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ABSTRACT: Nowadays, abnormal traffic detection for Software-Defined Networking (SDN) faces the challenges of
large data volume and high dimensionality. Since traditional machine learning-based detection methods have the
problem of data redundancy, the Metaheuristic Algorithm (MA) is introduced to select features before machine learning
to reduce the dimensionality of data. Since a Tyrannosaurus Optimization Algorithm (TROA) has the advantages of
few parameters, simple implementation, and fast convergence, and it shows better results in feature selection, TROA
can be applied to abnormal traffic detection for SDN. However, TROA suffers from insufficient global search capability,
is easily trapped in local optimums, and has poor search accuracy. Then, this paper tries to improve TROA, namely
the Improved Tyrannosaurus Optimization Algorithm (ITROA). It proposes a metaheuristic-driven abnormal traffic
detection model for SDN based on ITROA. Finally, the validity of the ITROA is verified by the benchmark function
and the UCI dataset, and the feature selection optimization operation is performed on the InSDN dataset by ITROA
and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection. The experiment shows that
the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for
SDN, achieving an accuracy of 99.37% on binary classification and 96.73% on multiclassification.

KEYWORDS: Software-defined networking; abnormal traffic detection; feature selection; metaheuristic algorithm;
tyrannosaurus optimization algorithm

1 Introduction
Traditional networks are being pushed to their limitations by social media, mobile devices, and cloud

computing [1]. The traditional network architecture model has many problems with protocols and closed
models. Software-Defined Networking (SDN) [2] is an emerging networking paradigm that gives hope to
change the limitations of current network infrastructures [3]. It was first described as a method for designing,
constructing, and maintaining networks that divide the control and forwarding planes. It allows the network
control to be directly programmable and the underlying infrastructure to be abstracted for network services
and applications [4]. However, its open interfaces and programmability can also be used maliciously, allowing
attackers to use these interfaces to codify network configurations. Techniques for abnormal traffic detection
can pay close attention to network traffic patterns to identify and block such threats. SDN abnormal traffic
detection becomes crucial as a result.

The categories of the two main SDN abnormal traffic detection methods are rule-based and Machine
learning-based. In this rule-based method, abnormal traffic detection is performed by utilizing pre-defined
rules. Common rules include bandwidth limitations, latency, packet loss rate, and other traffic-related
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parameters. However, this method may not be successful in identifying certain new types of network attacks
or abnormal conditions when faced with them. As a branch of artificial intelligence, machine learning has
become a helpful ally [5]. It is a promising instrument for abnormal traffic detection because of its lightweight
design and capacity to process massive amounts of data [6–8]. A machine learning-based method builds
models for abnormal detection by training lots of traffic data, which learns the normal traffic patterns to
create a rubric in the training phase and determines the abnormal discovery in new traffic based on the
learned rubric in the detection phase.

Abnormal traffic detection for SDN based on machine learning has received some attention. Niyaz
et al. [9] propose a deep learning-based multi-vector DDoS detection system in an SDN environment
by using deep learning to reduce the features derived from network traffic and improve attack detection
accuracy. Tang et al. [10] develop a deep neural network model for an intrusion detection system and trained
the model using the NSL-KDD dataset for stream-based anomaly detection. The experiments have confirmed
the great potential of deep learning methods for SDN abnormal detection. Wang et al. [11] propose a deep
learning hybrid model-based abnormal traffic detection system to achieve fine detection of abnormal traffic
from the surface and improve accuracy, recall, and false alarm rate compared to traditional SDN abnormal
traffic detection methods. Arevalo-Herrera et al. [12] propose a machine-learning algorithm for classification
attacks using the CES CIC IDS2018 dataset. Their analysis evaluates the performance of traditional machine-
learning techniques, including decision trees, random forests, and a neural network architecture.

In recent years, there have been notable developments in Machine learning-based aberrant traffic
identification for SDN. By extracting the network traffic features and using machine learning to classify and
detect the traffic, researchers can quickly identify abnormal traffic detection. However, Machine learning-
based SDN abnormal traffic detection may encounter performance bottlenecks when dealing with large-scale
data and require additional designs to optimize the data processing flow. As a key step in data processing,
feature selection aims to reduce the number of features to deal with the problem of data redundancy. The
Metaheuristic algorithm (MA), such as the Whale Optimization Algorithm (WOA) and the Particle Swarm
Optimization (PSO), can efficiently filter out the most important features by searching the solution space
heuristically, thus improving the performance and accuracy of the detection.

