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ABSTRACT: Blockchain platforms with the unique characteristics of anonymity, decentralization, and transparency of
their transactions, which are faced with abnormal activities such as money laundering, phishing scams, and fraudulent
behavior, posing a serious threat to account asset security. For these potential security risks, this paper proposes
a hybrid neural network detection method (HNND) that learns multiple types of account features and enhances
fusion information among them to effectively detect abnormal transaction behaviors in the blockchain. In HNND, the
Temporal Transaction Graph Attention Network (T2GAT) is first designed to learn biased aggregation representation
of multi-attribute transactions among nodes, which can capture key temporal information from node neighborhood
transactions. Then, the Graph Convolutional Network (GCN) is adopted which captures abstract structural features
of the transaction network. Further, the Stacked Denoising Autoencode (SDA) is developed to achieve adaptive fusion
of thses features from different modules. Moreover, the SDA enhances robustness and generalization ability of node
representation, leading to higher binary classification accuracy in detecting abnormal behaviors of blockchain accounts.
Evaluations on a real-world abnormal transaction dataset demonstrate great advantages of the proposed HNND method
over other compared methods.

KEYWORDS: Blockchain security; abnormal transaction detection; network representation learning; hybrid neural
network

1 Introduction
Blockchain is a distributed encrypted ledger composed of consensus mechanisms, smart contracts and

other techniques, which provides a secure platform for transactions among non-trusting participants [1–5].
In the ongoing digital transformation, blockchain technology, characterized by its inherent decentralization,
transparency, and cryptographic security [6,7], is increasingly recognized as a cornerstone for next-
generation digital infrastructures [8]. In recent years, blockchain technology has been widely and extensively
used in areas such as finance [9], healthcare [10–12] and the internet of things [13,14]. In which, virtual digital
cryptocurrencies have emerged in large numbers and entered the financial market, making it possible for
users to conduct P2P anonymous transactions and securely store assets in a distributed manner. However,
the substantial market value of blockchain cryptocurrencies has attracted the attention of malicious actors,
leading to attacks that pose potential security risks to the blockchain ecosystem.

In recent years, an increasing number of criminals have exploited the anonymity of blockchain to
conduct illegal activities in internet and financial domains [15]. Deceptive practices have proliferated in
blockchain networks, as attackers lure users into investing in Ponzi schemes by promising attractive future
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returns. At present, a large number of nefarious blockchain accounts have been active and engaged in
money laundering, phishing, and other unlawful behaviors [16,17]. According to a report from the SAFEIS
Security Research Institute, the blockchain field experienced numerous security incidents in 2022 that
caused significant economic damage on a global scale. These incidents included vulnerability exploits, data
breaches, phishing attacks, and price manipulation, resulting in total losses exceeding $75.3 billion. These
security concerns not only resulted in great financial setbacks for investors but also impeded the adoption
and advancement of blockchain technology. Therefore, it is imperative to identify anomalous transactional
behaviors in the blockchain network environment to ensure its regular and stable operation [18,19].

Blockchain technology employs a distributed ledger to publicly record transactions, ensuring trans-
parency and easy access to data. The extensive availability of these data records offers sufficient samples for the
detection of abnormal transaction behaviors. However, the large and anonymous user base poses challenges
for anomaly detection. Hand-engineered features from the complex transaction network may overlook
important information, such as temporal patterns and node interactions, thereby limiting the ability to
accurately identify transaction behaviors. To address these limitations, network embedding-based detection
methods have been developed. These methods combine various neural network modules to capture temporal
and structural transaction features of malicious nodes [20]. Despite performing well when used individually,
the integration among different modules sometimes fails to achieve optimal information sharing, which
can instead lead to a decrease in detection accuracy. Therefore, by improving feature information fusion
strategies, it is possible to more effectively uncover latent patterns within complex transaction networks,
thereby enhancing the capability to identify abnormal transaction behaviors.

To overcome the above difficulties, this paper proposes a hybrid neural network detection method
(HNND) with T2GAT, GCN and SDA to learn and optimize multiple types of node features to effectively
detect abnormal transaction behaviors on the blockchain. Specifically, a T2GAT is devised to fully capture
temporal information from the records of blockchain historical transactions, GCN is employed to learn
network structure information, and SDA is proposed for adaptive fusion of different levels of features
and improvement of node representation ability. These components collectively enhance the accuracy of
abnormal transaction behavior detection on the blockchain. The main contributions of this paper are
as follows:

1. A novel hybrid neural network detection method is developed to enhence blockchain abnormal
transaction detection by learning node representations, such as general statistical features (GSFs), temporal
transaction features (TTFs), and abstract structural features (ASFs).

