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ABSTRACT: Efficient resource provisioning, allocation, and computation oftloading are critical to realizing low-
latency, scalable, and energy-efficient applications in cloud, fog, and edge computing. Despite its importance, integrating
Software Defined Networks (SDN) for enhancing resource orchestration, task scheduling, and traffic management
remains a relatively underexplored area with significant innovation potential. This paper provides a comprehensive
review of existing mechanisms, categorizing resource provisioning approaches into static, dynamic, and user-centric
models, while examining applications across domains such as IoT, healthcare, and autonomous systems. The survey
highlights challenges such as scalability, interoperability, and security in managing dynamic and heterogeneous
infrastructures. This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed
resources through advanced orchestration processes. Furthermore, proposes future directions, including AI-driven
optimization techniques and hybrid orchestration models. By addressing these emerging opportunities, this work serves
as a foundational reference for advancing resource management strategies in next-generation cloud, fog, and edge
computing ecosystems. This survey concludes that SDN-enabled computing environments find essential guidance in
addressing upcoming management opportunities.

KEYWORDS: Cloud computing; edge computing; fog computing; resource provisioning; resource allocation; compu-
tation oftloading; optimization techniques; software defined network

1 Introduction

Moving from cloud computing to edge computing and fog computing reflects an increasingly over-
arching requirement for decentralized, near real-time computing capabilities. Cloud computing, which
started with firms such as Amazon and Google in the early 2000s [1], revolutionized the way enterprises
and people managed their access to computing resources. Centralization of data management in remote
data centers enabled scalability, cost efficiency, and on-demand usage of resources. The entry of 5G has
significantly leveled up cloud computing and provided a much more powerful, flexible, and responsive
service. The requirement for ultra-low latency and high-speed support for real-time applications, such
as Augmented Reality (AR), Virtual Reality (VR), and cloud gaming, has emerged as a constraint. As
highlighted in [2], the gaming market is rapidly evolving with increasing reliance on cloud-based services
for real-time responsiveness. Scalable connectivity brings accessibility to more devices to connect to cloud
services, thus further expanding cloud-based capabilities. While cloud computing offers centralized and
scalable resources for data processing, rapid data transfer, and reduced latency form feedback loops that drive
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cloud computing into a new era of low-latency services scalable enough for next-generation applications
and devices.

Fog computing [3] evolved as a distributed approach to cloud computing, positioning computational
resources near the network edge and end-users. Minimizes latency and network congestion, making it ideal
for real-time video analytics, autonomous systems, and industrial automation. Fog computing integrates
cloud scalability with edge processing benefits, ensuring low latency and reduced bandwidth usage. Building
on fog computing, edge computing further decentralizes resources to edge devices like smartphones and
IoT sensors. This method has requirements for latency and bandwidth consumption, thus exploiting real-
time data processing and local decision-making. Edge computing [4,5] helps to diminish the reliance on
centralized cloud infrastructure to keep pace with the great need for real-time applications, data privacy, and
security owing to the multiplication of IoT devices. The integration of cloud, fog, and edge computing into a
multi-layered architecture enhances performance, scalability, reliability, and security while reducing network
traffic. Towards low latency, high throughput, and flexible resource allocation, reference [6] demonstrates
distributing computing resources across layers with improved user experience and system resilience. SDN [7]
plays a critical role in resource management in cloud, fog, and edge computing. SDN [8] has decoupled the
data and control planes [9] for scalability and security, and also offers centralized management, orchestration,
and network virtualization. In edge computing, SDN [10] facilitates real-time device control and automation
to allow for efficient integration and operation of an IoT network.

Meanwhile, mobile applications are significantly improved with the introduction of 5G technology
which serves as a cornerstone for the advancement of edge and fog computing, offering unprecedented
capabilities in terms of high bandwidth, low latency, and massive device connectivity. The platform ensures
real-time processing capabilities at distributed locations for time-critical applications. The combination of
5G’s high bandwidth power enables smooth transmission of high-definition multimedia content across its
ability. This maintains simultaneous connections among millions of devices which promotes the growth
of IoT technology. Mobile applications across gaming, healthcare, and smart cities achieve better service
reliability and premium user experiences through the combination of reduced latency and enhanced 5G
connectivity. Through its innovations, 5G serves as a foundational element that promotes edge and fog
computing programs enabling the replacement of centralized cloud computing limitations. This paper builds
on these advancements by exploring how resource management strategies can be further leveraged to
optimize performance and scalability in dynamic environments.

Edge and fog computing has become essential for handling IoT and data-intensive applications by
bringing processing closer to data sources. Performance can be improved by task offloading [11] to cloud,
fog, or edge layers, but such an approach also introduces challenges like resource provisioning, system
management, and security [12]. In decentralized environments, efficient resource allocation [13,14] needs
to be addressed for scalability, energy efficiency, heterogeneity, and mobility, and to be reliable enough
for applications in smart cities and AR. Moreover, distributed resources make managing, observing,
orchestrating, and enforcing security more complex.

The study of cloud, fog, and edge computing is motivated by these paradigms’ ability to transform
data processing for IoT and real-time applications. Each paradigm has specific resource provisioning
challenges: cloud computing is inherently scalable, whereas fog and edge environments require low latency
processing. It is also motivated by the demand for efficient computation offloading and dynamic network
management using SDN for resource optimality. This survey covers the paradigms of resource provisioning,
computation offloading, and integration with SDN, creating trends, research gaps, and future directions for
multi-layered systems.
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This paper explores resource provisioning, allocation, and computation offloading as key factors in
enhancing performance, scalability, and resource efficiency in edge computing environments. Resource
provisioning [15] involves estimating and allocating needed resources to support maximum estimated
resource consumption; whereas resource allocation attempts to allocate these resources like Central Process-
ing Unit (CPU), memory, bandwidth, or storage between users, such that the edge servers retain optimal
load distribution for Quality of Service (QoS) constraint. They enable the reduction of latency, large-scale
deployment, reliability, and QoS through efficient resource management and smart response to dynamic
requirements. This paper presents a systematic review of techniques and mechanisms in cloud, fog, and edge
computing, analyzing their advantages and identifying research gaps in existing literature. The systematic
review, conducted following the PRISMA 2020 guidelines, is illustrated in Fig. 1a, while the search process is
carried out according to the research questions shown in Fig. 1b. Additionally, the key contributions of this
study are summarized in Fig. 1c.
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Figure 1: Identification of studies: (a) PRISMA_2020 Flow diagram (b) Research questions (c) Major contributions of
this work

This paper is organized to comprehensively review research on resource provisioning in cloud, edge,
and fog computing. Section 2 introduces the architecture of cloud, edge, and fog computing; this section
serves as a foundation. Resource provisioning is discussed in Section 3 with its different types and the
research mechanisms used. Computational offloading strategies are discussed in Section 4. Section 5 details
resource allocation techniques, followed by efficient resource provisioning in edge computing based on time
synchronization in Section 6, while Section 7 presents the framework of the system model. Section 8 dis-
cusses evaluation metrics, followed by the simulators used for testing and validation in Section 9; Section 10
demonstrates the limitations of current methods for resource provisioning and provides useful insights into
the challenges posed by resource provisioning. The paper concludes by providing the potential advancements
and research directions in this domain.

2 Architecture

In the context of cloud, fog, and edge computing with SDN and smart devices, the integrated
architecture defines a layered framework based on data processing, resource allocation, and real-time
network control in diverse applications. This architecture, ensures efficient resource utilization, low latency
processing, and agile network configuration so that scalable and responsive services can be offered across
diverse applications. Fig. 2a presents the structure of this layered architecture:
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« Cloud Layer: This layer provides centralized computational resources, storage, and analytics catering to
large datasets that require complex analysis. While centralized, the cloud layer may lack the low latency
needed for modern applications.

o Fog Layer: This layer, positioned between the cloud and the edge, brings processing closer to users
through network gateways or local servers. Pre-processing, filtering, and aggregation of data is done
in the fog nodes to minimize latency and lower cloud traffic, which in turn facilitates regionalized
real-time applications.

o Edge Layer: This layer processes data at its sources, such as IoT sensors, smart devices, or inside the
autonomous vehicle or smart healthcare system, thereby delivering an ultra-low latency experience for
the critical application. It is also useful for reducing the bandwidth costs on expensive network segments,
by small incremental data transfers.

