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ABSTRACT: Self-supervised monocular depth estimation has emerged as a major research focus in recent years,
primarily due to the elimination of ground-truth depth dependence. However, the prevailing architectures in this
domain suffer from inherent limitations: existing pose network branches infer camera ego-motion exclusively under
static-scene and Lambertian-surface assumptions. These assumptions are often violated in real-world scenarios due to
dynamic objects, non-Lambertian reflectance, and unstructured background elements, leading to pervasive artifacts
such as depth discontinuities (“holes”), structural collapse, and ambiguous reconstruction. To address these challenges,
we propose a novel framework that integrates scene dynamic pose estimation into the conventional self-supervised
depth network, enhancing its ability to model complex scene dynamics. Our contributions are threefold: (1) a pixel-wise
dynamic pose estimation module that jointly resolves the pose transformations of moving objects and localized scene
perturbations; (2) a physically-informed loss function that couples dynamic pose and depth predictions, designed to
mitigate depth errors arising from high-speed distant objects and geometrically inconsistent motion profiles; (3) an
efficient SE (3) transformation parameterization that streamlines network complexity and temporal pre-processing.
Extensive experiments on the KITTI and NYU-V2 benchmarks show that our framework achieves state-of-the-art
performance in both quantitative metrics and qualitative visual fidelity, significantly improving the robustness and
generalization of monocular depth estimation under dynamic conditions.

KEYWORDS: Monocular depth estimation; self-supervised learning; scene dynamic pose estimation; dynamic-depth
constraint; pixel-wise dynamic pose

1 Introduction
Accurate perception of environmental spatial structure is a critical capability for autonomous systems,

such as robots and self-driving platforms, enabling key tasks including navigation, obstacle avoidance,
and path planning [1]. Contemporary depth-sensing modalities—such as LiDAR, millimeter-wave radar,
and RGB-D cameras—provide high-fidelity three-dimensional data but face inherent trade-offs between
precision, computational complexity, and cost [2,3]. Recent advances in deep learning algorithms have
spurred significant interest in image-based monocular depth estimation, which leverages low-cost monoc-
ular cameras to infer scene geometry directly from RGB images. This paradigm holds the potential to
supplant expensive, hardware-dependent depth-sensing systems in fields like robotics and autonomous
driving, dramatically reducing operational costs [1].

Supervised depth estimation frameworks, while achieving notable accuracy, remain constrained by
their reliance on ground-truth depth labels—a resource-intensive requirement that limits scalability. In
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contrast, self-supervised monocular approaches bypass this dependency entirely [4]. These methods train
depth and ego-motion estimation networks concurrently using unlabeled video sequences, establishing self-
consistency through photometric reprojection relationships between adjacent frames. By circumventing
supervised annotations, such techniques offer a cost-effective and scalable solution, achieving performance
competitively with supervised baselines across benchmark datasets [5].

Current self-supervised monocular depth estimation frameworks [6] rely heavily on two foundational
assumptions: (1) scenes exhibit static rigidity, and (2) surfaces adhere to Lambertian reflectance properties.
These assumptions are systematically violated in real-world autonomous driving scenarios, where dynamic
agents (e.g., vehicles, pedestrians) [7] and non-Lambertian materials (e.g., specular surfaces under intense
illumination) [8] introduce significant distortions in predicted depth maps. Such violations manifest as char-
acteristic artifacts—including erroneous depth discontinuities (“holes”), geometric collapse in high-motion
regions, and spurious bright spots caused by reflective surfaces. Crucially, dynamic interferents induce
systematic errors where objects in motion are assigned physically implausible depths, either overestimated or
underestimated relative to their true positions. Fig. 1 presents a schematic representation of spatial resolution
discrepancies in stereoscopic perception and their associated illusory visual manifestations.

Figure 1: Depth perception errors and visual phenomena. (a) From top to bottom, the schematic diagrams show the
false far, false near, and the correct depth of the static target caused by different moving modes between frames. (b) The
“bright spot” phenomenon and the “hole” phenomenon
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Efforts to mitigate these issues have centered on auxiliary techniques such as optical flow-guided
motion segmentation [9], dynamic region masking, and semantically informed regularization. While these
approaches partially address the problem, critical limitations persist: (1) optical flow methods struggle with
occlusions and fail to disentangle object motion from camera ego-motion in poorly textured regions [10]; (2)
masking strategies discard valuable geometric information, degrading depth consistency; (3) semantic priors
introduce computational overhead and rely on pre-trained classifiers, thereby reducing generality [11]. Col-
lectively, existing solutions lack a unified framework to explicitly model non-static targets while preserving
computational efficiency and self-supervised training integrity.

To address the systematic errors induced by dynamic interferents in self-supervised depth estimation,
we propose a holistic scene dynamics-aware framework that jointly models ego-motion and per-pixel
dynamic transformations without auxiliary data modalities. Our architecture introduces three innovations:

(1) Joint Pixel-Wise Dynamic Pose Estimation: We propose a unified pose estimation framework that
concurrently models camera ego-motion and per-pixel dynamic transformations of moving objects, effec-
tively disentangling static and non-static scene components. This dual-branch design explicitly addresses
motion ambiguities in dynamic regions (e.g., vehicles, pedestrians).

(2) Physics-Constrained Dynamic-Depth Loss: A novel loss function enforces physical coherence
between depth predictions and dynamic pose estimates, penalizing implausible object kinematics (e.g.,
distant yet rapidly moving targets). This regularization eliminates artifacts like depth “holes” and “collapse”
without requiring auxiliary data.

(3) Efficient SE(3) Transformation Modeling: By streamlining dynamic pose parameterization in SE(3)
space, our framework achieves real-time inference speeds while maintaining compatibility with existing
architectures, requiring only lightweight modifications to baseline networks.

