being different, the post-hoc tests need to be performed by the pairs of models.
The analysis results in RMSE are shown in Table 11 below.

Table 11: ANOVA analysis in term of RMSE values

Source of variation SS df MS F p-value F crit
Models 1.9635 2 0.9818 44.2813 0.0019 6.9443

Scenarios 0.2434 2 0.1217 5.4898 0.0713 6.9443
Error 0.0887 4 0.0222
Total 2.2956 8

The results in Table 11 are same as those in Table 10. It means that H0 is rejected and H1 is accepted in
terms of RMSE. Moreover, the small error values in two of these tables (0.0232 and 0.0222) show that random
fluctuations are minimal and the models have explained the variance in the data well.

Post-hoc tests among three pairs of models use Bonferroni correction calculated by α/3= 0.05/3= 0.0167.
The results are summarized in Table 12.

Table 12: ANOVA evaluation summary for models with MAE and RMSE indices

Pairs of models MAE RMSE

t-test Sig. Different? t-test Sig. Different?
YOLOv9_ConvLSTM vs. SegNet_ConvLSTM 0.4696 NO 0.2587 NO
YOLOv9_ConvLSTM vs. UNet_ConvLSTM 0.0119 YES 0.0093 YES
SegNet_ConvLSTM vs. UNet_ConvLSTM 0.0188 NO 0.0155 YES
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Based on the results in Table 12, YOLOv9_ConvLSTM and UNet_ConvLSTM have significant
differences via MAE. Regarding RMSE, there are differences between YOLOv9_ConvLSTM and Seg-
Net_ConvLSTM with UNet_ConvLSTM. In this measure, YOLOv9_ConvLSTM and SegNet_ConvLSTM
results are of the same performance.

3.4 Discussions
The proposed method effectively integrates deep learning and remote sensing techniques for reservoir

water level forecasting using Sentinel-2 satellite imagery. Specifically, the model employs the YOLOv9 net-
work for reservoir segmentation, ConvLSTM to model spatiotemporal relationships, and linear interpolation
to estimate the forecasted water level.

To evaluate the performance of the proposed YOLOv9_ConvLSTM model, this study implemented
other advanced image segmentation methods, including SegNet and UNet, which were then integrated
with ConvLSTM to construct hybrid models SegNet_ConvLSTM and UNet_ConvLSTM for validation. The
experimental results, presented in Table 9, indicate that the YOLOv9_ConvLSTM model outperforms the
other approaches.

Additionally, as a baseline comparison, we also implemented a standalone ConvLSTM model on the
same dataset, with the comparative results detailed in Table 13. These findings demonstrate that incorporating
an image segmentation stage before forecasting the next frame using ConvLSTM significantly enhances
model performance, highlighting the critical role of combining spatial and temporal processing in image
forecasting tasks.

Table 13: Comparison table of the proposed method with other modern forecasting methods

MAE RMSE

Input 3 images 4 images 5 images 3 images 4 images 5 images
YOLOv9_ConvLSTM 1.5678 1.4493 1.3348 1.6135 1.5340 1.4113

ConvLSTM 12.4262 12.4883 12.6866 12.4303 12.4930 12.6889

Note: Bold values are the best value in each column

As shown in Table 13, the MAE and RMSE values of the proposed model exhibit a reduction of over 87%
compared to those of the original ConvLSTM model across all test scenarios, demonstrating the superior
effectiveness of the proposed approach.

A key advantage of this approach is leveraging free satellite imagery, optimizing costs, and enabling
broad applicability in water resource management, particularly in regions lacking in-situ measurement
systems. However, the model still has some certain limitations. Firstly, processing large-scale satellite image
datasets requires significant computational resources, posing challenges when scaling up forecasting across
multiple reservoirs or extending the prediction horizon. Secondly, the model’s accuracy may be affected by
environmental noise, particularly cloud cover, which degrades the quality of input images.