2. SDA generates more robust embedding representations through the adaptive fusion of features
learned from different modules to improve overall detection performance of the model.

3. Some extensive experiments on real-world blockchain abnormal transaction dataset are conducted
and the experimental results show that HNND outperforms state-of-the-art methods on multiple evalua-
tion metrics.

The remaining parts of this paper are organized as follows. Some related works are reviewed
in Section 2. Section 3 presentes the HNND method in detail. Section 4 provides the details of the
experiments followed by the conclusion in Section 5.

2 Related Work
Money laundering, fraud, and other illicit transactions on blockchain pose significant challenges and

risks to the stable operation of these systems. Therefore, it is imperative to promptly identify such malicious
transactions and accounts. For the abnormal transaction behaviors detection problem on Blockchain, there
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are two main categories of existing methods: machine learning-based anomaly detection methods and
network embedding-based anomaly detection methods.

2.1 Traditional Machine Learning-Base Blockchain Anomaly Detection Methods
Traditional machine learning-based blockchain anomaly detection methods automatically learn abnor-

mal patterns in blockchain networks by leveraging datasets consisting of hand-engineered features.
Researchers have extracted indicative features of transaction behaviors to judge whether blockchain exhibits
abnormal activities. Farrugia et al. pointed out the three most influential features for detecting illicit
Ethereum accounts [21] and Ibrahim et al. used attribute association evaluation to select six key transaction
features from historical transactions [22]. These features include transaction amounts, balances, durations
of activities, among others [23]. Moreover, Kumar et al. additionally developed a set of 18 features for smart
contract accounts concerning contract creation and invocation [24].

From the perspective of graph neighborhood, Jourdan et al. leveraged discrete-time graphs to capture
temporal features, centrality measures, and other transaction patterns of anonymous Bitcoin accounts [25].
Wu et al. introduced the concept of Attribute-Temporal Heterogeneous (ATH) motifs, and demonstrated the
significance of ATH motif features in identifying transactions associated with Bitcoin mixing services [16].
Chen et al. captured the cascade statistical features of nodes and higher-order neighbors based on transaction
graphs [26]. These transaction graph-based method consequently augmenting its capacity to detect illicit
transaction nodes. However, conventional feature extraction methods are unable to uncover the deeper
information on blockchain transaction network.

2.2 Network Embedding-Base Blockchain Anomaly Detection Methods
Blockchain anomaly detection applies some network embedding methods, such as Deepwalk [27],

Node2Vec [28] and Graph Convolutional Networks (GCN) [29] to mine latent abstract features. These
methods can capture network structural and attribute information from blockchain transaction graphs by
transforming network structures into low-dimensional spaces to detect anomalous transaction behaviors.
Yuan et al. proposed Node2Vec to uncover abnormal transaction activities [30]. It mainly defined an
adjustable random walk strategy to obtain neighborhood vector of nodes. Wu et al. designed Trans2Vec,
building upon Node2Vec, wherein the sampling process is not random but biased according to the most
recent transaction between two nodes [31].

Chen et al. designed a graph neural network method called E-GCN, to detect anomalous account
nodes [32]. The E-GCN learned structural features of transaction networks by drawing on techniques from
VGAE [33] and DOMINANT [34]. Moreover, Sun et al. proposed the LSTM Transaction Tree Classifier
(LSTM-TC) to identify mixed coin transactions in Bitcoin [35]. They extracted the temporal behavior
features of transactions by constructing transaction trees. Some methods learned temporal behavior patterns
in transaction sequences to enhance edge representation of nodes, utilizing an LSTM model [36] and a
multi-head self-attention mechanism [17]. Specifically, Wang et al. employed time function encoding to
capture periodicity features, enabling them to precisely discern the activity cycles and behavioral patterns of
anomalous accounts [17]. Nonetheless, there have been few methods that learn graph-based node embedding
of transaction networks from multiple angles to capture both temporal transaction information and network
structural details. Meanwhile, existing methods inadequately address the issue of noise interference in the
concatenation of embedding vectors across different levels.