MA is widely used in the feature selection phase for the SDN abnormal traffic detection model to raise
the prediction accuracy. Stein et al. [13] utilize a genetic algorithm to select a subset of input features for
the decision tree classifier, using the KDDCUP 99 dataset to train and test the classifier. The generated
decision tree performs better than the decision tree constructed using all available functions, increasing
the detection rate and reducing the false alarm rate for network intrusion detection. Zainal et al. [14] use a
wrapper method that integrates a rough set and PSO to be a 2-tier structure of the feature selection process,
and the experimental findings demonstrate that the feature subset suggested by the technique is robust and
provides a better representation of the data. Mojtahedi et al. [15] utilize feature selection based on a blend
of WOA and genetic algorithms to create a network intrusion detection system, which makes it great to
extract features related to class labels. Lin et al. [16] take advantage of support vector machines and simulated
annealing, in which support vector machines and simulated annealing can find the best selection of features
to improve the accuracy of the abnormal traffic detection amount. Additionally, our prior work [17–21] has
introduced relevant applications of MA for feature selection. We apply MAs skillfully to the feature selection
phase of network traffic detection, aiming to substantially improve the efficiency and accuracy of detection
by intelligently filtering and extracting the most representative subset of features. Based on the in-depth
analysis of network traffic, this paper further focuses the research on abnormal traffic detection in SDN
environments, aiming to provide more targeted and accurate solutions.
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As found above, metaheuristic techniques have proved to be excellent methodologies [22]. MA offers
solutions that are close to optimal without ensuring a global optimum [23]. Consequently, the quest for
more effective optimization solutions has spurred the continual design of new MA [24]. A new MA named
Tyrannosaurus (T-Rex) Optimization Algorithm (TROA) [25] was proposed by Sahu et al. in 2023, which
simulates the T-Rex’s hunting habits. The core of the TROA is to simulate the hunting process of the T-Rex to
update the position of the population, which has significant advantages such as simple design, fast searching
speed, and fast convergence. Sahu et al. demonstrate the significant performance advantages TROA exhibits
over various other MAs. Through experiments and comparative analyses, they find that TROA converges
faster in solving optimization problems. This advantage makes TROA stand out among similar MAs and
become the tool of choice in our research. The TROA uses random numbers in the hunting and chasing
phases, increasing the search’s randomness. It could also result in the algorithm reaching a local optimum
solution too soon within the search. To solve this problem, the TROA can be improved and optimized
accordingly. Because of these problems, this paper uses four improvement strategies to improve the TROA,
and the Improved Tyrannosaurus Optimization Algorithm (ITROA) is proposed. Then, a metaheuristic-
driven abnormal traffic detection model for SDN based on ITROA is proposed by applying ITROA to the
feature selection. The next sections of this paper are organized as follows:

• Four improvement strategies are introduced to address the limitations of TROA applied to SDN
abnormal traffic detection, and ITROA is proposed. It effectively solves problems such as TROA’s
tendency to fall into local optimization.

• A metaheuristic-driven abnormal traffic detection model for SDN based on ITROA is proposed. In order
to improve detection efficiency and address the issue of data redundancy in the abnormal traffic detection
model for SDN, the model employs ITROA for feature selection.

The subsequent sections of this paper are structured as follows. Section 2 describes the basic TROA
algorithm. Section 3 proposes a metaheuristic-driven abnormal traffic detection model for SDN based on
ITROA. Section 4 provides the experimental design and analysis. Section 5 summarizes this paper and
outlines the limitations of this research and future research directions.

2 Tyrannosaurus Optimization Algorithm
TROA is a new bionic optimization algorithm that mimics T-Rex’s hunting behavior. It has advantages,

such as fast search speed and few parameters. TROA simulates the hunting behavior of a T-Rex through
three main phases: position initialization, hunt and chase, selection phase, and, ultimately, the best option.
This section focuses on the second and third phases, as shown in Algorithm 1.