2 Related Works
Accurate depth estimation remains critical for autonomous navigation systems, driving extensive

research into learning-based monocular approaches that avoid expensive LiDAR dependency. Current
methods fall into three paradigm-shifting categories: Supervised Depth Regression: Early breakthroughs
used CNNs to regress depth directly from RGB inputs, trained on paired image depth datasets (e.g.,
KITTI, NYUv2). While architectures such as DispNet achieved remarkable accuracy, their reliance on
dense ground-truth depth—difficult to acquire at scale—limited their applicability to narrow operational
domains [12,13]. Weakly supervised & synthesis-driven methods: To reduce annotation costs, subsequent
work has proposed using sparse cues (e.g., SLAM-derived depth [14,15]) or synthesizing training data via
structure-from-motion (SfM). However, these hybrid approaches inherit the fragility of SfM in low-texture
or dynamic regions, resulting in inconsistent supervision signals [16]. Self-supervised paradigms: A pivotal
shift has occurred with self-supervised frameworks [6], which exploit the geometric consistency between
temporally adjacent frames or stereo pairs. By formulating depth estimation as an image reconstruction
task—minimizing photometric reprojection loss—these methods bypass explicit depth supervision [17,18].
Stereo-based self-supervision uses calibrated stereo rigs, where the known baseline allows direct modelling
of epipolar constraints. Although effective, such methods require precise extrinsic calibration and temporal
synchronization, limiting the flexibility of use [19]. Monocular counterparts relax these constraints, but face
inherent scale ambiguity and motion confusion in dynamic scenes [15]. Despite progress, existing approaches
universally neglect explicit modeling of scene dynamics, instead relying on rigid-world assumptions that
systematically fail in real-world navigation contexts. Our work bridges this gap through novel motion-aware
depth-pose co-optimization, circumventing limitations of prior art.
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The field of self-supervised monocular depth estimation was initiated by the pioneering work of SfM-
Learner [20], which introduced a novel approach by training depth and ego-motion networks in a shared
framework using unlabeled monocular videos. This framework was transformative in nature, however,
it was predicated on the assumption of rigid scenes and Lambertian reflectance, resulting in systematic
depth errors in real-world scenarios characterized by dynamic objects or non-Lambertian surfaces. In
recent years, there has been significant progress in the field of visual Transformer-based methods, with the
development of techniques such as MonoViT [21] leading to substantial advancements in the modelling
of dynamic scenes through the integration of global and local features. Subsequent efforts to address these
limitations have pursued a range of divergent strategies. SFM-Net [22] pioneered instance-aware motion
modelling by decomposing dynamic scenes into multiple motion masks and predicting object-specific poses.
However, its reliance on predefined instance counts rendered it impractical for complex traffic environments.
Concurrently, Zhou et al. [20] adopted a learnable masking mechanism to selectively exclude non-rigid
regions from the photometric loss, an idea refined in MonoDepth2 [23] through minimum reprojection
loss [24] and auto-masking techniques. While these approaches mitigated errors by filtering dynamic pixels,
they inherently sacrificed supervision over mobile regions, compromising depth fidelity in motion-dense
scenes. Recent research has facilitated the development of sophisticated models of dynamic objects without
the necessity of a predefined number of instances through the utilization of a technique known as Moving
Instance Loss [7].

Concurrently, parallel advancements explored geometric decomposition paradigms, as exemplified
by GeoNet [25], which disentangled rigid and non-rigid optical flow components to implicitly model
dynamics [26]. Yet its optical flow-centric formulation failed to translate improvements to depth prediction
accuracy. Hybrid strategies emerged with Struct2Depth [27] leveraging pre-trained instance segmentation
models to precompute dynamic masks [28], while Gordon et al. [29] proposed auxiliary networks for joint
mask prediction and motion compensation. Though these frameworks demonstrated enhanced robustness,
their dependence on auxiliary modules or pre-trained networks reintroduced computational complexity and
supervision bottlenecks, deviating from the original ethos of lightweight self-supervision.

A thorough review of the literature reveals a persistent dichotomy in the field: methodologies either
impose weak regularization on dynamic regions (masking or ignoring them) at the cost of depth con-
sistency [30] or introduce complex multi-network architectures that erode computational efficiency [31].
This impasse stems from the absence of a unified framework capable of jointly optimizing depth and
scene dynamics within a physically grounded, computationally efficient paradigm. Existing approaches
largely bypass explicit modeling of object kinematics, instead treating motion as a confounding factor to be
suppressed. This fundamental limitation is resolved by integrated depth-pose co-optimization.

Our work builds upon the foundational work of SFM-net [6] and Monodepth2 [8], while introduc-
ing critical innovations that address their inherent limitations. SFM-net’s instance-level motion masking
strategy, though pioneering in dynamic scene handling, imposes artificial constraints on the number of
movable objects and struggles with subtle dynamics like specular reflections. This limitation stems from its
fundamental assumption of rigid-body motions for pre-defined object instances. In contrast, our pixel-wise
dynamic pose estimation eliminates the need, for instance, counting through continuous spatial modelling,
naturally accommodating both macroscopic vehicle movements and microscopic reflective highlights within
a unified framework. Monodepth2’s auto-masking approach, while effective in filtering static scenes, intro-
duces an unintended consequence: the complete loss of supervision signals in dynamic regions. Unlike
this zero-sum masking strategy, our global minimum reprojection loss retains complete pixel utilization.
Specifically, the dual hypotheses of rigid and dynamic-aware reprojections act as complementary supervisors,
allowing the network to automatically select the optimal constraint for each pixel category. This innovative
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formulation not only preserves dynamic area supervision but also maintains static region fidelity, a critical
advancement confirmed by the 18.7% error reduction in edge-aware smoothness metrics (see Section 4.2).
More fundamentally, previous methods bifurcate dynamic processing into either masking (Monodepth2)
or secondary prediction pipelines (SFM-net). Our work transcends this dichotomy by integrating dynamic
pose estimation directly into the projective geometry formulation. This integration enables end-to-end
joint optimization of depth, ego-motion, and scene dynamics, features that were previously unattainable in
discrete pipeline architectures.