Therefore, the method proposed in this paper facilitates the simultaneous learning of both node
embedding and graph embedding for account transaction graphs. And it accounts for noise effects arising
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from the concatenation of features at distinct hierarchical levels. Our method can improve precision and
robustness in blockchain anomaly transaction detection.

3 The HNND Method
The blockchain anomaly detection method proposed in this paper employs a hybrid neural network

to simultaneously learn diverse embedding representations that contain both temporal transaction patterns
and network structural features. In the process of multi-level feature fusion, this method improves the
generalization ability of the detection model by adaptively fusing features and adding noise interference
to enhance feature robustness. This section introduces the proposed HNND method and analyzes from
several aspects, including the overall framework, problem definition and data processing, features extraction
(including GSFs, TTFs and ASFs), multi-feature fusion, and binary classification detection.

3.1 The HNND Framework
The hybrid neural network detection (HNND) framework for blockchain abnormal transaction behav-

ior is presented in Fig. 1, which integrates the T2GAT, GCN, and SDA modules. HNND first constructs a
temporal transaction multi-directed graph based on historical blockchain transaction data and randomly
samples a certain number of subgraphs. It extracts general statistical features (GSFs), temporal transaction
features (TTFs), and abstract structural features (ASFs) from each subgraph to judge whether an address
exhibits abnormal behavior. In Fig. 1, the following content is mainly involved.

Figure 1: The HNND framework
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• Data processing and sampling: It involves constructing and sampling transaction subgraphs based on
blockchain transaction records, which reduces the difficulty and computational cost of learning large-
scale networks.

• Extraction of GSFs: Aggregate functions are used for statistical analysis to extract four categories
of statistical features: transaction features of nodes, basic structural features, regional features, and
neighborhood features.

• Extraction of TTFs: The T2GAT model is utilized to learn the temporal transaction features of edges and
bias-aggregate these features into the embedded representation of nodes.

• Extraction of ASFs: The GCN is employed to learn graph embedding representation vectors from the
transaction subgraphs of nodes, which constitutes the abstract structural features.

• Multi-feature fusion: In the process of concatenating GSFs, TTFs, and ASFs, feature selection and weight
allocation are automatically performed by SDA to eliminate data noise and learn key feature information
at different levels.

• Binary classification detection: The HNND method uses a binary classifier to train the learned node
representations to detect anomalies in the blockchain network.

3.2 Problem Definition and Data Processing
3.2.1 Problem definition

Based on the blockchain transaction records, a directed multi-edge transaction graph G = (V , E , C)
is constructed. V = {v1 , . . . , vNv} represents the node set of blockchain addresses, where V is a Nv × dv
matrix, Nv denotes the number of nodes, dv denotes the feature dimension of nodes. E = {ε1 , . . . , εL} is
the transaction set between addresses, where E represents the edge set of all transactions between each
pair of nodes, and each edge has some attributes including transaction amount, time, and direction, etc. E
is a Ne × de matrix, where Ne denotes the number of edges, and de denotes the size of the feature space
of transaction edges. Since E can capture the relationship between different nodes, the adjacency matrix
A ∈ RNv×Nv generated by matrix E can be employed to represent the correlation between addresses.
Specifically, if there is a transaction between node vi and node v j, then vi j = 1. Conversely, if there is no
transaction between node vi and node v j, then Ai j = 0. C ∈ RNv×Nv represents the corresponding labels
of addresses. This paper aims to effectively learn node representations from a large-scale spatiotemporal
transaction network graph, so it is necessary to perform embedding representation learning for all nodes.
The embedding space for the nodes is denoted as XE ∈ RNv×d , where d represents the dimensionality of the
feature representation.

3.2.2 Data Processing
Based on the acquired large amount of historical blockchain transaction data, a large-scale blockchain

transaction network, namely MultiDiGraph (a directed graph with multiple edges), is constructed and
continuously updated. In this transaction graph, nodes represent accounts, and edges represent transactions.
There can be multiple edges between account nodes, and each edge carries attribute information related to
the transaction, such as direction, timestamp, and amount.

To preserve the structural information of the graph while effectively reducing the complexity of learning
large-scale networks, this paper adopts a random walk strategy to traverse neighbor relationships and extract
sampled subgraphs with the same structural features. In this process, the MultiDiGraph is treated as a single-
weighted undirected graph. A node in the graph is randomly selected as the starting node, and any of its
neighboring nodes is reached with a certain probability until a subgraph of a fixed size is formed. This process
is repeated to obtain a dataset of learnable sampled subgraphs.