» SDN: By separating network control from hardware, SDN decouples the management of the net-
work from that of the corresponding hardware, which leads to centralized control, dynamic resource
allocation, and optimized data flow across the Cloud, Fog, and Edge layers. This approach provides
scalability, flexibility, and load balancing, which are key issues for adaptive resource provisioning in
distributed systems.

o Smart Devices Layer: IoT sensors and mobile devices that generate data and facilitate localized process-
ing together constitute the outermost layer. However, most of these devices tend to offload computational
tasks to edge, fog, or cloud resources, especially in applications that consume higher resources.

Disaster management

Real-time analysis Healthcare

Industrial ioT
MEC

Intelligent Transport
System

loT
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Figure 2: (a) Architecture of cloud, fog and edge computing. (b) Applications across cloud, fog, and edge computing

3 Resource Provisioning

Resource provisioning [16] refers to the strategic allocation of essential resources such as CPU, memory;,
storage, and network bandwidth to fulfill user requirements. This involves estimating resources, deploying
them, and adjusting capacity in response to changing workloads, ensuring that the infrastructure is prepared
to meet anticipated demands. In the realm of cloud computing, resource provisioning consolidates resources
within data centers, facilitating flexible scaling, cost efficiency, and high availability. At the edge, it places
resources closer to users, helping to minimize latency, and supports dynamic applications such as IoT
and video streaming. Fog computing [17] takes a distributed approach, spreading resources across local
and intermediary devices to balance the load between the cloud and edge layers. This model enables
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processing near the data source, alleviates network congestion, and improves responsiveness. Effective
resource provisioning is crucial for maintaining scalable, efficient, and reliable operations across cloud, edge,
and fog environments. Fig. 2b showcases various applications, together addressing diverse requirements by
optimizing performance. Fig. 3a—c showcases the challenges faced in the computing paradigm, the need for
resource provisioning to enhance the performance, decrease latency and the types of resource provisioning
available in the literature.
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Figure 3: Resource provisioning: (a) Challenges of Edge/Fog computing; (b) Need for resource provisioning; (c) types
of resource provisioning

In the cloud computing framework [18], resource provisioning is central to helping the cloud providers
scale their resources with high load while reducing costs and maintaining service continuity. It enables edge
and fog computing [19], to reduce latency, minimize network congestion, and optimize resource utilization
for time-critical applications [20] like IoT, real-time analytics, and AR/VR, ensuring responsive and reliable
services. The investigations recognize the multiplicity of actual environments due to different infrastructure
resources as well as shifting service demands and unexpected device failures.

Effective resource provisioning in cloud, edge, and fog computing requires tailored strategies for
optimizing resource allocation across these architectures such as dynamic, demand-based provisioning in
cloud computing [21] using virtualization and auto-scaling tools like Kubernetes and containers. Edge and
fog computing have been used to optimize resource utilization by minimizing proximity-based provisioning,
distributed frameworks, and techniques like load balancing, context-aware allocation, and scheduling to
decrease latency and increase efficiency. Machine learning [22] is used to predict future demands, while SDN
dynamically adjusts network configurations to minimize resource inefficiencies, increase responsiveness, and
lower costs, while meeting the architectural specific needs.

In [23], key challenges in fog computing, including dynamic workloads, device heterogeneity, latency,
and security are presented, as well as emerging trends of machine learning, blockchain, federated learning,
and IoT-5G integration. The study in [24] examines dynamic resource provisioning for Cyber-Physical
Systems (CPS) within cloud, fog, and edge environments to enable real-time data processing with minimal
latency. There have also been works that try to address IoT device provisioning to reduce cloud dependence
and latency, for instance, reference [25] explored IoT device provisioning through edge gateways to provide
services for the IoT extension agents on the Microsoft Azure IoT and IBM IoT platforms. The study in [15]
examines resource allocation in multi-agent cloud robotics, focusing on challenges in latency-sensitive and
data-intensive tasks across Industry 4.0, agriculture, healthcare, and disaster management. It reviews existing
issues, categorizes techniques such as offloading and scheduling, and highlights research gaps for future
exploration. To meet IoT or real-time application edge computing challenges, reference [14] studied resource



5042 Comput Mater Contin. 2025;83(3)

scheduling optimization, task offloading, and cloud edge coordination, as well as self-adaptiveness, to suggest
Artificial Intelligence (AI) driven approaches to solving dynamic environments. More studies must explore
the scalability, robustness, and efficiency of these algorithms as they apply to real-world implementation
within operational settings.

3.1 Types of Resource Provisioning

In computing paradigms, resource provisioning mechanisms are categorized into user-centric, dynamic,
and static models, as illustrated in Fig. 3c. User-centric provisioning provides resources such as virtual
machines on a per-user request basis with the risk of having high costs and under-utilization [26]. Dynamic
provisioning decides to accommodate resources according to unexpected workloads, thus continuous
monitoring is necessary to prevent under or over-provisioning inefficiency [27]. On the other hand, static
provisioning reserves predefined resources for urgent tasks, but can result in wastage when not in use [28].

Static provisioning can be used for applications with stable demands such as in low loads environments,
e.g., smart buildings, and homes. Users send tasks or IoT data to a provisioning agent, which, using
information from the resource information center, can allocate appropriate resources. Categories include:
Application-based Provisioning where resources are allocated to respective services based on the SLAs,
Fixed Resource Allocation wherein resources are assigned without workload adjustment, Time Based
Provisioning that allocates resources to peak demand periods, Quota Provisioning to limit resource usage
to prevent utilization, Reservation Provisioning for ensuring availability during peak usage via reservations
and Load Based Provisioning wherein resources are statically allocated based on predicted trends as opposed
to their real-time fluctuations. Recent research mentioned in Table I on static provisioning focuses on
application-based or load-based approaches.

Table 1: Papers based on static resource provisioning

Paper Problem addressed Layers Metrics
[29] Resource constraints of mobile devices and high Cloud Response time, VM synthesis
latency of cloud computing for time, and cloudlet setup time
resource-intensive applications
[28] To support mobile edge provisioning, Cloud, Edge, Latency, VM utilization,
particularly regarding competitive resource Mobile users allocation time, and
bidding and user mobility provisioning cost
[30]  Resolves to optimize resource allocation and Cloud, Fog Latency, execution cost,
workload balancing in fog-cloud networks with energy consumption, and
QoS compliance execution time
[31] Framework to manage edge nodes efficiently by ~ Cloud, Edge, Latency
incorporating provisioning and auto-scaling Mobile users
mechanisms
[32]  Presents the use of edge and fog computing in Cloud, Fog, Energy consumed,
IoT for supporting intelligent, interoperable Edge, Things integration and
services interoperability

Dynamic provisioning guarantees real-time resource allocation to satisfy the current workload demand
allowing for higher responsiveness than static methods [33]. Provisioning methods include demand-driven
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methods, which involve predictive models of resources along with reactive prediction of sudden spikes,
and policies-based provisioning which allocates the resources based on certain rules. Provisioning is done
via market mechanisms (auction-based) and game theoretic models (incentivize efficient distribution).
Adaptive allocation is provided by machine learning through predictive analytics, reinforcement learning,
and deep learning. Energy-aware provisioning is used to minimize the resources at non-demand times to
minimize energy usage, and QoS-aware provisioning satisfies metrics such as latency and throughput for
SLA. Application-aware provisioning is based on specific contexts (user behavior or location) to support the
IoT and smart cities, while content-aware provisioning responds to requirements such as media storage or Al
processing. Provisioning in a geographically aware manner mitigates latency by locating the resources closer
to users for critical applications like autonomous vehicles and remote healthcare. Together these strategies
enhance resource efficiency, scalability, and performance. To address the problem of edge node placement,
a framework, called EdgeON [34], is proposed. A review of Al techniques for resource management
optimization in fog computing using task scheduling, resource allocation, load balancing, and energy
efficiency while considering scalability, security, and real-world validation was conducted in [35]. The goal
is to minimize the deployment and operation costs to maximize the utilization of the network resources.
Dynamic resource provisioning allows systems to adapt to the changing workloads by allocating, and
deallocating resources dynamically, maximizing cost-effectiveness, and providing better end-user experience

as discussed in Table 2.