Algorithm 1: Pseudocode of TROA
Start TROA.
1. Input problem information.
2. Initialization of the population size (N), the iterations (T), and the dimension (D).
3. Calculate the fitness value and record the optimal position.
4. For t = 1:T
5. For i = 1:N
6. Phase 1: Huntingandchasing.
7. If rand < Er
8. update the T-Rex’s position by Eq. (2).
9. else

(Continued)
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Algorithm 1 (continued)
10. Randomly update the T-Rex’s position.
11. end
12. Calculate the new fitness values.
13. Phase 2: Selection
14. If f (X) < f (Xnew)
15. update the prey’s position, target, and fitness values.
16. else
17. Target equals 0.
18. end
19. End
20. Save the best solution attained.
21. End
22. Output the best solution attained.
END TROA.

2.1 Hunting and Chasing
T-Rex hunting behavior resembles top predators, such as tigers and wolves. Once the nearest prey is

spotted, T-Rex attempts to capture it. However, prey sometimes succeed in defending themselves or take
advantage of the opportunity to escape. Therefore, T-Rex selectively attacked its prey at random during
feeding.

Xnew =
⎧⎪⎪⎨⎪⎪⎩

xnew , i f rand () < Er
Random, el se

(1)

where Er is the estimate of reaching the dispersed prey, Er = randn ∗ (1 – (t/max_Iter)). The prey starts to
flee as T-Rex begins hunting, and T-Rex updates its location to hunt the prey, as indicated by Eq. (1).

Xnew = x + rand∗sr∗ (tpos∗tr − target∗pr) (2)

In the given equation, sr represents the hunting success rate, and its value domain is [0.1, 1]. When the
success rate is 0, the prey escapes, and the hunting action fails. At this time, the prey’s location information
needs to be updated. Moreover, tpos is the location of the T-Rex. The running speed of the T-Rex is denoted
by tr, between [0, 1]; target is the minimum distance of the prey to the T-Rex position. As for the prey, its
running speed is denoted by pr, which has a value range between [0, 1].

2.2 Selection
The selection process is based on the location of the prey, which includes the current location of the

prey as well as its previous location. This process is done by evaluating the fitness function. If the T-Rex
hunts successfully, the target’s location information and fitness function value are updated. If the T-Rex does
not hunt, the prey’s location information is zeroed out, which occurs when the prey escapes or takes self-
protective measures to avoid predation.

Xk+1
i =

⎧⎪⎪⎨⎪⎪⎩

update the target position, i f f (X) < f (Xnew)
target is zero, el se

(3)



Comput Mater Contin. 2025;83(3) 4499

where f (X) is the fitness function of the initial random prey position and f (Xnew) is the fitness function of
the updated prey position.

Because of the influence of the random numbers and various parameters in Eq. (1), the TROA updates
the position of an individual to a certain degree of randomness. Due to this update mechanism, TROA may
prematurely converge to a locally optimal solution. In addition, the selection process of TROA mainly relies
on conditional judgment, which may also cause TROA to stop prematurely during the search process and
thus miss the global optimal solution. The architecture of TROA’s update mechanism and selection process
is primarily responsible for its structural flaws, which make it simple to drift toward the local optimum. In
our subsequent studies, we explored various improvement strategies to overcome this shortcoming.

3 Proposed Abnormal Traffic Detection Model for SDN
There are two sections in this section. Firstly, the ITROA is improved by TROA. Secondly, the

metaheuristic-driven abnormal traffic detection model for SDN based on ITROA is proposed.

3.1 Improved Tyrannosaurus Optimization Algorithm
3.1.1 Circle Mapping Strategy

The circle mapping [26] strategy effectively avoids falling into local optimal solutions during the search
process by introducing the randomness and traversal of chaotic sequences. It also enhances the TROA’s
global search capability. Because of the distribution of individuals in it, the initial population obtained is not
uniformly distributed. Thus, there can be no fundamental limitation on the algorithmic convergence. The
circle mapping strategy is used to initialize the population.

Circle mapping is a chaotic mapping that can be used to generate chaotic numbers between 0 and 1. It
has the following formula:

xk+1 = mod (xk + e − f
2π

sin (2πxk) , 1) (4)

where xk represents the kth chaotic number. e = 0.5, f = 0.2. mod denotes the remainder operation. Chaotic
numbers between 0 and 1 are generated by circle mapping and used as random numbers for the population’s
initialization. It can enhance the diversity and exploration of the population.

Assuming an individual of N = 1000. The distribution of individuals is created by circle mapping and
random sequences in the interval [0, 1]. As shown in Fig. 1, the circle mapping strategy has a more uniform
population distribution.