4780 Comput Mater Contin. 2025;83(3)

3.3 Hand-Engineered Extraction of GSFs
After the construction of the transaction graph, node feature information is further extracted from the

subgraphs of transactions. While preserving the original account information to minimize information loss,
it lays a foundation for subsequent neural network learning to derive multiple types of features. Due to the
anonymous characteristic of blockchain accounts, which precludes direct access to any profiling information
about the nodes, our method mainly relies on the basic properties of nodes and their transaction edges
within the graph to build account features. Meanwhile, the GSFs for the blockchain accounts are derived by
various aggregation functions, effectively characterizing account behavioral patterns. The GSFs are outlined
in Table 1.

Table 1: General statistical features (GSFs)

Categories Num Name Symbol and calculation formula

Transaction features

FT1 sum_tx_amount Txa
sum (u) = sum (au)

FT2 max_tx_amount Txa
max(u) = max (au)

FT3 min_tx_amount Txa
min(u) = min (au)

FT4 avg_tx_amount Txa
avg (u) = avg (au)

FT5 std_tx_amount Txa
std (u) = σ (au)

FT6 entropy_tx_amount Txa
H(u) = H (au)

FT7 sum_tx_time_interval Txt
sum (u) = sum (tu)

FT8 max_tx_time_interval Txt
max(u) = max (tu)

FT9 min_tx_time_interval Txt
min(u) = min (tu)

FT10 avg_tx_time_interval Txt
avg (u) = avg (tu)

FT11 std_tx_time_interval Txt
std (u) = σ (tu)

FT12 entropy_tx_time_interval Txt
H(u) = H (tu)

Structural features
FT13 in_degree Din (u) = ∣{evu ∣ v ∈ Nu}∣
FT14 out_degree Dout (u) = ∣{euv ∣ v ∈ Nu}∣
FT15 total_degree Dtotal (u) = Din (u) + Dout (u)

Regional features
FT16 in_degree_ego_subgraph Din (Ru) = ∣{ewu ∈ E ∣ w ∉ Vu , v ∈ Vu}∣
FT17 out_degree_ego_subgraph Dout (Ru) = ∣{ewu ∈ E ∣ w ∈ Vu , v ∉ Vu}∣
FT18 total_degree_ego_subgraph Dtotal (Ru) = Din (Ru) + Dout (Ru)

Neighborhood features FT19 sum_in_degree_first_order Dsum_in (Nu) = {sum (Din (v)) ∣ v ∈ Nu}
FT20 max_in_degree_first_order Dmax_in (Nu) = {max (Din (v)) ∣ v ∈ Nu}
FT21 min_in_degree_first_order Dmin_in (Nu) = {min (Din (v)) ∣ v ∈ Nu}
FT22 avg_in_degree_first_order Davg_in (Nu) = {avg (Din (v)) ∣ v ∈ Nu}
FT23 std_in_degree_first_order Dstd_in (Nu) = {σ (Din (v)) ∣ v ∈ Nu}
FT24 entropy_in_degree_first_order Dentropy_in (Nu) = {H (Din (v)) ∣ v ∈ Nu}
FT25 sum_out_degree_first_order Dsum_out (Nu) = {sum (Dout (v)) ∣ v ∈ Nu}
FT26 max_out_degree_first_order Dmax_out (Nu) = {max (Dout (v)) ∣ v ∈ Nu}
FT27 mout_out_degree_first_order Dmin_out (Nu) = {min (Dout (v)) ∣ v ∈ Nu}
FT28 avg_out_degree_first_order Davg_out (Nu) = {avg (Dout (v)) ∣ v ∈ Nu}
FT29 std_out_degree_first_order Dstd_out (Nu) = {σ (Dout (v)) ∣ v ∈ Nu}
FT30 entropy_out_degree_first_order Dentropy_out (Nu) = {H (Dout (v)) ∣ v ∈ Nu}
FT31 sum_total_degree_first_order Dsum_total (Nu) = {sum (Dtotal (v)) ∣ v ∈ Nu}
FT32 max_total_degree_first_order Dmax_total (Nu) = {max (Dtotal (v)) ∣ v ∈ Nu}
FT33 min_total_degree_first_order Dmin_total (Nu) = {min (Dtotal (v)) ∣ v ∈ Nu}
FT34 avg_total_degree_first_order Davg_total (Nu) = {avg (Dtotal (v)) ∣ v ∈ Nu}
FT35 std_total_degree_first_order Dstd_total (Nu) = {σ (Dtotal (v)) ∣ v ∈ Nu}
FT36 entropy_total_degree_first_order Dentropy_total (Nu) = {H (Dtotal (v)) ∣ v ∈ Nu}