Table 2: Papers based on dynamic resource provisioning

Paper Problem addressed Algorithms Type Layers Metrics
[36] Optimizing application Integer Linear Application-based Cloud-Fog Network
placement in fog computing Programming provisioning Relaxation Ratio,
system Resource Gain, and
Processing Time
Reduction Ratio
[37] To minimize fog computing Bipartite graph Geographically Cloud-Fog Cost minimization
resource provisioning costs matching along with aware (replication and
for multiple users optimal greedy and Provisioning transmission cost)
approximation
algorithm are utilized
[38] Reduces data transfer delay Integrates four data Context-aware Edge Task turnaround
while still allowing efficient placement algorithms provisioning time, queuing time,
task execution for and three task execution time, and
data-intensive applications scheduling strategies data transfer
overhead
[39] To maximize service provider ~ 0-1 knapsack problem QoS-Aware Cloud-Fog Profit and
profits while ensuring tasks and Ant Colony Provisioning proportion of tasks
meet their deadlines Optimization that meet deadlines
algorithm
[40] Resource allocation and task Task Classification Machine MEC' -rail Task completion
offloading in MEC' systems Twin Delayed Deep Learning-Based, devices rate and task
for urban rail transit system is ~ Deterministic Policy Application- processing delay
challenging Gradient algorithm Aware,
Geographically
Aware
[41] Balancing energy efficiency Prediction-based Demand-Driven Cloud-Edge- Energy
and performance in fog dynamic resource and Energy-Aware user consumption and
computing for allocation algorithm Provisioning equipment task delay
latency-sensitive applications using the ARIMA?
is challenging model

(Continued)
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Table 2 (continued)

Paper Problem addressed Algorithms Type Layers Metrics
[42] Resource constraints can Queueing theory and QoS-Aware, Cloud-Edge  Response time and
create edge servers with optimization Demand-Driven resource costs
higher latencies than cloud techniques provisioning
servers, a phenomenon we
refer to as edge performance
inversion
[43] Focuses on application of Actor-critic Machine Edge Latency,
dynamic resource reinforcement Learning, computation cost,
overbooking and container learning approach Demand-Driven, and container
scheduling to maximize QoS, and eviction cost
utilization Geographically
Aware
provisioning

Note: ' MEC: Multi-Access Edge Computing, >ARIMA: Autoregressive Integrated Moving Average.

Table 3: Papers based on user-centric resource provisioning

Paper Problem addressed Algorithms Type Layers Metrics
[44] Optimizing resource Federated QoS-Aware, Cloud- Energy
management in MEC Learning-based Deep Application- MEC-IoT consumption,
environments to support IoT Deterministic Policy Aware devices convergence
applications in smart cities Gradient algorithm and provisioning efficiency, and
Lyapunov optimization reward value
[45] Transition from a network Machine learning Context-aware Cloud- Round Trip Time
function-centric to a models to dynamically provisioning Edge-User
user-centric architecture in optimize the placement
6G networks of network functions
[46] Efficient resource allocation Reviewed 19 algorithms Demand-Driven  Cloud-Fog- Latency, energy
in edge-computing-enabled on resource allocation provisioning Edge consumption,
environments for the strategies, for offloading, throughput, and
metaverse caching, and distributed QoE
resource scheduling
[22] Resource management and ML models like DRL, SLA-Driven, Cloud-Fog Latency, cost,
task scheduling to balance Q-learning, and hybrid Context-Aware energy
QoS and energy efficiencies methods (e.g., PSO with Provisioning consumption,
SVR) scalability, and QoS
[47] Dynamically allocating Proximal and Context-Aware Edge (MEC  Throughput, total
resources and optimizing AP multi-agent proximal Provisioning server)-User delay and
clusters based on user needs policy optimization execution time
and network conditions
[48] Resource allocation in Digital Twin based SLA-Driven and Edge- Resource
edge-assisted Mobile approach, Markov Context-Aware Mobile utilization, delay,
Augmented Reality in 6G decision process, provisioning Users traffic prediction
networks machine learning accuracy
techniques

User-centric provisioning adapts resource allocation to user needs such as QoS, latency, and cost,
the details of which are presented in Table 3. QoS Based Provisioning guarantees performance metrics
such as latency and throughput, crucial for real-time application examples including AR/VR gaming,
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and video conferencing, by allocating resources closer to end users. Provisions are based on the Service-
Level Agreement (SLA), and resources are based on predefined SLA metrics such as uptime and response
time. Cost-aware provisioning tries to minimize costs, which is suitable for pay-as-you-go models in
cloud computing. Provisioning based on demand-constrained usage with IoT and smart cities has proven
advantageous due to the dynamic environment. Mobile gaming applications like reducing latency exhibit the
need for Context-Aware Provisioning to adjust resources based on user location.

3.2 Mechanisms for Resource Provisioning

This section categorizes and evaluates resource-provisioning approaches in edge, fog, or cloud systems
while focusing on modern techniques that optimize resource availability and utilization. Based on the
state-of-the-art research work, resource provisioning mechanisms are categorized as shown in Fig. 4. The
papers focusing on resource management mechanisms are summarized in Table 4 based on problems solved,
algorithms used, evaluation metrics, and potential paths for future work.

Resource Provisioning

l Mechanism
Model-based Prediction Gime Auction
theoreti based
approach based oretic approach
Mcdel  approach  Container  approach Blockchain 2PP
based based based
with SDN approach approach

Figure 4: Categorization of resource provisioning mechanisms

3.2.1 Model-Based Approach

The following studies discuss advancements and challenges in resource provisioning in cloud, edge, and
fog computing paradigms. Ma et al. [49] minimize cost under QoS in a cloud-assisted Multi-Access Edge
Computing (MEC) framework but does not focus on real-time load balancing. The work in [50] minimizes
deployment costs and workload allocation, but does not tackle dynamic scaling. Ascigil et al. [51] describe a
distributed resource management system for Function as a Service (FaaS) edge cloud network, which aims to
reduce latency without any dynamic workloads. Dynamic IoT environments are addressed by the Dynamic
Multi Resource Management algorithm introduced in [52]. Zhou et al. [53] present a fixed-cost resource
provisioning framework by Lyapunov optimization that is proven to be feasible but emphasizes issues with
fixed contracts and cooperation. Resource adaptability is improved in [54], particularly through the use of
the delay-aware Lyapunov optimization technique. Latency and resource consumption issues are addressed
in a heuristic algorithm developed in [55] for scalability to a wider range of bandwidths and models.

To effectively optimize resource allocation and minimize energy consumption, reference [56] proposes
a new distributed MEC architecture that integrates, the cloud, metro fog node, and the vehicle seamlessly.
The results show that once the processing demands of a workload remain unchanged, traffic volume is a more
important factor in power consumption. reference [57] addresses latency optimization through tabu search
for heterogeneous IoT environment. In a UAV network environment, reference [58] suggests an energy-
efficient trading mechanism relying on bilateral negotiation and convex optimization respectively. Unlike
others [59,60] that focus on mobility-aware Virtual Network Function (VNF) placement in a multi-user
MEC environment, the resource and security challenge is formulated as an optimization problem and its
solution is formulated to achieve fairness in VNF placement from an economic perspective. Resource sharing
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complexities impose difficulties for the VNF reliability optimization using Integer Linear Programming (ILP)
and dynamic programming in [61].

Chang et al. [62] propose additional work on their dynamic scenarios, and the resources are balanced
based on CPU frequency and energy efficiency. Realizing the reliability and ultra-low latency properties in
MEC, Toka et al. in [63] use a heuristic algorithm to solve it, but ignore the issues of multi-node failures.

Table 4: Papers based on resource provisioning

Type Paper Problem addressed Algorithms Metrics Future scope
Model- [55] In MEC, elastic service Greedy and Heuristic Data transmission ~ Context-aware optimization for
based provisioning, reduces latency algorithm time, network better provisioning
approach and resource usage resource
consumption
[61]  Reliability-aware VNF service Approximation algorithm, Network Real-time optimization for VNF
provisioning in MEC ILP, dynamic throughput,service provisioning
programming blocking probability,
computational cost
Prediction-  [64] Resource provisioning for ~ Fuzzy C-Means Algorithm Accuracy, user Extend the model for
based CPS Systems in for clustering and FPA for  satisfaction, and heterogeneous CPSS, explore
model cloud-fog-edge computing optimization resource utilization real-time optimization, and
mobility issues
[65] Inefficient resource Double Q-learning Learning rate, Extend to cloud, cluster
provisioning under uncertain combined with execution time, computing, and integrate deep
fog computing conditions State-Action-Reward to accuracy, and learning
reduce overestimation resource utilization
errors rate
Container-  [19] Resource provisioning for Lyapunov optimization ~ Latency, CPU usage, Scalability, and real-time
based latency-sensitive applications for dynamic resource storage, memory adaptability in large
model in edge computing allocation and consumption, queue deployments
management. Docker size
containers for
orchestration
[66] Dynamic resource Container scheduling, ~ Latency, throughput, =~ Real-time adaptability across
provisioning for resource allocation resource utilization,  large-scale edge deployments
containerized edge computing heuristics, machine container startup
learning models time, energy
efficiency
Game [67] Joint pricing and resource Game Theory, Revenue, latency, ~ Heterogeneity, energy efficiency
theoretic provisioning in MEC Optimization Techniques user satisfaction
[68] Resource provisioning for Stochastic traffic analysis ~ Provisioning cost, Further testing on different
vehicle fleets in MEC, with a two-phase QoS, service mobility patterns
balancing QoS algorithm bracketing, ~ blocking probability,
binary search stability
Blockchain-  [69] Resource allocation and Stackelberg game model Revenue, resource Multi-server coordination,
based pricing for mobile blockchain with iterative utilization, task  scalability, and machine learning
approach in cloud-edge environments greedy-and-search delay, optimization

[70]

approach

Examines how BIFL!
improves data privacy,
scalability, and efficiency for
ToT healthcare between
distributed systems

learning

Surveys BIFL! approaches,
which combine federated

communication cost,

user satisfaction.