4 Conclusion
In this study, we focused on developing a unique approach for estimating reservoir water levels using

free Sentinel-2 satellite images. The primary contributions of this study include (i) introducing a process for
acquiring and labeling Sentinel 2 images of the An Khe reservoir region; (ii) proposing a hybrid model in
which YOLOv9 network is used to segment the reservoir area and generate masks for the labeled reservoir
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region from the satellite images, ConvLSTM network is applied to predict the next mask of the reservoir
region and linear interpolation is selected to estimate the forecasted water level; (iii) implementing the
proposed forecasting model and benchmarked it against SegNet_ConvLSTM and Unet_ConvLSTM models
to validate its performance. The results demonstrated that the proposed model achieved better accuracy.

However, the proposed model has some drawbacks, such as high computational time when deal-
ing with large input image datasets. For further research directions, the developing forecasting models
based on Sentinel 2 remote sensing data combined with operational reservoir data such as inflow and
rainfall will be considered. Moreover, utilizing optimization algorithms to fine-tune the parameters in the
YOLOv9_ConvLSTM model to improve the performance is also studied.

Future research should explore the usage of additional hydrological and meteorological data, such as
inflow, outflow, and precipitation, to enhance forecasting accuracy. Moreover, adopting advanced optimiza-
tion techniques, including hyperparameter tuning using Bayesian optimization or reinforcement learning,
could improve the performance of the YOLOv9_ConvLSTM model, reducing computational costs and
enhancing generalization capability.

Overall, this study demonstrates the potential of deep learning models combined with satellite imagery
for reservoir water level forecasting, offering a modern and more efficient alternative to traditional
hydrological models.
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14. Deo RC, Şahin M. An extreme learning machine model for the simulation of monthly mean streamflow water level
in eastern Queensland. Environ Monit Assess. 2016;188(2):90. doi:10.1007/s10661-016-5094-9.

15. Ul Islam S, Jan S, Waheed A, Mehmood G, Zareei M, Alanazi F. Land-cover classification and its impact on
Peshawar’s land surface temperature using remote sensing. Comput Mater Contin. 2022;70(2):4123–45. doi:10.
32604/cmc.2022.019226.

16. Song S, Zhang R, Hu M, Huang F. Fine-grained ship recognition based on visible and near-infrared multimodal
remote sensing images: dataset, methodology and evaluation. Comput Mater Contin. 2024;79(3):5243. doi:10.
32604/cmc.2024.050879.

17. Singh A, Vyas V. A review on remote sensing application in river ecosystem evaluation. Spatial Inf Res.
2022;30(6):759–72. doi:10.1007/s41324-022-00470-5.

18. Wang L, Tang Q, Li W, Wang X, Zhang H, Xu J, et al. Remote sensing image analysis and cyanobacterial bloom
prediction method based on ACL3D-Pix2Pix. Desalin Water Treat. 2023;297:138–59.

19. Avisse N, Tilmant A, Müller MF, Zhang H. Monitoring small reservoirs’ storage with satellite remote sensing in
inaccessible areas. Hydrol Earth Syst Sci. 2017;21(12):6445–59. doi:10.5194/hess-21-6445-2017.

20. Schumann G, Di Baldassarre G, Bates PD. The utility of spaceborne radar to render flood inundation maps based on
multialgorithm ensembles. IEEE Trans Geosci Remote Sens. 2009;47(8):2801–7. doi:10.1109/TGRS.2009.2017937.

21. Lan W, Yang T, Chen Q, Zhang S, Dong Y, Zhou H, et al. Multiview subspace clustering via low-rank symmetric
affinity graph. IEEE Trans Neural Netw Learn Syst. 2024;35(8):11382–95. doi:10.1109/TNNLS.2023.3260258.

22. Wieland M, Martinis S, Kiefl R, Gstaiger V. Semantic segmentation of water bodies in very high-resolution satellite
and aerial images. Remote Sens Environ. 2023;287:113452. doi:10.1016/j.rse.2023.113452.

23. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Medical
Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference; 2015 Oct
5–9; Munich, Germany. Cham, Switzerland: Springer International Publishing; 2015. p. 234–41. doi:10.1007/978-
3-319-24574-4_28.