3 Method
The basis of self-supervised monocular depth estimation is the provision of neural networks with an

understanding of multiview geometry using the exploitation of the inherent consistency between temporally
adjacent frames. In this framework, the depth prediction and ego-motion estimation networks are subject
to joint optimization to satisfy differentiable geometric constraints. This self-supervised objective [4,18,32]
circumvents the necessity for explicit depth labels by treating the image itself as its own supervisory signal.
The depth estimation network predicts the depth result Dt of the current frame It in the image sequence and
concatenates It with the adjacent frame It′ as the input of the pose estimation network to predict the pose
transformation T t

t′ between frames. Then the Dt and T t
t′ are used to generate the predicted image It′→t from

It′ , the expression is as follows:

It′→t = It′ ⟨pro j (Dt , T t
t′ , K)⟩ (1)

where ⟨⋅⟩ is a sampling operator. To make the network trainable, the bilinear sampling is used to get color
gradient, K is intrinsic of camera, pro j (⋅) is the resulting 2D coordinates of the projected depths Dt in It′ .

Contemporary self-supervised frameworks address the inherent challenges of dynamic vision—in
particular, occlusion and disocclusion artefacts—by adopting bidirectional temporal contexts. To miti-
gate geometric inconsistencies arising from degenerate common-view regions between adjacent frames,
prevalent methods use triadic frame sequences during training, establishing visibility consensus across
forward-backward temporal neighborhoods [32,33]. This tri-frame paradigm—schematically detailed
in Fig. 2a—ensures that for each pixel in the target frame, there is at least one corresponding visible
counterpart in either the preceding or subsequent reference frames [34]. Such multi-view regularization
stabilizes training by propagating geometric consistency checks across synchronized depth and poses
predictions. The framework ultimately optimizes the composite photometric objective, augmented with
edge-aware smoothness priors [35], enabling pixel-dense supervision without relying on explicit mask
annotation or static scene assumptions.

In this paper, we propose a pixel-wise pose estimation module for the scene dynamic target, to be
incorporated into the self-supervised monocular depth estimation network. The pose estimation network
utilizes a combination of ego-motion estimation and pixel-wise dynamic pose estimation, thus constructing
a more comprehensive model that encompasses ego-motion, target dynamics, and depth, as illustrated
in Fig. 2b. The subsequent subsections provide a detailed exposition.
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Figure 2: Depth Prediction and Pose Estimation Network. (a) Overall network structure: the network predicts the
depth of the current frame It , reprojects it with the pose estimation results of the front and rear frames {It+ , It−},
generates the projection {It+→t , It−→t} from the front and rear frames to the current frame, and optimizes the
photometric consistency error between It and {It+→t , It−→t}. (b) Pose estimation predicts the dynamic number of pixels
between different frames and the pose change of camera ego-motion pixel-wise. The ego-motion and dynamic pose
estimation module outputs the 6-DOF transformation vector in se3 space

3.1 Pose Estimation
A critical challenge in monocular depth estimation arises from the prevalence of dynamic objects

within training datasets, which fundamentally violates the rigid scene transformation assumption inherent to
classical structure-from-motion paradigms. This issue is further compounded by the directional dependence
of depth prediction errors. When the displacement vector of a dynamic object exhibits a positive inner
product with the normal vector of the reprojection direction, the network erroneously infers exaggerated
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depth values. Conversely, negative projections result in spuriously underestimated distances (Fig. 1). Further
complications emerge from non-Lambertian surfaces exhibiting view-dependent reflectance variations,
where photometric discrepancies across viewpoints—induced by specular highlights and ambient illumina-
tion changes—systematically corrupt reprojection error calculations. Notably, specular highlights manifest
pseudo-dynamic behavior, migrating across glossy surfaces during camera motion, thereby mimicking
true object displacement. To address these limitations, we propose integrating a dedicated dynamic pose
estimation module into the framework. This component explicitly models the 6-DoF motion trajectories
of non-static entities between consecutive frames, circumventing the detrimental effects of the rigid scene
assumption while mitigating geometric inconsistencies (“holes”) caused by erroneous depth predictions on
moving objects.

Within the pose estimation framework, the dynamic pose transformation module extends beyond
the fundamental rigid-body assumption inherent in ego-motion estimation architectures. This component
formulates per-pixel dynamic pose transformations to model non-stationary elements across consecutive
frames (see Fig. 3). The module employs a hierarchical multi-scale architecture to resolve motion patterns
across varying spatial extents while ensuring compatibility with contemporary multi-scale depth estimation
frameworks. For instance, in this work, scaling factors s are defined as s ∈ {1, 1/2, 1/4, 1/8}, selected through
empirical validation to balance resolution fidelity and computational efficiency. Following conventional
approaches in self-supervised depth estimation frameworks, the photometric reprojection error between
temporally adjacent frames is computed by synthesizing target views using predicted depth and pose
parameters. This discrepancy metric then drives the joint optimization process, wherein network parameters
are iteratively refined to minimize the reconstruction error, thereby enhancing geometric consistency across
sequential observations.

Figure 3: Ego-Motion and Dynamic Pose Transformation. Pose transformation prediction is divided into two parts:
ego-motion transformation and scene dynamic pose transformation. The network output is a 6-dimensional vector
in se3 space, the output dimension of the ego-motion estimation module is 6 × 1 × 1, and the output dimension of
pixel-wise dynamic pose transformation is 6 × h ×w, in which (h, w) = (H, W)/scal e

3.1.1 Ego-Motion Estimation
When the pose estimation network predicts the ego-motion transformation or so-called rigid trans-

formation part, it needs to obtain a globally shared pose transformation on each pixel. To be concise, the
subsequent T represents T t

t′ , and the network predicts the ego-motion transformation Tr i g id between each
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two pictures. The previous pose estimation network outputs a three-dimensional rotation vector and three-
dimensional displacement vector and then converts them into homogeneous pose matrix R ∈ SO3 and
displacement vector p, respectively, which are multiplied to obtain pose transformation T .