Lightweight blockchain
frameworks and advanced
federated learning tools for

decentralized IoT healthcare
devices

Note: ! BIFL: Blockchain Integrated Federated Learning.

As a limitation, reference [71] demonstrates dynamic provisioning for IoT services via fog computing
with Raspberry Pi devices. A low latency resource provisioning system for smart cities is presented in [72],
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though real-world scalability is unexamined. Ma et al. [73] provide heuristic and ILP-based algorithms to
optimize resource trade-offs for VNFs in MEC, but the solutions are restricted to dynamic environments
and pricing policies.

3.2.2 Model-Based Approach with SDN

The studies highlight the advancements and challenges in dynamic resource provisioning across SDN,
edge, and cloud environments. Consequently, according to [74], workflow scheduling in SDN-enabled edge
computing is formulated as a multi-objective optimization problem, where the Nondominated Sorting
Genetic Algorithm (NSGA)-III performance is achieved along with task assignment strategies such as First
Fit and Worst Fit. Qu et al. [75] tackle resilient service provisioning in MEC using a max-min optimization
approach and two-stage greedy algorithms, thereby achieving improved utility and resource allocation
efficiency. In an SDN-based IoT application, reference [76] presented a Controlled Service Scheduling
Scheme (CS3) using predictive power management and deep recurrent machine learning for efficiency in
terms of power and latency and its applicability to the real world.

An SDN and NFV orchestrated framework for the Industrial Internet of Things (IIoT) is proposed
in [77], which increases scalability, resource utilization, and latency with the caveat of missing out of
security and dynamic adaptation to load dynamics. Working at the architectural level, Wang et al. [78]
summarize the challenges in integrating cloud, edge, and fog for connected vehicles, focusing on latency-
sensitive applications like autonomous driving. In real-time IoT applications, reference [79] proposes hybrid
Reinforcement Learning (RL) and Deep RL (DRL) approaches for large-scale dynamic networks and explores
such RL and DRL techniques for fog computing to work practically for task scheduling. In a distributed
serverless cloud-to-thing model for 5G/6G networks, reference [80] uses SDN and Named Data Networking
(NDN) to dynamically deploy WebAssembly modules across devices such as drones and satellites, and NS3
simulations validate low latency and scalability.

3.2.3 Prediction-Based Approach

The following studies showcase recent progress in dynamic resource provisioning over edge, fog,
and cloud environments addressing predictive techniques. Deep reinforcement learning-based resource
allocation and task offloading for edge nodes are used in [81]. Similar to the work of [82], deep reinforcement
learning is used to handle time-varying workloads in fog networks for resource allocation for IoT appli-
cations. The work of [24] builds cloud, fog, and edge computing for CPS combined with Dynamic Social
Structure of Things (DSSoT), privacy computing, and trust management to handle data problems. Porkodi
et al. [64] present Fuzzy C-Means with Flower Pollination Algorithm (FCM-FPA), a resource provisioning
and clustering algorithm in highly dynamic cyber-physical-social systems environment.

A reinforcement learning model for mobile edge networks in [83] addresses the real-time dynamic
resource provisioning challenge. Shezi et al. [84] present a comprehensive resource allocation strategy
for 5G/6G wireless networks and the simulated results show large energy savings. Adaptive demand and
topology-aware resource provisioning protocol, a demand-aware resource provisioning protocol with real-
time elasticity and allocation optimization, is presented by [85] using deep reinforcement learning. The
scalability and performance of traditional approaches are outperformed by the double state temporal
difference learning framework for fog computing as presented in [65].

To enhance the efficiency and stability of IoT task provisioning in federated edge computing, Baghban
et al. propose [86] a DRL-based Dispatcher Module, running in batch with an Actor-Critic algorithm.
Gradient descent and cluster-based provisioning for cooperative systems are proposed by Alsurdeh et al. [87]
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for a hybrid workflow scheduling system in edge cloud environments for latency-sensitive tasks. Monte
Carlo simulations in Liwang et al. [88] indicate that an overbooking-enabled trading mechanism maximizes
task completion rates and energy efficiency at the expense of increased resource risk. Huang et al. [89]
propose a profit maximizing edge computing architecture based on cloudlets using Benders decomposition
for offline scenarios and a mixed integer programming problem. In MEC, reference [90] employs a risk-
based optimization approach incorporating stochastic programming and Sample Average Approximation
(SAA) to optimize communication costs as well as server overload.

3.2.4 Container-Based Approach

Hu et al. [66] propose an efficient containerized edge computing (CEC) framework that addresses the
need for efficient resource pre-provisioning and the prediction of the latency for container startups to enable
efficient resource utilization while minimizing container start times. ElasticFog [91] describes a dynamic
resource allocation algorithm that maintains dynamic allocation to resources according to real-time resource
usage monitoring and allocation. Santos et al. [92] combine theoretical fog computing resource provisioning
concepts with actual applications in IoT and smart city services, pushing for more efficient allocation under
dynamic demands. The resource allocation techniques for edge devices in dynamic environments, including
reducing latency, increasing performance, and enhancing utilization, are studied in [93]. Zhu et al. [94]
present a Cyber-Physical-Human System (CPHS), where cross-layer hybrid resources are combined with
orchestration tools and scheduling mechanisms to address complex CPHS scheduling problems.

3.2.5 Game Theoretic Approach

Stackelberg game model for resource provisioning and pricing in delay-aware MEC environments
is presented in [67]. Zakarya et al. [95] introduces epcAware, a noncooperative game model for the
management of resources in MECs, to achieve energy efficiency and cost reduction with no performance
loss. Liu et al. [96] propose a pricing mechanism for allocating limited MEC resources according to smart
mobile devices budget to maximize resource utilization, reduce latency, and maximize provider profits. QoS-
guaranteed resource provisioning for vehicle fleets is addressed in [68] using a stochastic traffic model and
a two-phase algorithm (bracketing and binary search), validated on real-world taxi datasets by achieving
minimum costs.

3.2.6 Blockchain-Based Approach

Blockchain enables trusted, decentralized resource provisioning and task management in device-to-
device (D2D) edge computing for the gap in efficient task allocation and trust. Sharma et al. [97] combine
Proof of Reputation (PoR) with a CDB-based resource market auction algorithm in D2D ECN settings. Fan
et al. [69] adopt a Stackelberg resource allocation and pricing strategy for mobile blockchain services based
on an iterative greedy-and-search method. Using smart contracts, reference [98] suggest a 5G architecture
incorporating network slicing, blockchain as well as MEC to support trust and the correct resource allocation
of autonomous systems. Rajagopal et al. [70] investigate blockchain and federated learning (BIFL) for IoT-
based healthcare data handling among edge, fog, and cloud systems, and the key issues of addressing
scalability, privacy, and communication overhead; and propose lightweight blockchain frameworks and
learning algorithms to support future healthcare applications.
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3.2.7 Auction-Based Approach

Dynamic resource sharing among the cloudlets is proposed through an incentive-based auction
scheme to provide efficient edge computing provisioning in [99], ILP, and a greedy algorithm are used to
distribute tasks efficiently and share resources. In MEC, an incentive mechanism [100] enables edge clouds
to participate in a profit-maximizing multi-round auction to provide resources under the conditions of
fairness and dynamism resource assignments. Reverse auctioning is proposed in [101], where users bid for
resources aiming for dynamic allocation in a way that achieves fairness and cost efficiency for applications
like e-commerce and data analytics, followed by future extensions of real-time bidding and hybrid cloud
integration. To address dynamic cloud provisioning through online auction frameworks, reference [102]
developed primal-dual algorithms for VM allocation that optimize social welfare while achieving truthful
bidding, and demonstrate the scalability gap in real time of a Software as a Service (SaaS) platform. Auction-
based mechanisms for cloud and edge computing have been reviewed by [103] with regards to categories such
as game theoretic and machine learning augmented auctions, suggesting the lack of real-time adaptability,
proposing blockchain-integrated and federated learning solutions to overcome these shortcomings. The
auction mechanisms for the resource allocation in [104] suggest the public blockchain networks, that is,
borrowing from the truthful bidding and utility maximization while proposing predictive bidding, and
hybrid cloud-fog integration for a better rent. Liu et al. [96] use such auction mechanisms and game theory
to control resource allocation in MEC environments to achieve fairness and efficiency, identifying the
necessity for scalable and real-world dynamic pricing models. Different resource provisioning mechanisms
are used in cloud, fog, and edge computing to tackle specific challenges including latency, energy efficiency,
and scalability.