The GSFs are extacted from basic attribute information such as transaction amounts and timestamps
of accounts, as well as various structural information between graph nodes, by employing a set of aggregate
functions. The aggregate functions set Z is showed in Formula (1). The GSFs can be classified into four



Comput Mater Contin. 2025;83(3) 4781

categories: transaction features, structural features, regional features, and neighborhood features.

Z = {sum(x), max(x), min(x), avg(x), σ(x), H(x)} (1)

FT1∼FT12: Transaction features. Transaction features are mainly related to transaction amounts and
timestamps, and can reflect the intensity and scale of account fund flows. Each transaction euv between
node u and node v has features such as amount, time interval, and direction. In which, the direction of the
transaction flow indicates different transaction features, e.g., divide the transaction amount au of node u into
received amount avu or sent amount auv . Finally, based on the aggregation function Z, statistical analysis is
performed on the transaction amounts and timestamps of any given node u. And the transaction features
Txa(u) and Txt(u) for the node u are obtained.

FT13∼FT15: Structural features. Structural features include the in-degree, out-degree, and total-degree
of nodes, which reflect the connection pattern and interaction relationship of accounts in the transaction
graph. Multiple transaction edges exist between account nodes, ∣evu ∣ represents the number of transactions
between node u and node v, and Nu denotes the set of first-order neighbors of node u. The structural features
of node u are represented by the symbol D(u).

FT16∼FT18: Regional features. The ego network Ru = (Vu , Eu) of node u consists of node u and its
first-order neighbors Vu = u ∪ Nu , and all edges are between these nodes. Regional features including the
internal region information are obtained from the ego network of nodes, which reflect the spatial distribution
and aggregation of account spaces. Based on the definition of the ego network, the regional features of node
u are represented by the symbol D(Ru).

FT19∼FT36: Neighborhood features. These features obtain the external neighborhood information
from neighboring nodes, representing the interaction between account neighbors. Finally, the aggregation
function Z is used to calculate neighborhood features D(Nu).

To sum up, the GSFs of network nodes are expressed as

GSFs = {Txa
z(u), Txt

z(u), Dz(u), Dz(Ru), Dz(Nu) ∣ z ∈ Z} . (2)

3.4 Extraction of TTFs by T2GAT
The T2GAT is designed to learn the information of transaction sequences sorted by timestamps and

interactions among all neighboring transactions of nodes. As shown in Fig. 2, a temporal sequence neural
network model GRU is first utilized to learn the temporal relationships of all transaction sequences between
each pair of nodes from which the edge representation vectors are obtained. The representation of the edges
between the node and all its adjacent nodes is then learned in a weighted manner by using a Graph Attention
Network (GAT) to obtain the node representation for the account.

Figure 2: Extraction and aggregation of TTFs
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3.4.1 Extraction of Edge Representations
To fully capture the temporal relationship and attribute information of account transactions, this paper

introduces basic features such as transaction amount and direction as attributes of edges in the graph.
Moreover, the GRU model is adopted to capture the behavioral patterns of multi-attribute transactions and
obtain temporal transaction features.

The GRU model can address the issues of long-term dependency and gradient vanishing in Recurrent
Neural Networks (RNNs) by introducing two gating mechanisms: the reset gate and the update gate [37].
Compared to LSTM, GRU has lower computational complexity and faster convergence speed. The basic
structure of GRU consists of two gating units (i.e., reset gate and update gate) and a hidden state unit.
Specifically, the reset gate rt determines whether the previous hidden state unit ht−1 is ignored, which controls
the extent to which previous state information is disregarded. While the update gate zt determines whether
the current hidden state unit h̃t needs to be updated with a new hidden state unit, which controls the extent
to which current state information is retained. Eqs. (3)–(6) represent the principles of GRU’s iterative update,
respectively. In particular,