To simplify the process in the subsequent calculation, and couple translation R ∈ SO3 and displacement
p, we use general T ∈ SE3 group directly to express the pose transformation. Our network contains
two parts: dynamic pose estimation and ego-motion estimation. The pose transformation of SE3 is not
the closure of addition, but its logarithmic mapping space se3 is the closure of addition, so we let the
output of the ego-motion transformation estimation layer be the 6-DOF pose transformation vector
ξr i g id = [ρr i g id , ϕr i g id]

T expressed in se3 space. Then, the corresponding SE3 group pose transformation
Tr i g id is directly obtained through exponential mapping. Accordingly, the network calculation can be
simplified. The SE(3) transformation is defined by a 6-DOF twist parameter ξ = [ρTϕT]T ∈ R6, where ρ ∈ R6

is the translational component and ϕ ∈ R3 is the axis-angle rotation. The exponential map converting ξ to
the homogeneous matrix T ∈ SE (3) is:

T = exp (ξ∧) = [ exp (ϕ) Jρ
0 1 ] (2)

with exp (ϕ∧) ∈ SO (3) computed via Rodrigues’ formula:

exp (ϕ∧) = I + sinθ
θ

ϕ∧ + 1 − cosθ
θ2 (ϕ∧)2 , θ = ∥ϕ∥ . (3)

The left Jacobian J (ϕ) ∈ R3×3 scales the translation to account for rotational coupling:

J (ϕ) = I + 1 − cosθ
θ2 ϕ∧ + θ − sin θ

θ3 (ϕ∧)2 . (4)

For small motions (θ ≪ 1), J (ϕ) ≈ I, simplifying computations in real-time systems.

3.1.2 Dynamic Target Estimation Module
When predicting the pose transformation of dynamic targets, the motion of each target is different. On

the basis of rigid transformation, there will be an additional pose transformation caused by the movement
of the target itself. We predict a dynamic pose transformation for each pixel u (i) in the image, which is
denoted as the dynamic transformation matrix Td yna (i). The pose prediction of the moving object relative
to the camera can be expressed as the superposition Ttotal (i) of the rigid transformation prediction Tr i g id
and the non-rigid transformation part Td yna (i). The output of the dynamic pose transformation module
is the same as that of the ego-motion transformation, which is the 6-DOF pose transformation vector
ξr i g id in se3 space. Since se3 is closeness for addition, ξr i g id and ξd yna (i) can be directly added to obtain
ξtotal (i), i.e.:

ξtotal (i) = ξr i g id + ξd yna (i) (5)

If exponentially mapped to SE3, there is:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ttotal (i) = Tr i g id Td yna (i) = exp (ξ∧total (i))

Td yna (i) = exp (Jr ξ∧d yna (i))

Tr i g id = exp (ξ∧r i g id)

(6)
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where Jr is the shorthand to refer to right multiplied Jacobian matrix Jr (ξr i g id) of ξr i g id , “∧” is a
skew operator.

Fig. 4 illustrates the composition of ego-motion and dynamic pose transformations within a unified
coordinate system. Here, Tr i g id = exp (ξ∧r i g id) (blue dashed arrow) represents the global camera motion,
while ξd yna (i) (red arrow) denotes pixel-wise dynamic adjustments. The total motion is given by:

Ttotal (i) = Tr i g id ⋅ exp (Jr ξ∧d yna (i)) (7)

where Jr is the right Jacobian of ξr i g id , ensuring geometric consistency during composition. This formulation
captures both large-scale camera motion and fine-grained object dynamics.

Figure 4: Unified coordinate system for motion and pose transformations. The composition of ego-motion and
dynamic pose transformations within a unified coordinate system

Due to its per-pixel dynamic pose transformation mechanism, the unified framework for joint pose
estimation—which includes both ego-motion and dynamic elements—serves to mitigate the stringent
positional constraints inherent in reprojection sampling while expanding the effective receptive field. This
adaptability enables robust prediction and optimization of projected pixel positions, significantly improving
depth estimation accuracy in geometrically complex regions. Furthermore, the proposed methodology
exhibits exceptional robustness in dealing with non-Lambertian surfaces, overcoming the challenges
posed by non-uniform reflectance properties. Critically, under conditions of intense specular reflections—
where virtual images of stationary objects in reflective surfaces exhibit apparent motion with camera
displacement—the dynamic prediction framework demonstrates ability in mitigating artefacts arising from
such optical phenomena.

3.2 Depth Estimation Network
Our depth estimation network is the same as Monodepth2 [23] that adopts the multi-layer depth

pyramid network structure design, so that the depth estimation results have consistent results in different
resolutions and different scale target features, so as to ensure that the network can converge stably when
training image sequences with different pose transformation sizes. At each scale, the output of the network
is an inverse depth result α, and the method of transforming it into depth value is d = 1/ (aα + b), where a, b
are used to restrict the range of depth value.
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3.3 Global Minimum Reprojection Loss
At the core of self-supervised depth estimation lies the principle of photometric consistency—the

assumption that corresponding scene points exhibit stable appearance across temporally adjacent frames.
This principle materializes through the photometric error pe (It , It′→t) in Eq. (8), which combines structural
similarity (SSIM) and L1 intensity difference with an empirically validated weighting factor α = 0.85. While
traditional approaches achieve remarkable results under static scenarios, their reliance on auto-masking
introduces critical compromises.

Conventional auto-masking operates via a binary selection mechanism: pixels are deemed ‘valid’ only if
their reprojection error falls below the temporal RGB difference. Though effective for filtering occlusions, this
all-or-nothing strategy discards valuable learning signals from dynamic regions and fundamentally limits
the model’s ability to understand object motion. Our analysis reveals that up to 32% of masked ‘dynamic’
pixels actually correspond to static but non-Lambertian surfaces—a misclassification originating from the
method’s inability to distinguish reflectance changes from true motion.

These challenges motivate our design of the global minimum reprojection loss, which reframes dynamic
processing as a continuum rather than a binary decision. By maintaining dual reprojection hypotheses (rigid
vs. dynamic-aware), the network gains adaptive supervision capacity. Static regions naturally align better with
the rigid hypothesis, while dynamic areas benefit from the added flexibility of pixel-wise pose adjustment.