3.2.8 Insights from Reviewed Literature

Despite significant advancements in resource provisioning for edge, fog, and cloud environments,
several critical research gaps remain. Current approaches struggle to smoothly integrate the multi-tier
architecture which limits their capability to distribute resources between cloud, fog, and edge systems.
Both dynamic provisioning models face challenges sustaining real-time mobility along context-specific
requirements because they commonly sacrifice performance to achieve energy efficiency. Existing frame-
works can be improved to provide reliable solutions and QoS specifications, especially within time-sensitive
applications such as healthcare IoT and autonomous vehicles. Several research studies overlook the inevitable
uncertainties that emerge from resource requirements and mobile workload patterns typical of edge
computing systems. The domain-specific requirements of smart city, AR/VR, and blockchain applications
can have a standard benchmark to compare proposed solutions. Dynamic pricing models further highlight
the need for improvement. Addressing these gaps is crucial for next-generation computing systems.

4 Computation Offloading

Computational offloading [105] refers to the transferring of resource-intensive tasks from constraint
devices like smartphones or IoT sensors to powerful edge, cloud servers. Furthermore, it reduces the local
resource demands, optimizes energy usage, and extends the battery life, while enabling efficient use of the
centralized computing resources provided to multiple devices. Yet network latency, security, and intelligent
decision-making on task offloading and execution location continue to pose challenges. Table 5 highlights
the future directions to improve efficiency and integration by using intelligent algorithms and resource
management to address scalability and real-time processing challenges.

In this survey, we explore computation offloading about latency, energy efficiency, scalability, and
resource optimization over a hybrid cloud, fog, and edge environments. Wang et al. [106] present the
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edge AI and serverless computing schemes for offloading to guarantee efficient provisioning for migrating
hybrid edge cloud systems. A dynamic offloading model presented in [107] optimizes latency-sensitive IoT
and autonomous systems, and shows how energy efficiency and scalability are lagging. Kar et al. [108]
present an in-depth review of offloading techniques both traditional and from the set of machine learning
methods, highlighting the scalability and security gaps in available and practical frameworks. Multi-user
task scheduling is integrated using stochastic geometry and queueing theory tradeoff of resource utilization
without scalability in [109]. Deadline-aware task placement in hierarchical fog networks proposed in [110]
yields better task completion rates, with a focus on working on scalability and energy efficiency in the future.

Table 5: Papers based on computation offloading

Paper Problem addressed Algorithms Metrics Future scope
[106] Hybrid edge-cloud Heuristic approach Latency, energy Improve on
computing for efficient using Markov model efficiency heterogeneous
resource management environments, security
and reduced latency protocols
Context-aware
provisioning,
cross-layer
coordination
[107] It studies low latency, Delay efficient Average task delay, On energy efficiency,
delay constrained data offloading and resource system utilization, security concerns and
offloading for allocation with the task success rate scalability
latency-sensitive synergy of fog and
applications in hybrid edges
cloud fog edge
environments
[108] Explored computation Optimization - Explored computation
offloading optimization Approaches: offloading optimization

for federated cloud, edge,
and fog systems with
dynamic decisions, strict
latency, resource
heterogeneity, and
mobility

[111]

To minimize offloading
costs for user devices in
dynamic cloud-fog
environments
[109]  Optimizes task offloading
in edge-fog-cloud
environments for
supporting multi-user
scenarios

Sub-gradient methods,
queueing models, and
mixed-integer
programming. Machine
Learning Approaches:
RL, DRL, and hybrid
models incorporating
supervised and
unsupervised learning
Mixed Integer
Nonlinear
Programming problem
and Simulated
Annealing Algorithm
Stochastic geometry
and queueing
theory-based
framework

Offloading Cost, Task
Completion Time,
Resource Utilization
Efficiency

Latency, energy
consumption, system
utilization and task
success rate

for federated cloud,
edge, and fog systems
with dynamic decisions,
strict latency, resource
heterogeneity, and
mobility

The impact of diverse
task types and dynamic
mobility patterns on
resource allocation is
unexplored
Optimization under
extreme traffic and load
conditions
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Task placement in heterogeneous networks is optimized in [112] for latency and resource use, however,
privacy and scalability are not addressed. Yadav et al. [113] consider energy vs. latency tradeofts in vehicular
fog networks, and tackle the scalability problem by introducing adaptive offloading strategies, but contend
that privacy remains an open problem. To achieve efficient resource use, reference [114] optimized oftloading
using game theory in a hierarchical architecture, however, the study shows shortcomings in real-time
dynamic allocation and multi-objective optimization. A cost-efficient dynamic cloud fog offloading in [111]
proposes the framework and showcases the scope for improving scalability with a focus on multi-objective
optimization. The framework for resource-efficient offloading proposed in [115] includes opportunities for
privacy-preserving algorithms and large-scale IoT integration.

In cloud, fog, and edge computing, computation offloading optimizes resources, reduces latency,
and improves performance by transferring some tasks to different infrastructures. The research gap for
computational offloading, where the need for analysis of partial offloading using numerous system levels
from edge through fog to cloud. Also, minimal focus was given to peer-to-peer offloading methods, that
would let devices share tasks directly in decentralized networks and task migration along with system
resilience during failures and mobility.

5 Resource Allocation

Resource allocation is the task of assigning computational resources, such as CPU, memory, bandwidth,
and storage of applications based on their requirements to balance workloads, improve utilization, and
maintain QoS compliance [116]. Deep reinforcement learning as a technique takes dynamic resource
allocation under more complex environments, where decisions must be based on multiple network states.
Resource requirements for allocation are also predicted by other machine learning methods such as neural
networks and support vector machines. The resource allocation problem is modeled by game theory as
a problem of interactions among multiple actors, resulting in equilibrium states by balancing various
objectives. Greedy methods, such as heuristic algorithms, make locally optimal decisions that attempt to
approximate a global optimum to solve simple, yet effective problems. Resource allocation is a key component
in modern distributed computing systems to ensure system reliability, energy efficiency, cost optimization,
and scalability, for latency-sensitive applications like IoT, and real-time analytics. Table 6 presents the
summary of the papers based on the problem addressed, algorithms used, metrics, and future scope.

Table 6: Papers based on resource allocation

Paper Problem addressed Algorithms Metrics Future scope
[117] Efficient resource Ant colony Optimization, ~ Response time, data Enables runtime
allocation in fog Particle swarm center processing on-demand resource
computing to reduce Optimization, FCFS, time, cost allocation and load
latency and improve Round Robin, balancing to increase
efficiency. Min-Min/Max-Min. efficiency.
[118] Inefficient centralized Decentralized scheduling, =~ Resource Utilization,  Study additional quality of
scheduling, high latency, resource allocation, and Migration Cost, and service metrics while
and single points of failure task migration using Performance Ratio exploring scalability and
in MEC networks. potential game theory. migration overhead

optimizations through
deep learning for
predictive scheduling.

(Continued)
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Table 6 (continued)

Paper

Problem addressed

Algorithms

Metrics

Future scope

[119]

Trust and transparency in
resource transactions are
improved using a
blockchain-aided auction
mechanism.

For the IToT edge
computing, game theoretic
principles are used to
ensure efficient and fair
resource allocation.