rt = σ (Wr xt +Ur ht−1 + br) ; (3)
zt = σ (Wz xt +Uz ht−1 + bz) ; (4)
h̃t = Tanh (Wh xt +Uh (rt ⊙ ht−1) + bh) ; (5)
ht = (1 − zt) ht−1 + zt h̃t , (6)

where W and U are weight matrices, b is the bias term, and σ is the Parametric Linear Unit (PReLU)
activation function. It is noteworthy that the PReLU activation function addresses the hard saturation issue of
Rectified Linear Unit (ReLU) in the negative interval by introducing a learnable parameter α. The expression
for the PReLU is given by f (x) =max(0, x) + α min(0, x). In which, the learnable parameter α adjusts the
slope of negative inputs to make the function adapt to the optimal negative slope for different features,
potentially contributing to better convergence and generalization for anomaly detection. Therefore, the GRU
model can not only extract attribute features from transaction data but also capture temporal relationship
features between time-series transaction data.

As demonstrated in (a) and (b) of Fig. 2, this paper sorts all transaction edges εuv = {e1
uv , e2

uv , . . . , en
uv}

of a node pair (u, v) by timestamp. And then these sorted edges are input into the GRU model to learn
the temporal transaction information between the node pair (u, v), i.e., which is represented as edge
representation vectors ẽuv of the node pair (u, v). Each transaction edge has three attributes: amount, time
interval, and direction, with the directionality of the transaction represented by positive or negative sign.

3.4.2 Biased Aggregation of Edge Representations
Learning the temporal transaction features of nodes essentially involves aggregating all neighbor edge

representation vectors of each node. To more effectively capture interaction relationships between nodes,
this paper employs a Graph Attention Network (GAT) augmented with a multi-head attention mechanism.
The GAT can facilitate biased learning of node representations, thereby focusing on significant interactions
within the graph [29]. In this paper, the GAT model is utilized to dynamically assign different attention
weights based on the importance of edge representations between nodes (as shown in (c) of Fig. 2). And the
attention coefficients are employed to transform all the edge representation of a node into attribute features
of that node (as shown in (d) of Fig. 2).
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The attention coefficient of the edge representation between the node u and its neighbor node i is
calculated and normalized as

aui =
exp (ReLU (βT (Whε̃u∥Whε̃i)))

∑k∈Nu exp (ReLU (βT (Whε̃u∥Whε̃k)))
, (7)

where W represents the weight matrix, “∥” denotes the concatenation operation, β is a learnable parameter,
Nu stands for the set of neighboring nodes of node u, and ε̃u = {ẽuv , ẽuw , . . . , ẽur} denote all adjacent
edges for node u. After performing a dot product operation between the concatenated vector hε̃u and βT , a
normalization is applied using the softmax function.

To enhance the model’s robustness, the GAT employs a multi-head attention mechanism that integrates
the outputs from several independent single-head attention processes. Each head computes a weighted sum
of the edge representations for a node based on its attention coefficients. By averaging the outputs across all
heads, the temporal transaction features hT TFs of nodes is obtained by

hu
T TFs =

1
K

K
∑
k=1

σ
⎛
⎝∑i∈Nu

a(k)
ui W(k)hẽui

⎞
⎠

, (8)

where K represents the number of attention heads in the GAT.

3.5 Extraction of ASFs by Improved-GCN
Abstract structural features (ASFs) are obtained by reconstructing the transaction graph structure using

an improved Graph Convolutional Network (GCN). The extraction method and included information for
the ASFs differ from those for the structural features in the GSFs. The structural features are extracted by
aggregation functions to obtain structural information from multiple aspects. But the ASFs are based on the
potential structural features extracted by the enhanced neural network GCN, which can capture higher-order
neighbor features and underlying topological relationships between nodes.

The GCN model performs convolutional operations in the spectral domain, where each operation can
aggregate an additional layer of features. The spectral convolution function is represented as

H(l+1) = σ (D̃− 1
2 ÃD̃−

1
2 H(l)W(l)) , (9)

where Ã = A+ IN is the adjacency matrix A augmented with self-loops, where IN is the identity matrix,
ensuring that each node also considers its own information. D̃ is the degree matrix of Ã, a diagonal matrix
whose elements correspond to the degrees (number of connections) of the nodes in Ã. Â = D̃− 1

2 ÃD̃− 1
2

is the normalized adjacency matrix of A. H(l) denotes the feature matrix of nodes at layer l . W(l)

represents the trainable weight matrix used for linearly transforming node features at each layer. σ is ReLU
activation function.