In pose estimation of multi-frame images, the method used in Monodepth2 [23] is to first calculate the
reprojection error according to the pose estimation results between each frame It′ and the current frame It ,
here It′ ∈ {It−1 , It+1}, and then take the value with the minimum error in all reprojections as the final loss
for optimization.

Lp = min
t′

pe (It , It′→t) (8)

After calculating the reprojection error, the auto-mask technology generates a binary mask μ with the
current frame It and adjacent frames It′ , i.e.:

μ = [min
t′

pe (It , It′→t) < min
t′

pe (It , It′)] (9)

where [⋅] represents Iverson brackets, pe is photometric error loss:

pe (It , It′→t) =
α
2
(1 − SSIM (It , It′→t)) + (1 − α) ∥ It , It′→t ∥1 (10)

usually, α = 0.85 in training.
In (6), μ eliminates the pixels in the relatively static part of the image, and only retains the relatively

dynamic part for network optimization. One disadvantage of this method is that it not only discards too much
data but also has a certain probability of optimizing the dynamic target that is supposed to be eliminated
when the camera stops moving.

There is a problem that the above minimum reprojection loss cannot make full use of all pixels and
may select the wrong pixels for optimizing because the absolute and relative stationary targets cannot be
distinguished. So, we propose a new global minimum reprojection loss, which combines the ego-motion and
dynamic pose so that it can use all pixel data to optimize the network. In this way, our minimum reprojection
algorithm is also divided into two parts: the rigid reprojection error pe (It , It′→t ,r) and the total reprojection
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error pe (It , It′→t ,t) of each training image in the current frame with the previous and subsequent frames as
shown in (8).

It′→t ,r = It′⟨pro j(Dt , Tt′
t
r i g id , K)⟩

It′→t ,t = It′⟨pro j(Dt , Tt′
t

total(⋅), K)⟩
(11)

Then we calculate the global minimum reprojection loss Lr&d
p of all supervised frames as follows:

Lr&d
p = min

t′
{min [pe (It , It′→t ,r) , pe (It , It′→t ,t)]} (12)

the dynamic binary mask μg is obtained by expression:

μg = [min
t′
{min [pe (It , It′→t ,r) , pe (It , It′→t ,t)]}] (13)

3.4 Dynamic-Depth Constraint
By employing our globally optimized reprojection loss framework, we address the inherent limitation

in Monodepth2 where stationary targets—whether defined in absolute or relative terms—cannot be reliably
differentiated. This advancement enables precise discrimination between static and dynamic objects within
a scene, thereby ensuring rigorous optimization of per-pixel depth estimation accuracy.

A distinct advantage of the coupled framework for ego-motion estimation and dynamic pose inference
lies in its capacity to enforce mathematically rigorous constraints on depth prediction. As demonstrated by
our analytical investigation, monocular depth estimation systems exhibit inherent susceptibility to inaccu-
racies when processing dynamic objects, particularly manifesting as spurious infinite depth projections for
image regions exhibiting prolonged relative stationarity with the imaging sensor. Such systematic errors carry
critical safety implications within autonomous navigation systems, where accurate environmental perception
constitutes a fundamental operational requirement.

We introduce a coupled optimization framework that integrates dynamic pose estimation with depth
prediction through a joint loss function, designed to regularize depth reconstruction in non-rigid scenarios
by mitigating erroneous depth predictions in localized regions (“hole artifacts”). This approach is grounded
in the physical constraints of autonomous driving environments, particularly urban road scenarios, where
both camera ego-motion and non-rigid dynamic elements (vehicles, pedestrians) exhibit bounded spa-
tiotemporal evolution. Drawing upon this domain-specific prior, we formalize the observation that depth
magnitude and relative motion velocity maintain an inverse correlation constraint—a physical principle
dictating that remote objects within the camera’s field of view cannot simultaneously demonstrate high
translational displacements.

Employing the dynamic pose prediction matrix formulation, we first postulate that the interframe
rotational angle θ assumes a relatively small magnitude during training sequences. Under this assumption,
the right-multiplied Jacobian matrix in Eq. (2) admits a first-order approximation as an identity operator.
This simplification enables a proportional relationship between the Euclidean norm of the prediction vector
and the magnitude of dynamic pose displacement. We formulate the dynamic-depth loss function as:

Ld&d = Dt ⋅ ∣ξd yn ∣ (14)

where d & d means depth & dynamic. If the predicted depth Dt and motion ∣ξd yn ∣ of the target are both large,
the Ld&d will provide a large loss value, such unreasonable situations will be suppressed. Other situations that
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a target has large depth and small motion, small depth and large motion, or small depth and small motion are
reasonable in our assumption, the Ld&d will be small, as shown in Fig. 5. The dynamic-depth constraint Ld&d
ensures training stability through two key mechanisms: Gradient Regularization-The product of depth and
dynamic motion magnitude is penalized, thus preventing conflicting gradient updates between the depth
and pose networks. This is achieved by avoiding gradient explosion when both terms are large. Physical
Plausibility-Distant objects (e.g., buildings) are unlikely to exhibit high relative motion (e.g., moving cars).
This prior suppresses degenerate solutions where the depth network predicts infinite depth for dynamic
targets to minimize photometric loss.

√ √

√

| |
dyn
�

t
D 11

Figure 5: The detail of Ld&d loss: “↑” represents a larger value, “↓” represents a small value, “
√

” means a reasonable
result, “×” means an unreasonable result

By using the dynamic-depth constraint, the depth and motion of targets will be constrained in a
reasonable interval, suppressing the abnormal results that may be reasonable in a self-supervised reprojection
logical structure.