Figure 1: Binary classification results. (a) Random; (b) Circle mapping strategy
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3.1.2 Elite Reverse Learning Strategy
The elite reverse learning strategy [27,28] increases the likelihood of finding a better solution, thus

overcoming the limitation of local optimality. The search using the inverse solution of the current optimal
solution allows for rapid exploration of unexplored regions of the solution space. This strategy is based on the
advantage that elite individuals contain more valid information than ordinary individuals and use the elite
individuals in the current population to generate a reverse population, which aims to increase the diversity
of the population.

Definition of elite inverse solution: assume that the current general individual in the population
corresponds to an elite individual at its extremum Xe

i , j = Xe
i ,1, Xe

i ,2, , . . ., Xe
i ,d , its inverse solution

OPe
i , j = OPe

i ,1, OPe
i ,2, , . . ., OPe

i ,d . It can be defined as:

α j = max (Xi , j) (5)
β j = min (Xi , j) (6)
OPe

i , j = rand (α j + β j) − Xe
i , j (7)

where rand is a random number in the range [0, 1], Xe
i , j ε [αj, βj] and βj are dynamic boundaries. The draw-

back of fixed boundaries, which makes search preservation challenging, is addressed by dynamic boundaries.
Elite reverse learning strategy can be localized in a narrow search space, facilitating algorithmic convergence.

3.1.3 PSO Convergence Strategy
The PSO method updates a particle’s position using its best position and the best position of the entire

population. Therefore, this paper combines the idea of the PSO algorithm to introduce the optimal position
information experienced by individual T-Rex into the position update formula. The new positional update
formula is:

x(t+1) = c1∗rand∗Xi(t) + c2∗rand∗(Xibest − Xi(t)) (8)

In the formula, c1 is the social learning factor, and c2 is the cognitive learning factor. Which represents
the effect of the optimum experienced by an individual and the population optimum on the algorithm’s search
capability; rand is a random number in the range [0, 1]. Xibest indicates where the T-Rex itself experienced
the optimum.

3.1.4 Lévy Flight Strategy
The Lévy flight [29] has the property of having a long step size in conjunction with a short step size. It

allows the algorithm to perform large step size jumps globally to explore new regions and fine search in small
areas to optimize the quality of the solution. This property helps to jump out of the local optimum. This paper
uses the Lévy flight strategy to optimize the TROA’s optimization process and increase the optimization
accuracy. Global detection uses a Lévy flight strategy, which distributes individuals widely in the search space
to improve global optimization.

The Lévy flight strategy is a stochastic search method that obeys the Lévy distribution. It is a type of
walk in which short-range searches are interspersed with occasional longer-range walks, thus contributing
to the good global search capability of Lévy flights.
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The position update formula for Lévy’s flight is:

xi (t) = xi (t) + L ⊕ Lev y (λ) (9)

where xi(t) denotes the ith solution in generation t; ⊕ denotes point-to-point multiplication; L denotes
control step weights. Due to the Lévy distribution’s complexity, it is often modeled using the Mantegna
algorithm. The formula for calculating the step length is as follows:

S = μ
∣ν∣

1
γ

(10)

where μ and ν follow a normal distribution. Definitions are as follows:

μ ∼ N (0, σ 2
μ)

ν ∼ N (0, σ 2
ν )

σμ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γ (1 + γ) sin (πγ
2
)

γ∗Γ [(γ + 1) /2] ∗2
(γ−1)

2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

1
γ

σν = 1

where γ is usually taken as 1.5.

3.1.5 ITROA Flowchart
Fig. 2 is a flowchart of the ITROA, and the pseudocode is shown in Algorithm 2.
In this paper, as shown in Fig. 2, the steps of the ITROA are shown below.
Step 1: Initialize parameters, including the population size (N), the iterations (T), and the dimension

(D).
Step 2: Initialize positions by Eq. (4). Calculate the fitness value to find the nearest location of the prey.

Record its location and make it a target for the T-Rex.
Step 3: Update the populations’ position by Eqs. (5)–(7).
Step 4: Initiate a T-Rex hunting process to simulate the probability problem of successful hunting

by Eq. (1). If the hunt is successful, the T-Rex position is updated by Eq. (8). If the hunt fails, the location of
the T-Rex is randomly updated. Then, calculate new fitness values.