The transaction subgraph is fed into the GCN for a single-layer convolution operation Z = σ (ÂXW(0))
to learn the latent node representations. Ā = σ (Z ⋅ ZT) serves as an approximate estimation of the adjacency
matrix A, where Z reconstructs the original graph structure. Anomalous nodes are identified by comparing
the similarity between the reconstructed decoder and the original graph structure. The lower the similarity,
the higher the likelihood of the node being anomalous. The reconstruction loss function is given by

LGCN =
∥Ā− A∥2

F
n

, (10)
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where ∥ ⋅ ∥2
F denotes the L2 norm of a vector. By minimizing this loss function, a node representation hASFs

that encapsulates abstract structural features of the transaction graph is learned.

3.6 Multi-feature Fusion by Stacked Denoising Autoencoder
Based on the aforementioned methods, three types of features are learned: general statistical feature

vector hGSFs extracted from the original transaction graphs, temporal transaction feature vector hT TFs
captured by the T2GAT model, and abstract structural feature vector hASFs obtained through the GCN
model. The resulting feature vector x f is yielded by directly concatenating the three feature vectors.

x f = contract (hGSFs , hT TFs , hASFs) .

However, there exists data noise in the process of concatenating feature vectors of various types,
and different types of features contain information of varying importance. Therefore, a Stacked Denoising
Autoencoder (SDA) is utilized to adaptively integrate features of multiple types. By learning the key
information of features at different levels, node representations that are more robust and have enhanced
generalization capabilities are obtained. Specifically, during the training of each autoencoder in the SDA,
Gaussian noise is injected to enable the network to recover the original signal from noisy data, thus learning
more robust features. Meanwhile, multiple denoising autoencoders are stacked in a hierarchical structure for
layered learning. An adaptive fusion of feature vectors of various types is achieved by automatically allocating
weights and selecting key information from features at different levels. Each denoising autoencoder (DA)
within the SDA consists of an encoder and a decoder, which are presented as

h f = FW ,b (x̃ f ) = ς (Wx̃ f + b) ; (11)
x′f = GW′ ,b′ (h f ) =W ′h f + b′, (12)

where W and W′ are the weight matrices, b and b′ are the biases, while the noise feature vector x̃ f is derived
from the introduction of a corruption process C (x̃ f ∣ x f ) into the input feature vector. By adding specific
forms of noise or perturbations to the input data, the robustness and generalization capability of the model
can be enhanced. ς denotes the non-linear activation function LeakyReLU. Compared to ReLU, the improved
activation function LeakyReLU allows negative inputs to have a small positive gradient, so these negative
values can be better utilized to enhance the model’s performance.

The noisy feature vector a is obtained by introducing a corruption process c to the input feature vector. By
adding specific forms of noise or perturbations to the input data, the robustness and generalization capability
of the model can be enhanced. ς denotes the non-linear activation function LeakyReLU. Compared to the
traditional ReLU activation function, the improved LeakyReLU activation function allows negative inputs to
have a small positive gradient. Therefore, it can more effectively utilize negative value information, thereby
contributing to improved model performance.

Each DA approximates the reconstruction by minimizing the reconstruction error LDA (x f , x′f ), which
aims to replicate an output vector similar to the input feature vector x′f . As presented in Fig. 3, the SDA
consisting of two cascaded DA layers is designed to learn more robust node representations. This approach
preserves the useful features at different levels to improve the robustness of the fused features.
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Figure 3: Adaptive fusion of multi-features

3.7 Binary Classification Detection
This study aims to construct a hybrid neural network based on T2GAT, GCN, and SDA, to learn

temporal sequence relationships, abstract structural features, and critical information from different types
of features. It facilitates obtaining a more comprehensive and complete node representation to improve
the accuracy of the binary classifier LightGBM in detecting abnormal blockchain accounts. The detailed
procedure of the proposed HNND detection method is presented in Algorithm 1.