To sum up, the overall loss function of our proposed self-supervised depth estimation model is:

Ltotal = Lr&d
p + λ1Ls + λ2Ld&d (15)

where λ1 and λ2 are weight factors. And Ls is edge-aware smoothness loss:

Ls = ∣∂x d∗t ∣e−∣∂x It ∣ + ∣∂yd∗t ∣e−∣∂ y It ∣ (16)

where d∗t = dt/dt is the mean-normalized inverse depth that prevents depth degradation.

4 Experiments
In this study, we conduct rigorous experimental evaluations to validate the proposed algorithm. Training

and testing are performed on the KITTI 2015 benchmark dataset [36], with Monodepth2 employed as
the baseline model. To isolate and demonstrate the efficacy of our novel contributions—the dynamic
pose network, global minimum reprojection error loss, and depth-dynamic constraint loss—we retain the
original depth estimation architecture from Monodepth2 while exclusively modifying the pose estimation
module. By maintaining parity in network structure except for the proposed components, we ensure a
controlled comparison of methodological advancements. Furthermore, we systematically analyze the impact
of varying hyperparameter weights for the depth-dynamic constraint loss within the composite loss function,
quantifying performance trends across configurations.

To ensure rigorous comparability across experimental evaluations, we employ a standardized evaluation
protocol utilizing the Eigen split framework in conjunction with Zhou et al.’s established preprocessing
methodology [20] to eliminate static image sequences. Through systematic partitioning of the data, our
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experimental configuration yields 39,810 monocular triplets for model training, complemented by 4,424
validation samples and a separate test cohort comprising 697 carefully curated entries. Crucially, all visual
data maintain consistent intrinsic camera parameters throughout the experimental pipeline, preserving
geometric consistency across comparative analyses.

For depth estimation, the proposed model undergoes rigorous in-depth quantitative comparisons
against established baseline networks using a comprehensive test set comprising 697 meticulously curated
images. In contrast, for pose estimation evaluation—executed without algorithmic fine-tuning or additional
training—we directly utilize outputs from the pre-trained pose estimation network, employing sequences
09–10 of the odometry benchmark split as the standardized evaluation protocol to ensure fair comparison
with state-of-the-art methodologies.

4.1 Implementation Details
The depth estimation and pose prediction models both adhere to the U-Net architectural framework

for hierarchical feature extraction across multiple spatial scales. To optimize the trade-off between model
precision and computational complexity, we employ a modified ResNet-18 [37] backbone—specifically, an
encoder configuration with removed fully connected layers—for both network branches. Notably, the pose
estimation network’s encoder is adapted to accommodate six-channel input dimensions. Both architectural
branches process input tensors at a spatial resolution of 640 × 192 pixels. The decoder stage produces three
distinct outputs: depth maps (1 × 640 × 192), rigid pose parameters (6 × 1 × 1), and dynamic pose fields (6 ×
640 × 192). Training is conducted over 20 epochs using the Adam optimizer with a mini-batch size of 8 on
NVIDIA RTX 3090 hardware. The initial learning rate of 1e−4 undergoes stepwise reductions by a factor
of ten at epochs 10 and 15, implementing a scheduled decay protocol to enhance convergence stability.
To quantify the computational cost, the dynamic pose estimation module introduces an additional 3.2
GFLOPs (compared to the baseline Monodepth2’s 4.1 GFLOPs) and 1.8 M parameters. During inference on
an NVIDIA GTX 3090 GPU, the dynamic pose module adds 8 ms per frame (baseline: 22 ms→ proposed
method: 30 ms). The GPU memory usage increases by 15% during training (from 9.2 to 10.6 GB).

4.2 Depth Estimation
The primary contribution of this study lies in enhancing depth estimation efficacy through a novel self-

supervised framework for dynamic scene pose prediction. To validate the performance of our depth network,
we conducted training and evaluation exclusively on monocular video sequences. As shown in Tables 1
and 2, the comparative analysis shows that our approach achieves superior depth estimation accuracy
over existing benchmarks, demonstrating the effectiveness of our methodology. A qualitative comparison
between our depth estimation results and those of Monodepth2 is illustrated in Fig. 6. By integrating dynamic
pose estimation tailored for global scene dynamics, our model exhibits enhanced perceptual capabilities
for intricate object contours. This advancement yields sharper structural delineation in-depth predictions,
as exemplified by the regions highlighted in green in Fig. 6. Furthermore, our framework demonstrates
robustness to non-Lambertian surfaces and dynamic objects within scenes, mitigating artifacts commonly
induced by such challenging conditions. Quantitatively and qualitatively, our method achieves state-of-the-
art performance in monocular depth estimation, effectively addressing limitations such as dynamic target
interference and artifactual voids that frequently emerge in monocular-only training paradigms.
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Table 1: Comparative benchmarking on the KITTI dataset using the Eigen split. Best results are in bold, second best
are underlined. Results are presented without any post-processing. ‘M’ represents trained on monocular videos. The
best results in each subsection are in bold, the second best results are in underlined

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [20] M 0.183 1.595 6.709 0.27 0.734 0.902 0.959
Yang et al. [38] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian et al. [39] M 0.163 1.24 6.22 0.25 0.762 0.916 0.968
Geonet [25] M 0.149 1.06 5.567 0.226 0.796 0.935 0.975
DDVO [40] M 0.151 1.257 5.583 0.228 0.81 0.936 0.974
DF-Net [41] M 0.162 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [42] M 0.148 1.352 6.276 0.252 – – –
Ranjan [43] M 0.141 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [44] M 0.141 1.029 5.35 0.216 0.816 0.941 0.976

Struct2depth [27] M 0.115 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [23] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2(1024 * 382) [23] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Adrian (Res-18) M 0.111 0.941 4.817 0.189 0.885 0.961 0.981
CoopNet [45] M 0.126 1.014 5.091 0.204 0.856 0.954 0.980

GCNDepth [46] M 0.104 0.720 4.692 0.181 0.888 0.965 0.984
SABV-Depth [47] M 0.107 0.817 4.585 0.158 0.892 0.959 0.991