Step 5: Compare the random fitness value f (X) with the updated fitness value f (Xnew) by Eq. (3). If
f (X) < f (Xnew), update the prey’s position, target and fitness values. Then, the position is updated by Eqs. (9)
and (10). Else, the target is equal to 0.
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Figure 2: ITROA flowchart

Algorithm 2: Pseudocode of ITROA
Start ITROA.
1. Input problem information.
2. Initialization of the population size (N), the iterations (T), and the dimension (D).
3. Update populations by Eq. (4).

(Continued)
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Algorithm 2 (continued)
4. Calculate the fitness value and record the optimal position.
5. Update populations’ position by Eqs. (5)–(7).
6. For t = 1:T
7. For i = 1:N
8. Phase 1: Hunting and chasing.
9. If rand < Er
10. update the T-Rex’s position by Eq. (8).
11. else
12. Randomly update the T-Rex’s position.
13. end
14. Calculate the new fitness values.
15. Phase 2: Selection
16. If f (X) < f (Xnew)
17. up date the prey’s position, target, and fitness values.
18. Update the position by Eqs. (9), (10).
19. else
20. Target equals 0.
21. end
22. End
23. Save the best solution attained.
24. End
25. Output the best solution attained.
END ITROA.

3.2 Metaheuristic-Driven Abnormal Traffic Detection Model
As for SDN abnormal traffic detection, Fig. 3 proposes a metaheuristic-driven abnormal traffic detection

model for SDN based on ITROA. Fig. 4 shows the feature selection flowchart of ITROA. As shown in Fig. 3,
the metaheuristic-driven abnormal traffic detection model for SDN based on ITROA can be divided into
four phases: dataset acquisition phase, data processing phase, feature selection based on ITROA phase, and
results evaluation phase.

(1) Data acquisition phase
Use tools to acquire an abnormal traffic detection dataset for SDN to obtain data for later analysis. This

paper uses an abnormal traffic dataset in an SDN environment to simulate realistic network data and validate
abnormal traffic detection for SDN.

(2) Data processing phase
Typically, the collected data contains issues like incompleteness, inconsistency, and redundancy. There-

fore, data processing before the experiment is crucial. The InSDN dataset should first be cleaned, which
includes removing duplicate data and addressing missing or inaccurate data. Then, to prevent the occurrence
of format inconsistency problems, the InSDN dataset needs to be processed uniformly, and it is converted
into numerical classes. Finally, to address the significant variations in the InSDN dataset’s dimensions. A
normalization function is used to process the data and map all data to [0, 1].
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Figure 3: The abnormal traffic detection model for SDN based on ITROA

(3) Feature selection based on ITROA phase
Many invisible redundant features remain because of the vast amount of acquired data processed.

Therefore, feature selection of the InSDN dataset effectively reduces redundant features and can improve the
accuracy of abnormal traffic detection. This phase uses the ITROA for feature selection, as shown in Fig. 4.
Iterative optimization search by the ITROA. The optimal subset’s index is obtained at the end of the iteration.
The phase now acquires the optimal subset of features. Thus, the purpose of removing redundant features is
achieved, and the efficiency of abnormal traffic detection is improved.

(4) Result evaluation phase
The classifier is an important tool for evaluating the performance. In this paper, the KNN classifier

is used for evaluation. As described in Fig. 4, firstly, the feature-selected InSDN dataset is divided into
training and test sets. Then, the KNN classifier is used to classify and obtain the assessment indicators,
including accuracy, recall, precision, and F1-score. Finally, projected results are reflected through the
assessment indicators.
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Figure 4: Feature selection flowchart of ITROA

4 Experimental Results and Analysis
There are three sections in this section. The benchmark functions are used in the first part to analyze

the convergence of ITROA. In the second part, the efficiency of the ITROA is verified on the UCI dataset. In
the third part, the performance of ITROA on abnormal traffic detection is validated on the InSDN dataset.
The experiment is conducted in MATLABR2022b, using Intel(R) Core(TM) i5-8250U CPU@1.60 GHz 1.80
GHz, with a processor with Windows 11 as the software environment.

4.1 Benchmark Function Experiment
The algorithm is analyzed using simulation experiments to evaluate the ITROA’s performance for

optimization search. Table 1 selects six distinct kinds of benchmark functions. Table 2 shows the test function
experiment results. Table 3 verifies that ITROA significantly outperforms the original TROA regarding
optimization performance using the Wilcoxon sign rank test analysis. Fig. 5 shows the fitness convergence
curves of six benchmark functions.