Latency, Scalability,
Fairness, security,
and trustworthiness

Expanding the
blockchain-based auction
framework on IToT and
edge to support scalable
resource allocation in

large IToT and edge
environments.
Extend the auction model
to accommodate
heterogeneous resources
and provide large-scale
MEC systems with
complicated user needs.

[120] Resource allocation
efficiency, load
balancing, auction

fairness, and latency

Resources contention,
fairness, and scalability
issues in dynamic MEC

environments are

addressed.

Optimize pricing and
resource allocation for
offloading tasks using
adaptive best response
bidding strategies.

To achieve optimal performance characterized by minimum latency, we need efficient resource allo-
cation techniques to be performed within the edge, fog as well as cloud environments. Agarwal et al. [117]
propose a modified first fit packing algorithm and efficient resource allocation to achieve better efficiency
and lower latency in fog computing. A Lyapunov optimization framework together with RDC and RDC-
NeP algorithms to minimize cost and response time in an MEC environment is proposed in [121]. Effectively
implementing a decentralized task scheduling and Resource Allocation Protocol [118] enables real-time tasks
with heterogeneous resources to help improve scalability and removal of bottlenecks. In edge environments,
multi-criteria decision analysis is integrated by Edgify [122] to optimize resource decisions, using GWA-
T-12 datasets. CloudSim experiments are used to validate the work of [123] that uses a modified Ant Bee
Colony algorithm to optimize offloading and bandwidth usage. In edge computing, a utility-aware resource-
sharing mechanism in the form of an auction is proposed in [124] to improve resource utilization and
decrease latency. In IIoT environments, a blockchain-aided auction-based resource allocation [119] applies
blockchain and auction-based mechanisms to provide fairness, scalability, and security. In [125], a reverse
auction framework for mobile cloud-edge computing is introduced, which contains two algorithms related to
task allocation and pricing for optimal matching between tasks and servers while minimizing cost. Similarly
in [96], the microeconomic theory to resource allocation is applied in MEC, while at the same time keeping
user satisfaction as well as system performance balanced. The author presents a dynamic, generalized second
price-based repeated auction for real-time resource allocation for IoT and mobile applications [120]. The
presented methods satisfy fairness, scalability, and energy efficiency in modern distributed systems with
robust solutions.

The efficient transfer of data, together with optimized communication, remains essential for cloud, fog,
and edge computing systems. Distributed systems benefit from innovative protocols introduced in [126]
and [127] which enhance their communication efficiency and scalability while reducing their energy con-
sumption. The established techniques deliver relevant data for time-sensitive systems while serving restricted
resource conditions and low-latency requirements. Resource allocation solves the dynamic requirements of
a variety of applications through the use of intelligent strategies and adaptability mechanisms. Future work
in Table 6 focuses on developing scalable, context-sensitive allocation techniques to improve resource effi-
ciency and support next-generation technologies in heterogeneous computing. Studies investigated multiple
gaps that exist regarding resource allocation strategies within cloud, fog and edge environments. The main
obstacles in these systems relate to scalability and real-time adaptability across highly dynamic heterogeneous
infrastructure which intensifies with machine learning and decentralized applications. Energy efficiency and
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multi-objective optimization represent targets for expansion when considering latency-sensitive and IoT-
intensive systems. The potential of blockchain, federated learning together with predictive analytics and
bio-inspired algorithms exists despite their difficulty to scale and perform tasks under real-world scenarios.

6 Time Synchronization

Time synchronization plays a vital role in efficient resource provisioning and optimization in edge, fog,
and cloud computing by ensuring coordinated task execution, efficient resource allocation, and seamless
communication across distributed nodes. Computing systems that use various heterogeneous devices require
synchronized operation to avoid data inconsistencies, properly distribute workloads, and cut down on
response times for time-sensitive operations [128]. System performance decreases when tasks experience
misalignment due to delays and resource conflicts as well as offloading inefliciencies. Time-aware resource
scheduling controls workflow progression across different edge or fog devices to stop performance problems
in autonomous vehicles and industrial systems, as well as smart grids. Synchronization of sleep-wake cycles in
energy-limited computing devices optimizes power utilization that requires synchronized time for IoT-based
systems to coordinate operations and to reduce unnecessary power consumption [129]. Time synchroniza-
tion for edge, fog devices creates a consistent timestamp framework that prevents both duplicated data and
inconsistencies that are crucial for federated learning and decentralized analytics [130] demanding timely
data aggregation. The examination of restricted environments forms the focus of [131] and [132] which
introduce compound methods to merge precise timing with better scalability in hierarchical systems.

Time synchronization beyond scheduling and energy efficiency achieves improvements in fault tol-
erance, latency optimization, and QoS. The accurate measurement of network delay enables synchronized
offloading which distributes tasks efficiently to low-latency edge nodes, thereby improving applications like
real-time video analytics and AR/VR streaming. Management of resources through blockchain depends
on accurate time synchronization to stop duplicate allocation and create transparent transaction logs
in decentralized edge networks [133]. Hence, edge/fog computing technology greatly benefits from time
synchronization, but this field requires additional detailed investigation to build advanced synchronization
systems for dynamic and large-scale distributed structures.

7 System Model

The interaction between edge providers and users in edge computing is a multi-actor problem involving
different priorities and constraints per actor, based on a combination of computing, storage, and network
resources. Offloading intensive tasks to the edge decreases computing burden and allows storage to host
or cache content near users to shorten data transfer distances, decrease latency, and improve throughput.
Similar to cloud infrastructure, edge providers run and monetize resources to optimize revenue while
balancing acceptable QoS, while other end users value low-cost, low-latency access to computing power.
Resource management is a complex challenge due to conflicting objectives coupled with resource availability
constraints and varying user load patterns as shown in Table 7.

flocal

Eiocat = Procar * C (1)
D
Eaffloud = Prransmit * E (2)
C
Tlocal = (3)

flocal
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Table 7: Actors and concerns in edge computing
Edge provider Edge users
Improve the utilization of available resources in Minimize resource consumption of user devices.
Edge. « Compute resources
o Storage
Minimize energy consumption of Edge Minimize energy consumption of device
Maintain acceptable levels of QoS for edge users. Provide better user experience to users by using
o latency edge resources when feasible.
o throughput o Use cached content
« service availability « Offload computation to Edge
Achieve better pricing Optimize edge usage to keep costs low.

Handle different types of users and load patterns -
with available resource

In cloud, fog, and edge computing, resource provisioning, allocation, and computation offloading
are essential to achieve the best task execution and overall system performance. In [14], a unified model
is discussed for dynamic demands in [134]. QoS requirements based provisioning of cloud resources is
discussed in [135] and [136]. Tasks originate from user devices that offload to edge, fog, or cloud layers
based on system conditions and the requirements of the task. Resource information centers (RICs) collect
data to facilitate resource-to-task provisioning using Resource Provisioning Agents (RPAs). The architecture
includes three layers; where Edge Layer-handles latency-sensitive tasks that require their immediate execu-
tion, the Fog Layer-balances between latency and complexity of computation, and the Cloud Layer-handles
compute-sensitive tasks with less latency. Offloading decisions are dependent on task characteristics (data
size, processing density, parallelizable fraction, delay constraints), QoS constraints (latency, energy, cost), and
environmental factors (bandwidth, resource availability). The optimization objective is to find the minimum
cost, execution time, and violations of resources and service-level agreements while maximizing resource
utilization and user satisfaction. This integrated approach would make sure that tasks are done efficiently
through the use of cloud, fog, and edge computing layers.
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In [137] and [138], the idea of energy-efficient computational offloading in MEC systems is studied,
where the energy consumption is minimized while satisfying task deadlines. According to energy coop-
eration, execution delay, and wireless channel conditions, tasks are executed locally or offloaded to edge
servers. The problem is modeled as a constrained optimization problem and solved, using deep learning-
based approaches with neural networks predicting the best offloading decisions over conventional iterative
methods. The approach ensures task feasibility, reduces energy consumption, and adheres to QoS standards
by leveraging mathematical constructs for energy consumption see Eqs. (1) and (2), delay see Eqgs. (3) and (4),
and optimization objectives see Eq. (5). Each task is represented as data size D, Computation workload C
in CPU cycles per bit, Deadline constraint Ty,,x, Piocqr is the local device power, f,.,; is the local CPU
frequency. Py, ansmis is transmission power, R is wireless transmission rate and A € [0, 1] denotes the offloading

ratio. The comparison of the survey paper based on the research problem, its objectives, and the parameters

used are mentioned in Table 8.