24. Nie X, Duan M, Ding H, Hu B, Wong EK. Attention mask R-CNN for ship detection and segmentation from remote
sensing images. IEEE Access. 2020;8:9325–34.

25. Weng L, Xu Y, Xia M, Zhang Y, Liu J, Xu Y. Water areas segmentation from remote sensing images using a separable
residual SegNet network. ISPRS Int J Geo Inf. 2020;9(4):256. doi:10.3390/ijgi9040256.

https://doi.org/10.1007/s11269-006-9022-6
https://doi.org/10.5194/hess-10-1-2006
https://doi.org/10.1016/j.cageo.2009.09.014
https://doi.org/10.1016/j.cageo.2009.09.014
https://doi.org/10.1007/s11269-013-0382-4
https://doi.org/10.3390/w10111536
https://doi.org/10.3390/w13152011
https://doi.org/10.3390/w13152011
https://doi.org/10.1007/s11269-016-1480-x
https://doi.org/10.1007/s11269-016-1480-x
https://doi.org/10.1016/j.jhydrol.2022.128810
https://doi.org/10.1007/s10661-016-5094-9
https://doi.org/10.32604/cmc.2022.019226
https://doi.org/10.32604/cmc.2022.019226
https://doi.org/10.32604/cmc.2024.050879
https://doi.org/10.32604/cmc.2024.050879
https://doi.org/10.1007/s41324-022-00470-5
https://doi.org/10.5194/hess-21-6445-2017
https://doi.org/10.1109/TGRS.2009.2017937
https://doi.org/10.1109/TNNLS.2023.3260258
https://doi.org/10.1016/j.rse.2023.113452
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.3390/ijgi9040256


Comput Mater Contin. 2025;83(3) 4937

26. Aziz F, Saputri DUE. Efficient skin lesion detection using YOLOv9 network. MEDINFTech. 2024;2(1):11–5. doi:10.
37034/medinftech.v2i1.30.

27. Ahmad R, Yang B, Ettlin G, Berger A, Rodríguez-Bocca P. A machine-learning based ConvLSTM architecture for
NDVI forecasting. Int Trans Operational Res. 2023;30(4):2025–48. doi:10.1111/itor.12887.

28. Zheng L, Lu W, Zhou Q. Weather image-based short-term dense wind speed forecast with a ConvLSTM-LSTM
deep learning model. Build Environ. 2023;239(5):110446. doi:10.1016/j.buildenv.2023.110446.

29. Farooque G, Xiao L, Yang J, Sargano AB. Hyperspectral image classification via a novel spectral-spatial 3D
ConvLSTM-CNN. Remote Sens. 2021;13(21):4348. doi:10.3390/rs13214348.

30. Wang L, Li W, Wang X, Xu J, Zhao Z, Yu J, et al. Remote sensing image prediction of water environment based on
3D CNN and ConvLSTM. Geosci Remote Sens. 2022;5(1):28–39.

31. Ghorbanzadeh O, Rostamzadeh H, Blaschke T, Gholaminia K, Aryal J. A new GIS-based data mining technique
using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence
susceptibility mapping. Nat Hazards. 2018;94(2):497–517. doi:10.1007/s11069-018-3449-y.

32. Sawyer SF. Analysis of variance: the fundamental concepts. J Man Manip Ther. 2009;17(2):27E–38E. doi:10.1179/
jmt.2009.17.2.27E.

https://doi.org/10.37034/medinftech.v2i1.30
https://doi.org/10.37034/medinftech.v2i1.30
https://doi.org/10.1111/itor.12887
https://doi.org/10.1016/j.buildenv.2023.110446
https://doi.org/10.3390/rs13214348
https://doi.org/10.1007/s11069-018-3449-y
https://doi.org/10.1179/jmt.2009.17.2.27E
https://doi.org/10.1179/jmt.2009.17.2.27E

	A Hybrid Deep Learning Method for Forecasting Reservoir Water Level from Sentinel-2 Satellite Images
	1 Introduction
	2 Materials and Methods
	3 Results and Discussions
	4 Conclusion
	References