As presented in Table 1, three single-peak functions (F1–F3) and three multi-peak functions
(F4–F6) are included. Set the parameters of the public part of the algorithm as follows: number of iterations
T = 500. Considering the random nature of the algorithms, all the above algorithms are run 20 times
repeatedly. Table 2 shows the calculated mean and standard deviation of the 20 results. The test results
are shown in Table 3. The Wilcoxon sign rank test p < 0.05, h = 1 on the benchmark function. From
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the results of the Wilcoxon sign rank test, ITROA and TROA perform significantly differently. As shown
in Fig. 5, comparative experiments are conducted using PSO, Whale Optimization Algorithm (WOA),
TROA, and ITROA.

Table 1: Benchmark function expressions

Type Function Dim Range Min
Unimodal F1 (z) = ∑n

i=1 z2
i 30 [−100, 100] 0

Unimodal F2 (z) = ∑n
i=0 ∣Zi ∣ +

n
∏
i=0
∣Zi ∣ 30 [−10, 10] 0

Unimodal F3 (z) =max ∣zi ∣ , 1 ≤ i ≤ n 30 [−100, 100] 0

Multimodal F4 (z) = 20 exp
⎛
⎝

0.2
√

1
n

Σn
I=1Z2

i
⎞
⎠
−

exp( 1
n

Σn
I=1 cos (2πzi)) + 20 + e

30 [−3.2, 3.2] 0

Multimodal F5 (z) = ( 1
500
+∑25

j=1
1

j + Σ2
i−1
(zi − ai j)) 30 [−65, 65] 1

Multimodal F6 (z) = 4z2
1 − 2.1z4

1 +
1
3

z6
1 + z1z2 − 4z2

z + 4z4
2 30 [−5, 5] −1.0316

Table 2: Test function experiment results

Function Type PSO WOA TROA ITROA

F1 Mean 2.41E−01 5.99E−73 1.85E−199 0.00E+00
Std 6.58E−02 1.68E−72 0.00E+00 0.00E+00

F2 Mean 2.54E+00 4.78E−48 4.27E−105 4.31E−174
Std 4.60E−01 1.24E−47 1.91E−104 0.00E+00

F3 Mean 5.48E−01 2.41E−01 6.34E−108 2.41E−177
Std 4.01E−02 1.43E−01 2.82E−107 0.00E+00

F4 Mean 1.98E+00 4.17E−15 4.44E−16 4.44E−16
Std 3.59E−01 2.44E−15 0.00E+00 0.00E+00

F5 Mean 1.26E+01 4.63E+00 1.26E+01 1.01E+01
Std 3.23E−12 3.80E+00 1.87E−10 1.32E−02

F6 Mean −1.03E+00 −1.03E+00 −9.99−01 −1.03E+00
Std 9.92E−07 4.90E−09 1.45E−04 6.15E−05

Table 3: The Wilcoxon sign rank test results

Value F1 F2 F3 F4 F5 F6
p 6.56E−24 2.13E−16 5.51E−22 2.68E−2 1.81E−14 3.93E−167
h 1 1 1 1 1 1
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Figure 5: Convergence curves of fitness

The findings are examined by choosing one test function at random from the optimization search
procedure to give more information on the ITROA’s convergence rate. The results show that the ITROA
exhibits better performance and stronger robustness under the same iterative optimization conditions.

4.2 Experiments Using UCI Datasets
The UCI datasets are used to validate the effectiveness of the ITROA. As described in Table 4,

three datasets are selected for testing. The three datasets in Table 5 display the experimental outcomes of
various algorithms.

Table 4: UCI datasets

Number Dataset name Sample size Number of features
1 Ionosphere 351 34
2 Heatstatlog 270 13
3 Sonar 208 61
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Table 5: Experimental results for the UCI datasets

Algorithms Metrics Ionosphere Heatstatlog Sonar

WOA

Accuracy 92.4 87.6 93.3
Recall 98.5 86.1 94.1

F1-score 94.4 86.1 94.8
Precision 90.5 86.1 95.5

PSO

Accuracy 93.3 91.4 93.3
Recall 98.5 86.1 97.1

F1-score 95.0 89.9 95.0
Precision 91.8 94.0 93.0

TROA

Accuracy 94.3 88.9 88.6
Recall 97.1 91.7 89.7

F1-score 95.7 88.0 91.0
Precision 94.3 84.6 92.4

ITROA

Accuracy 96.1 93.8 97.1
Recall 1.0 88.9 98.5

F1-score 97.1 92.8 97.8
Precision 94.4 97.0 97.1

As presented in Table 5, on the Ionosphere, Heatstatlog, and Sonar datasets, ITROA achieves the best
values for almost all assessment indicators. The data shown in bold are the excellent values for each indicator.
In the Heatstatlog dataset, the recall of ITROA is slightly worse than the TROA algorithm. However,
ITROA significantly outperforms other algorithms in other evaluation metrics. Taken as a whole, ITROA
demonstrates effectiveness.