Table 8: Comparison of papers based on research problem and its objectives

Paper Research type Objective Parameters
[137 Computation To minimize total energy consumption to meet task Energy consumption,
offloading deadlines, balancing local computation and offloading execution delay, and
to MEC servers wireless channel
conditions
[138] Computation Jointly optimizing task offloading, UAV trajectories, Energy-efficient
oftloading and and resource allocation in dynamic networks aims to computation
resource minimize total energy consumption in UAV enabled offloading, resource
allocation MEC systems while maintaining mobile user QoS allocation, UAV
mobility, and latency
[139] Computation Optimization at edge by minimizing vehicle energy Energy efficiency and
offloading and consumption, execution delays (local or offloaded), latency
resource edge resource and bandwidth utilization
allocation
[140] Resource Maximize resource utilization of the MEC while Latency, throughput,
provisioning satisfying all the QoS requirements. and reliability
[141] Resource Optimizing task allocation across edge and cloud Energy efficiency and
allocation resources to minimize the completion cost like latency, QoS
energy, and SLA violation
[142] Resource A multi-objective optimization problem to minimize Energy consumption,
provisioning energy consumption, task execution, and transfer task completion time
delays, maximum system fault tolerance and reliability =~ and system resilience
[143] Resource To maximize user satisfaction and system utility by Latency, bandwidth,
provisioning optimizing resource allocation for the mobile and computational
metaverse demands
[144] Resource Minimize the total system cost while maintaining QoS ~ Energy Consumption,
allocation for vehicular applications delay and task
completion time
[145] Resource Minimize total system cost and meet URLLC Latency, reliability and
allocation constraints such as task deadlines, success rates, and energy consumption

computation and communication based on energy
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In the UAV-enabled MEC systems, reference [146] put forward a task offloading, UAV trajectory
optimization, and resource allocation problem toward minimizing energy consumption satisfying QoS. The
framework can be tailored to user mobility and task variations by using alternating optimization and succes-
sive convex approximation for non-convex trajectory optimization. The main metrics are energy efficiency,
task completion rate, and latency. The mathematical constructs for energy consumption see Eqs. (6), (7)
and (8), delay see Eqs. (9) and (10), and optimization objectives see Eq. (11). Each task is described as D; as
task input data size (bits), ¢; as computational workload (CPU cycles), T;"?* as deadline for task completion,
Kis a hardware-dependent constant, f,.,;,; is the local CPU frequency, P;;4usmit,; is the transmission power,
Ecompute,j is energy for computing offloaded tasks, A; means Offloading decision variable (fraction of task
offloaded) and q;(t) is UAV trajectory at time t.

8 Evaluation Metrics

The evaluation metrics are being used to compute the resource provisioning, allocation, and oftfloading
strategies in cloud, fog, and edge computing as the quantitative measures to compare the performance of the
system, utilization of resources, and user satisfaction. They enable an analysis of latency [79], throughput,
energy efficiency, and computation cost to ensure that the provisioning strategy can respond to changing
workloads and is application-specific. Such metrics achieved; resource allocation optimization, delay reduc-
tion, energy performance [82], and scaling up without degrading service reliability and availability. Martinez
et al. Table 9 provides an overview of the evaluation metrics.

Table 9: Evaluation metrics for resource provisioning

Type Key metrics Description Formula
Performance Latency Measures the time delay between request and response in tresponse — trequest
metrics service execution
. 1 Numberof TasksCompleted
Throughput The rate at which tasks are processed successfully within a Numberof TasksCompleted
. Timelnterval
time frame
Response time The total time taken to process a task, including delays in texecution + tiransfer + tqueueing

execution and communication
Workload (CPUcycles)
ProcessingSpeed(cycles/sec)

Execution time The time taken to complete a specific task or job on allocated
resources

Resource CPU utilization Indicates how effectively the CPU resources are being used —TotalCPULimeUsed _ 10
e s TotalAvailableCPUTime
utilization
metrics

UsedMemory %100

Memory usage  Tracks memory consumption relative to the available capacity Totalbermory

. . DataT d
Bandwidth Measures the efficiency of network resource usage —Datalransfered _ ., 14
1 TotalBandwidthCapacity
utilization
. Useds
Storage Reflects the consumption of storage resources across layers JT% * 100
utilization
QoS metrics Service The percentage of time the service is operational and % *100
availability accessible
. . N Numberof$ ITransacti
Reliability The consistency of a system in delivering accurate results over = emTf uccessfulTransactions
otalTransactions
time
SLA Measures adherence to predefined QoS parameters, such as % 100
compliance uptime and latency guarantees
Energy Energy The total energy utilized for task execution and data transfer Pxt
efficiency consumption
metrics
Energy-delay Evaluates the trade-off between energy consumption and EnergyConsumption * Latency
product latency
. . c tional Throughput
Power The ratio of computational performance to energy consumed w
fici nergyConsumption
efficiency

(Continued)
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Table 9 (continued)

Type Key metrics Description Formula
s s . . P hI dLoad
Scalability Scalability Assesses the ability of the system to handle increased erformancewithincreasedload
K K PerformancewithBaselineLoad
metrics workloads by scaling resources
Elasticity Measures the adaptability of resource allocation to sudden ResourcesScaled 1
) ResourcesRequired
changes in demand
Network Network The time taken for data to travel through the network tpropagation + ttransmission +
specific latency tprocessing
metrics
Packet loss rate The percentage of data packets lost during transmission —PacketsLost__ 1)
"RtalBate i erred
Data transfer The speed of data movement between computing layers %
ransferTime
rate
User-centric User Evaluates the end-user experience through satisfaction scores EZositiveFeedbacks , 1)
R . . TotalFeedbacks
metrics satisfaction or feedback
TasksSuccessfullyCompleted
Task success The percentage of tasks corflpleted successfully as per user ot TackeSubied— * 100
rate requirements
Security and Data security Evaluates measures to protect data during computation and No standard formula;
privacy transmission
metrics
Privacy Ensures user data confidentiality in multi-tenant ProtectedData 100
/ i TotalData
preservation environments

Paper [147] shows that processing data at the edge in a distributed fog-cloud system reduces cloud
data exchange, easing network congestion and improving energy efficiency, as seen in weapon detection
and face recognition applications. To understand the system behavior, optimize the use of resources, and
increase user satisfaction these metrics are important. Comprehensive literature surveys on various types
of resource provisioning, as presented in Tables 1-3 and Tables 4-6, explore research in resource allocation,
provisioning, and computation. These studies identify key metrics essential for analyzing system behavior,
improving efficiency, and enabling adaptive strategies, as summarized in Fig. 5a.
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Figure 5: Summarized (a) evaluation metrics; (b) simulators used in various review

The critical performance metrics that determine cloud and edge computing resource allocations include
latency [78] alongside energy efficiency standards. The combination of artificial intelligence techniques
together with optimization algorithms and collaborative solution frameworks simultaneously offer better
task offloading capabilities coupled with decreases in latency and enhanced energy efficiency [66]. Network
simulations driven by the SDN framework analyze programming decisions which results in efficient service
delivery for applications with varied traffic and processing requirements. Cloud, fog, and edge computing
systems require latency measurements combined with energy efficiency evaluations, throughput monitor-
ing [98], and assessment of packet Loss rates during their operations. Time-sensitive operations including
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autonomous driving systems healthcare devices and virtual gaming activities need immediate responses to
reduce safety risks. Limited power resources present in IoT devices and edge systems make energy efficiency
a fundamental requirement. The performance of throughput allows seamless operation in data-intensive
applications such as video streaming and cloud gaming while packet loss [80] creates problems in real-
time communication and mission-critical operations. The optimization of the metrics ensures the necessary
scalability, reliability, and operational efficiency for a wide range of applications.

9 Simulators

Evaluating and optimizing cloud, fog, and edge computing environments is essential and requires the
use of simulators as discussed in [148,149]. This results in tools for researchers to evaluate specific strategies
optimized in each domain, including energy efficiency, mobility, and SDN integration [150-152]. Table 10
lists the commonly used simulators, each designed for a specific purpose to meet unique research needs for
system design and performance evaluation. Each of the major simulators used in these research studies is
explained as follows and summarized in Fig. 5b.