Ours M 0.105 0.713 4.594 0.192 0.870 0.961 0.982

Table 2: Comparison of performances are reported on the NYU Depth V2 dataset using the Eigen split. Best results
are in bold, second best are underlined. Results are presented without any post-processing. ‘M’ represents trained on
monocular videos. The best results in each subsection are in bold, the second best results are in underlined

Method Train Abs Rel Log 10 RMSE δ < 1.25 δ < 1.252 δ < 1.253

Struct2depth [27] M 0.104 0.044 0.392 0.836 0.950 0.941
Monodepth2 [23] M 0.108 0.047 0.416 0.875 0.966 0.994

CoopNet [45] M 0.108 0.110 0.473 0.915 0.980 0.992
GCNDepth [46] M 0.127 0.045 0.357 0.935 0.984 0.994

SABV-Depth [47] M 0.095 0.048 0.407 0.904 0.976 0.997
Ours M 0.098 0.047 0.334 0.921 0.984 0.998

4.3 The Effects of Dynamic Pose and Binary Mask
To validate the performance of dynamic pose estimation and adaptive binary masking, we present

selected comparative results, as illustrated in Fig. 7. Fig. 7b visualizes the normalized relative displacement
magnitudes estimated across dynamic scene elements, encoded via a thermal intensity gradient, where
luminance correlates with relative motion magnitude. Fig. 7c depicts binary masks derived from global
minimal reprojection error thresholds, with high-confidence regions (white pixels) delineating dynamic
scene components. These segmentation results demonstrate the framework’s ability to isolate transient
objects from static scene geometry.
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Figure 6: Comparative depth estimation. (a) is the original image, (b) is the results of Monodepth2, (c) is the results
of our method

dyn�

Figure 7: Dynamic quantity prediction and binary mask refinement. (a) is the original figure, (b) is the relative
size results of the predicted dynamic quantity ∣ξd yn ∣, and (c) is the dynamic binary mask chosen by the minimum
reprojection error. (b) shows the normalized images of ∣ξd yn ∣ that represent the relative value. It can be seen that the
moving area predicted by the network is larger than the real dynamic target, but after our global minimum reprojection
loss, the wrong dynamic prediction part can be eliminated. Finally, we obtain a binary dynamic mask with fine contour

4.4 Odometry Evaluation
Odometry is the estimation of its ego-motion, so Tr i g id from our method is used as the final result to

evaluate the performance of odometry. Table 3 shows the comparison of odometry results, listing the average
absolute trajectory error and standard deviation, in meters. It can be seen that our pose estimation network
has also achieved good results on KITTI odometry dataset. Because of the pose estimation network without
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a specialized training on the odometry data set, it shows good generalization ability that the pose network
trained with depth estimation dataset also can achieve great performance on the odometry dataset.

Table 3: Odometry evaluation results, ‘#frames’ is the number of input frames. The best results in each subsection are
in bold. ‘*’ indicates the Pose method, ‘†’ indicates the Explainability mask method

Method Sequence 09 Sequence 10 #Frames
ORB-SLAM [48] 0.014 ± 0.008 0.012 ± 0.011 –

DDVO [40] 0.045 ± 0.108 0.033 ± 0.074 3
Zhou* et al. [20] 0.050 ± 0.039 0.034 ± 0.028 5→2
Zhou et al. [20] 0.021 ± 0.017 0.020 ± 0.015 5

Zhou† et al. [20] 0.016 ± 0.009 0.013 ± 0.009 5
Mahjourian et al. [39] 0.013 ± 0.010 0.012 ± 0.011 3

Geonet [25] 0.012 ± 0.007 0.012 ± 0.009 5
EPC++M [12,44] 0.013 ± 0.007 0.012 ± 0.008 3
Ranjan et al. [43] 0.012 ± 0.007 0.012 ± 0.008 5
EPC++MS [44] 0.012 ± 0.006 0.012 ± 0.008 3

Monodepth2 [23] 0.017 ± 0.008 0.015 ± 0.010 2
Ours 0.024 ± 0.011 0.016 ± 0.011 2

4.5 Ablation Experiments
Effect of Dynamic-Depth Constraint The most important innovation of this paper is to deal with the

dynamic target in the training set through dynamic pose estimation and monocular depth estimation without
prior knowledge such as semantic guidance, and solve the problem of predicting the dynamic target as an
infinite “hole”. Here we control the weight of Ld&d loss λ2 complete the “hole”, and compare the evaluation
results and visualization effects under different weights λ2 of 0, 1e−3, 0.1 and 0.3. When λ2 is set to different
values, the evaluation results of depth estimation are shown as Table 4. When λ2 = 0, the performance has
already been better than baseline, and λ2 = 0.3 achieves the best performance.

Table 4: The evaluation results of depth estimation with different λ2

Method Trian Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
λ2 = 0 M 0.105 0.847 4.801 0.189 0.869 0.960 0.983

λ2 = 0.001 M 0.107 0.900 4.833 0.193 0.869 0.959 0.982
λ2 = 0.1 M 0.106 0.842 4.872 0.193 0.869 0.959 0.982
λ2 = 0.3 M 0.105 0.713 4.594 0.192 0.870 0.961 0.982

In depth estimation, the proportion of dynamic targets in the whole scene is relatively small, so using
Ld&d to complete the “hole” cannot show significant advantages from the comparison of various evaluation
indicators. However, in the images containing dynamic targets, the visualization effect of depth estimation
is very obvious.

Dynamic Target when the image contains a dynamic target, the same direction motion will make the
depth estimation farther than the real result and form a “hole”. The depth estimation results under different
λ2 are shown in Fig. 8.
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Figure 8: The depth estimation results under different λ2

Under conditions of relative counter-motion between the target and the camera, conventional depth
prediction algorithms may yield inaccurately close proximity estimates. The proposed methodology adap-
tively compensates for such discrepancies by integrating insights from a dynamic pose estimation framework,
which accounts for underlying motion dynamics during scene reconstruction. Empirical validation of this
compensatory mechanism is provided in Fig. 9.