4.3 Experiment Using InSDN Dataset
The InSDN dataset is separated into normal and abnormal traffic categories. Numerous socket details,

including source IP, destination IP, stream ID, and others, are included in the InSDN dataset. In addition to
the labeled columns, remove all socket functions to avoid overfitting problems. There are 49 distinct features
in the finished dataset. As these features have different range intervals, it is necessary to normalize these data
and restrict the proportion of these values to between 0 and 1.

4.3.1 Binary Classification Results
In this section, the binary classification problem is considered. Classify input data accurately into two

categories: normal and abnormal. Ten thousand data points are chosen at random from the dataset for testing.
Binary encodings are utilized in computer systems to represent these two categories of data appropriately.
Specifically, the data points of the normal class are coded as 0, and the data points of the abnormal class are
coded as 1.

Table 6 shows the Wilcoxon signed rank test analysis between TROA and ITROA. Based on the final
experimental results, the InSDN dataset exhibits a high level of effectiveness on each algorithm, as shown
in Table 7. The values of the fitness convergence curves for the four algorithms PSO, WOA, TROA, and
ITROA on the InSDN dataset are displayed in Fig. 6a. As shown in Fig. 6b, data visualization shows the
various evaluation performance metrics, and Fig. 6c shows the confusion matrix for binary classification.
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Table 6: The Wilcoxon sign rank test results

1 2 3 4 5 6 7
p 3.34E−10 1.07E−04 4.72E−12 6.45E−07 3.93E−08 1.06E−04 6.59E−09
h 1 1 1 1 1 1 1

Table 7: Binary classification results

Metrics WOA PSO TROA ITROA
Accuracy 98.87 99.08 99.18 99.37

Recall 99.35 99.46 98.24 99.35
Precision 98.93 99.14 99.35 99.67
F1-score 99.14 99.30 99.31 99.51

Number of features 7 17 9 5
Prediction times (s) 0.0464 0.0520 0.0489 0.204

Figure 6: Binary classification results. (a) Convergence curves; (b) Histogram; (c) Confusion matrix

From Table 6, the results of 7 randomized experiments were taken, and it is known that all the results p <
0.5, h = 1. There is a significant gap between ITROA and TROA. As shown in Fig. 6a, ITROA has shown clear
advantages. As described in Table 7, the ITROA achieves significant optimization in feature selection. The
data shown in bold are the excellent values for each indicator. The quantity of features it selects is reduced to
five, significantly reducing the data’s redundancy. Due to feature selection, which eliminates many redundant
features, ITROA has the fastest prediction time. Thus, it increases the algorithm’s operational effectiveness
and prediction accuracy. In terms of indicators, ITROA was the second most effective in recall. However,
the ITROA shows clear advantages in terms of assessment indicators. It features an approximate 0.5% rise
in accuracy, a 0.37% rise in F1-score, and a 0.53% rise in precision. The ITROA shows good classification
performance with optimal results in abnormal traffic detection.

4.3.2 Multi-Classification Results
This section performs a multi-classification operation on the InSDN dataset by selecting 10,000

dates. The feature column labels of these selected data are encoded against their feature column labels,
encoding them systematically as numerical labels from 0 to 7. It provides a solid basis for subsequent
multi-classification operations.
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Table 8, like Section 4.2, shows the Wilcoxon signed rank test analysis between TROA and
ITROA. Table 9 shows the results of the multi-classification experiment. The data shown in bold are the
excellent values for each indicator. Table 10 shows the model prediction times for the four algorithms after
feature selections. In the process of selecting the data, it is found that the three numbers of types of data,
Web-Attack, BOTNET, and UR2, are relatively small. Due to the insufficient sample size, these three data sets
are not sufficiently referential and convincing in the analyses and comparisons. Therefore, they were ignored
for the time being in the subsequent study. The convergence curves of the four algorithms’ fitness values are
displayed in Fig. 7a. From Fig. 7c–f, it can be seen that the ITROA shows optimal results whether dealing
with normal or abnormal traffic.