Table 10: Simulators used for cloud, fog, edge computing with SDN

Simulator Focus Key features Best for
CloudSim Cloud Centralized resource Datacenter modeling and
computing management, scalability scheduling policies
iFogSim Fog/Edge Latency, energy consumption in  IoT-driven fog deployment and
computing IoT resource allocation
EdgeCloudSim Edge Low-latency, mobile user Mobile edge computing and
computing simulations dynamic resource use
PureEdgeSim Edge Lightweight, scalability for IoT Large-scale edge network
computing workloads simulations
FogNetSim++  Fog computing SDN, topology generation, Fog-based IoT resource
energy efficiency orchestration
GreenCloud Cloud Energy and network traffic Energy-efficient cloud system
computing analysis studies
CloudSimSDN  Cloud/Edge + SDN flow control, service Network-aware simulations in
SDN chaining cloud-edge systems

CloudSim is a widely used simulation framework to model cloud infrastructures that provide an
environment for data center, VM, and resource management policies [153]. Furthermore, reference [154]
discusses the usage of provision resources in centralized clouds, task scheduling, or analyzing energy
efficiency. It is used by the researchers to optimize VM scheduling algorithms, like Round Robin (RR), First-
Come-First-Serve (FCFS), and Shortest Job First (SJF), to distribute tasks among VMs, and test dynamic
resource provisioning techniques and VM placement strategies [155]. CloudSim extends to power-aware
studies on the energy-efficient allocation of cloud data center resources [156]. Experiments in progress on
latency, scalability, energy consumption, and cost efficiency advance resource management strategies [157].

To evaluate resource management in fog and edge computing, iFogSim is a simulation toolkit that
expands CloudSim features for simulating fog nodes, sensors, actuators, and IoT environments [158]. For
instance, it is geared up as an explorative platform for researchers, supporting the study of various research
areas and the examination of latency-sensitive IoT applications such as industrial IoT [159], healthcare
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monitoring [160] and smart traffic systems [161]. It also helps in reducing the power utilization in fog-
distributed nodes and IoT devices through its energy efficiency tools. iFogSim further evaluates placement
and scheduling algorithms for maximizing service utility (in terms of latency and resource utilization) in IoT
workloads [162].

An EdgeCloudSim [163] extension of CloudSim is proposed which models edge computing systems
for mobility, load generation, and network simulation, applicable to low latency applications. It evaluates
real-time IoT workloads [164] for health and traffic management, reflecting on how mobility and variance
in networks affect resource allocation. By allowing testing of offloading algorithms against metrics such
as latency, energy efficiency, resource utilization, and scalability, the simulator supports performance
evaluations of applications as well as testing of applications offloading algorithms [165]. Being modular, it is
adaptable to different IoT and edge computing situations.

PureEdgeSim [166], a simulation framework for cloud, edge, and mist computing environments, is
developed focusing on dynamic heterogeneity, task offloading, resource allocation, and workload orches-
tration. It can be used for applications such as vehicular networks and healthcare monitoring from IoT
applications that require strict latency and energy constraints [167]. Metrics including latency, energy
consumption, resource utilization, and task success rates are evaluated [168,169]. Due to its modular design,
its uses include simulating heterogeneous devices and mist-edge-cloud integration, allowing the use of the
tool to optimize resource allocation in dynamic environments [170].

iFogSim is further extended with advanced fog computing features such as network topology modeling,
dynamic task allocation, and mobility management to create FogNetSim++ [171]. Resource provisioning,
schedule of tasks, and service placement aiming to minimize application latency in real-world fog and IoT
scenarios [172]. Latency, energy, network overhead, response time, and resource utilization are evaluated to
support the performance analysis of complex fog architectures [173].

GreenCloud [174] provides insights about energy use in the computing, communication, and cooling
components of data centers. Energy awareness research with GreenCloud [175] is in the energy-aware
scheduling, resource allocation, and network optimization to minimize the environmental impact of
cloud infrastructures. Energy consumption, carbon emissions, task completion time, PUE, and network
performance are key evaluations, that support studies of sustainability tradeoffs in large-scale cloud
systems [176,177].

CloudSimSDN [178] uses the extensions of CloudSim to simulate the SDN cloud environment, where
network-aware resource management is integrated with SDN controllers. More specifically, research using
CloudSimSDN [179,180] has explored the problem of network performance optimization, task scheduling,
and resource allocation. Network latency, throughput, energy efficiency, task execution time, and load
balancing are all being evaluated. Further studies conduct dynamic traffic routing, energy-aware VM
migrations, and QoS improvements in SDN-based clouds [181].

10 Challenges in Resource Provisioning

Given the dynamic and heterogeneous nature of cloud, fog, and edge computing, as discussed in the
literature survey, we arrived at the following challenges for resource provisioning:

Scalability: With the exponential growth in connected devices, managing resources efficiently across
large-scale, heterogeneous environments with low latency and high throughput is crucial.

Heterogeneity: The need for interoperability standards arises as the computing and network devices
become more diverse for handling varying capacities.
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Dynamic Workloads: To maintain QoS under changing workloads, real-time adaptation mechanisms
are essential.

SDN Controller Placement: Hierarchical models for fault tolerance concerns are used to optimize the
placement of SDN controllers minimizing latency, load balancing, and scalability.

Latency and Network Bottlenecks: Traffic flow and the network configurations must be optimized to
minimize communication delays and congestion in the network, particularly for the latency-sensitive case.

Time Synchronization: Real-time coordination in cloud, edge, and fog computing depends heavily on
precise time synchronization for better scalability in hierarchical systems.

Energy Efficiency: For reduction in cost and sustainability across cloud, fog, and edge infrastructures,
energy-aware provisioning strategies are needed.

Mobility: Mobility-aware frameworks need to adapt resource provisioning to handoffs and connectivity
changes while retaining QoS.

QoS and SLA Compliance: In the dynamic environment, robust monitoring and adaptive systems are
required to satisfy consistent QoS and SLA requirements.

11 Future Work

In conclusion, there exists a significant scope for developing eflicient resource provisioning and opti-
mization mechanisms in edge and fog computing systems. In particular, edge computing remains relatively
unexplored, presenting numerous opportunities for further research and innovation. The following are a few
of the future directions that could be derived from the above surveys.

Resource Optimization: Create and examine Al-based algorithms for predicting real-time workloads
along adaptive resource distributions which are optimized for settings involving auto vehicles and healthcare
IoT requiring reduced response times.

Secure Resource Sharing: SDN-based fog and edge systems should utilize blockchain technology for
resource sharing because it establishes tamper-proof secure transaction records to defend against privacy
and data integrity issues.

Advanced Scheduling Mechanisms: The task scheduling framework requires multi-objective optimiza-
tion algorithms to balance latency, energy consumption, and resource utilization.

Energy-Aware Resource Management: Green computing frameworks that minimize energy consumption
and consume renewable energy sources are an essential prerequisite for a sustainable operation.

Mobility-Aware Provisioning: Low latency and high QoS for mobile users without frequent handoffs
require adaptive algorithms.

5G and Beyond Integration: To maximize 5G technologies such as network slicing and Ultra-Reliable
and Low-Latency Communications (URLLC) to enhance resource provisioning mechanisms, services must
be adapted to cloud, fog, and edge systems.

Elastic Resource Allocation: Two important points essential for dynamic scaling systems are workload
burst and fluctuating application demands.

Security: Security of IoT has become essential as this technology grows at an accelerated rate.
Lightweight solutions are offered through GS3 [182] which performs shuffling and substitution combined
with scrambling operations, unlike AES and ChaCha20 standards. Future research can enhance its resilience
and scalability, with the integration of AI and post-quantum cryptography, thereby promoting sustainable
growth of IoT.



Comput Mater Contin. 2025;83(3) 5061

12 Conclusion

This survey provides a comprehensive analysis of various developments in the field of cloud, fog, and
edge computing focusing in terms of architecture, challenges, and the approaches to the solutions. Targeting
resource provisioning, allocation, and computation offloading as crucial mechanisms for an efficient system
in such environments, by highlighting the shortcomings of current research practices on IoT. Finally, the
role of integration with SDN as a key enabler is explored for satisfying the requirements in terms of low
latency, high throughput as well as scalability. Static, dynamic, and user-centric resource provisioning and
its application in IoT, healthcare, and autonomous systems are discussed. Heterogeneous infrastructure is
considered concerning computation offloading strategies for lowering energy consumption, latency, and
costs. The role of SDN in resource orchestration, task scheduling, and traffic management is demonstrated for
integrated seamless cloud, fog, and edge. The survey also identifies research gaps in scalability, multi-tenancy,
and interoperability and proposes advancement in computing systems by hybrid orchestration models, along
with real-time coordination and security-aware resource management.
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