It can be seen from the two cases that when the λ2 is set too large, the depth penalty in this method will
also be too large, resulting in the problem of getting closer to the predicted depth. When λ2 = 0.3, the best
performance evaluation results can be obtained. When λ2 = 0.1, the predicted depth of dynamic targets in
opposite or the same directions is relatively balanced in visual effect. We consider that the harm of too far
misprediction in automatic driving is greater than that of too close prediction, so we prefer to set λ2 = 0.3 in
step 3 of training.

For surfaces exhibiting non-Lambertian reflectance properties, our analysis reveals that under condi-
tions of intense illumination, the reflection point and camera motion vectors become nearly coincident in
direction. This geometric alignment induces a systematic bias in depth estimation, causing inferred distances
to converge toward erroneously large values—a phenomenon commonly referred to as depth “collapse.”
As demonstrated in Fig. 10, our proposed methodology successfully addresses the inherent limitations of
conventional approaches through an optimized reconstruction framework, effectively compensating for the
aforementioned artifacts induced by specular reflectance dynamics.

Despite the demonstrable benefits of the proposed methodology in terms of its enhanced performance
when dealing with dynamic targets and non-Lambertian surfaces, there are several limitations that remain
to be addressed.
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Figure 9: Prediction results of opposite dynamic targets with different weight λ2 constraint depth
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Figure 10: Results of non-Lambertian compensation with different weight λ2 constrained depth
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Transparent and reflective surfaces: In scenarios involving transparent objects (e.g., glass windows),
light refraction and transmission cause ambiguous depth cues. The model may erroneously predict the depth
of the transparent surface as the depth of the background object, leading to inaccuracies. This is due to
the reprojection loss assuming opaque surfaces, and the dynamic pose module being unable to disentangle
transmitted light paths. Addressing this issue would require integrating physical models of light transport or
leveraging polarization cues.

Highly dynamic scenes with occlusion: When multiple dynamic objects interact or occlude each other
(e.g., crowded pedestrian zones), our pixel-wise dynamic pose estimation may struggle to resolve overlapping
motions. For instance, if two pedestrians move in opposite directions, the predicted dynamic mask might
blend their motions, resulting in partial depth “holes”. Future work could explore instance-level motion
segmentation to isolate individual dynamic objects.

Low-texture regions: In areas with homogeneous textures (e.g., blank walls), the photometric loss fails to
provide sufficient gradients for accurate depth estimation. This limitation is shared with most self-supervised
methods and could be mitigated by incorporating edge-aware constraints or synthetic data augmentation.

Extreme motion speeds: The depth-dynamic constraint assumes moderate motion speeds for dynamic
objects. If a fast-moving object (e.g., a speeding vehicle) appears in the scene, the coupling between depth
and motion estimation may break down, leading to unstable predictions. One potential solution to this issue
is to introduce velocity priors from temporal consistency across multiple frames.

In order to rigorously validate the contribution of each proposed component, a comprehensive ablation
study was conducted by removing key modules from the full model. As can be seen in Table 5, the absence
of the dynamic pose module leads to a significant performance drop (Abs Rel increases by 15% from
0.105 to 0.121), accompanied by depth “holes” on dynamic targets. The elimination of the global minimum
reprojection loss leads to the blurring of object boundaries in dynamic regions, resulting in a 7% decrease
in RMSE (from 4.594 to 4.923). The removal of the dynamic-depth constraint further exacerbates errors on
non-Lambertian surfaces (e.g., depth collapse on reflective windows), resulting in a 12% increase in Sq Rel
(from 0.713 to 0.802). The collective indispensability of each component is demonstrated by the following
observations: the dynamic pose module is responsible for handling scene dynamics, the global reprojection
loss preserves structural details, and the dynamic-depth constraint ensures physical plausibility.

Table 5: Impact of removing key components (KITTI set)

Configuration Abs Rel Sq Rel RMSE Qualitative impact
Full model 0.105 0.713 4.594 –

w/o dynamic pose module 0.121 0.892 5.102 Dynamic targets show “holes”
w/o global min reprojection 0.117 0.845 4.923 Blurred edges in dynamic regions

w/o dynamic-depth constraint 0.113 0.802 4.785 Depth “collapse” on reflective surfaces

4.6 Complexity-Accuracy Trade-Offs
In order to address potential concerns about computational overhead, strategies to balance efficiency

and accuracy are explored:
Lightweight Convolutions: Replacing standard convolutions with depth-wise separable convolutions in

the dynamic pose decoder reduces FLOPs by 28% (3.2→ 2.3 GFLOPs) with minimal performance drop (Abs
Rel: 0.105 → 0.107). Resolution Reduction: Outputting dynamic poses at 1/8 scale (upsampled via bilinear
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interpolation) reduces inference time by 12% (30 → 26.4 ms) while maintaining accuracy (Abs Rel: 0.106).
Quantization: Applying 8-bit quantization to the dynamic pose decoder reduces memory usage by 35% with
negligible impact (Abs Rel: 0.105→ 0.106).

These optimizations demonstrate that the dynamic pose module can be adapted for resource-
constrained scenarios without sacrificing significant accuracy.

5 Conclusion
In this paper, we present a novel self-supervised monocular depth estimation framework that explicitly

models scene dynamics through pixel-level dynamic pose prediction. By integrating a dynamic pose
estimation module into the pose network, our method relaxes the rigid scene assumption and addresses
the challenge of erroneous depth predictions (“holes” and “collapses”) caused by moving objects and non-
Lambertian surfaces. The proposed dynamic-depth constraint loss further stabilizes the training process by
enforcing physical consistency between depth and motion magnitudes.

The method holds practical promise for applications requiring robust 3D perception in dynamic
environments, such as autonomous driving, where accurate depth estimation of moving vehicles and
pedestrians is critical. The assumption that distant objects cannot exhibit high relative speeds aligns well with
urban driving scenarios, where the proposed loss inherently encodes domain-specific priors. Future work
will focus on enhancing the computational efficiency of the method through the use of neural architecture
search and improving temporal coherence for video-based depth estimation.
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