Table 8: The Wilcoxon sign rank test results

1 2 3 4 5 6 7
p 3.03E−08 1.15E−15 5.06E−15 5.24E−10 2.94E−12 1.28E−09 1.04E−04
h 1 1 1 1 1 1 1

Table 9: Multi-classification results

Normal BFA DDos Dos Probe Web-Attack BOTNET UR2

Precision

WOA 98.31 90.63 98.84 98.29 94.54 73.33 92.45 100.0
PSO 98.25 91.08 99.84 98.61 93.81 71.74 90.74 66.67

TROA 98.52 90.35 99.76 97.29 94.23 76.09 89.09 100.0
ITROA 98.46 92.29 99.53 98.64 95.01 74.47 90.74 80.00

Recall

WOA 98.73 93.80 99.30 95.68 93.77 60.00 100.0 20.00
PSO 98.80 93.53 99.30 94.68 94.58 60.00 100.0 40.00

TROA 98.66 92.27 99.53 95.68 92.95 63.64 100.0 60.00
ITROA 99.30 93.53 99.60 96.34 92.95 63.64 100.0 80.00

F1-score

WOA 98.52 91.19 99.07 96.97 94.15 66.00 96.08 33.33
PSO 98.53 92.90 99.07 96.61 94.17 65.35 95.15 50.00

TROA 98.59 91.05 99.64 96.48 93.58 69.31 94.23 75.00
ITROA 98.88 92.29 99.34 97.48 94.97 68.63 95.15 80.00

Accuracy

WOA 96.47
PSO 96.50

TROA 96.37
ITROA 96.73

Table 10: The prediction times

WOA PSO TROA ITROA
Number of features 21 18 16 6
Prediction times (s) 0.1040 0.0852 0.0839 0.0575
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Figure 7: Multi-classification results

The core research in this section is to analyze and explore the abnormal traffic in depth. Table 9 shows
a significant gap between ITROA and TROA based on the values of p and h. Table 10 shows the model
prediction times for the four algorithms. The ITROA exhibits excellent time cost and dramatically improves
the overall performance. The results are shown in Fig. 7a. TROA does not converge as well as PSO in
the early stage, but it is comparable to PSO in the middle stage but outperforms PSO later on. However,
the convergence of the ITROA algorithm shows a clear advantage. Fig. 7b shows the confusion matrix for
abnormal traffic detection under ITROA optimization conditions. As shown in Fig. 7c–f, ITROA shows
a clear advantage in recall, F1-score, precision, and accuracy in the Normal category. On the DoS attack
category, ITROA also shows good detection. There was an improvement of about 1.3% in precision, 1.7% in
recall, and 1% in F1-score. It also improves accuracy by about 0.4%. The Probe attack category, excluding
recall, significantly improves on the other three evaluation metrics: accuracy, precision, and F1-score. ITROA
shows good detection. There was an improvement of about 0.8% in precision and F1-score. On the BFA and
DDos attack categories, although some of the indicators are not as good as hoped, ITROA performs better
when the four indicators are combined. Although its effect is not significant regarding recall and F1 in the
BFA attack category, it shows some advantages regarding precision and accuracy. In the precision rate, it
increased by 1.5%. On the DoSS attack category, the combined effect of ITROA is better.

Experiments show that the ITROA improves the original algorithm and outperforms other algorithms.
It shows an advantage in abnormal traffic detection.

5 Conclusions and Future Work
Considering the problem of the gradual complexity of abnormal traffic detection. This paper proposes

a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA to improve the efficiency
of abnormal traffic detection. ITROA is used during the feature selection stage of the model to solve the
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problem of redundant abnormal traffic data for SDN. Then, the UCI datasets and benchmark functions are
used to verify the effectiveness of ITROA. Finally, the experiment on the InSDN dataset shows that compared
to TROA, WOA, and PSO. In the binary classification experiments, ITROA showed excellent performance
on all metrics. In the multi-classification experiments, ITROA demonstrates better results comprehensively.
However, as a specific dataset for SDN, the InSDN dataset still has some limitations. Therefore, we will
continue exploring new dataset construction methods for SDN abnormal traffic detection to overcome the
limitations in the subsequent work.
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