Algorithm 1: The HNND algorithm
Input: Blockchain transaction set of addresses Taddrs
Output: The prediction results of the algorithm Rescl ass
1: G (V , E ) ← empty graph; V ← empty set of nodes; E ← empty set of edges;
2: for each transaction e ∈ Taddrs do
3: Edge subset Êi j ← directed edge e (vi → v j) with transaction amount and time stamp;
4: Subset ε̂ i j of edge set E in G (V , E ) ← all other edges of the pair nodes < vi , v j >;
5: Node set V in G (V , E ) ← unique vi and v j;
6: Original features hRF ← transaction amount, direction, and time stamp of directed edge e;
7: The number of samples N, result← [];
8: for i in range (N) do
9: A random node vs ← V , k;
10: G ′ ← empty subgraph; V ′ ← vs ;
11: while ∣V ′∣ < k + 1 do
12: vr ← a random neighbor node of vs in V ′;
13: Add vr to the node set V ′ in G ′ (V ′, E ′);
14: Add all directed edges of a pair of nodes < vs , vr > to the edge subset ε̂sr of E ′;
15: for G ′u of each node u do
16: Z = {sum(x), max(x), min(x), avg(x), σ(x), H(x)};

(Continued)
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Algorithm 1 (continued)
17: hGSFs ← {Txa

z(u), Txt
z(u), Dz(u), Dz(Ru), Dz(Nu) ∣ z ∈ Z};

18: G̃ ← empty subgraph;
19: for vu in V ′ do
20: for for each neighbor node vi of node vu do
21: ẽui ← GRU (all edges ε′ui of < vu , vi >);
22: ε̃u ⋅ add (ẽui), Ṽu ⋅ add (unique vu and vi);
23: for ẽui in ε̃u do
24: aui ← Attention (ẽui , Ẽu);
25: h′u ← ReLU (∑i=N ε̃u aui Whu);
26: hT TFs ⋅ add (h′u);
27: X ←Original Feature hRF , A← G̃ ;
28: Z ← GCN(X , A);
29: Ā← σ (ZZT);
30: hASFs ←min LGCN(A, Ā);
31: x f ← contract (hGSFs ; hT TFs ; hASFs);
32: x̃ f ← C (x̃ f ∣ x f );
33: x′f ←min LSDA (x f , SDAE (x̃ f ));
34: Rescl ass← LightGBM(x′f );
35: return Rescl ass

In Algorithm 1, a blockchain transaction network is first constructed by yielding an account transaction
directed graph with multiple edges, where transaction edges have timestamps and monetary values as
properties (Lines 1–6). Then, a random walk strategy is utilized to extract sampled subgraphs with a sample
size of N, and the size of the subgraphs k is customizable (Lines 7–14). Next, the aggregate function Z
is used for feature engineering on the original transaction records to obtain general statistical features of
the accounts (Lines 15–18). Furthermore, the T2GAT model is designed to learn node embedding in the
transaction network (Lines 19–26). And the GRU model is employed for capturing the temporal relationships
and attribute information of all transactions around each node (Lines 20–22). Moreover, the GAT model is
adopted to bias-learn the transaction information around each node and transform it into a node embedding
vector (Lines 23–25). The abstract structural features of the node transaction graph is learned by using the
GCN model (Lines 27–30). Thereafter, the SDA model is developed to adaptively integrate multiple features at
different levels and learn more robust features by adding noise (Lines 31–33). Finally, the LightGBM method
is employed for anomaly account binary classification detection (Line 34).

4 Experiments
To evaluate the effectiveness of the HNND method, experiments are conducted on a real-world

blockchain dataset of abnormal account transactions. The experiment aims at three aspects.
RQ1: Evaluate the effectiveness of the HNND method in detecting abnormal addresses on the

blockchain transaction network.
RQ2: Evaluate the contribution of each component of HNND on the final performance of blockchain

anomaly detection.
RQ3: Evaluate the robustness of the HNND method by changing transaction sequence lengths and

attention sizes.
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4.1 Dataset
4.1.1 Data collection

The historical transaction dataset of blockchain fraudulent accounts in [32] is used in the experiment.
The dataset is constructed by harvesting fraudulent accounts (central nodes) from the Ethereum tag cloud on
the authorized website Etherscan1. Then their first-order neighbors, second-order neighbors are extracted,
and the transactions among them via APIs provided by the website. The dataset contains 2,973,382 nodes
and 13,551,214 edges, including 1157 fraudulent accounts among the central nodes. Due to the large size of
the original connected subgraph, a random walk strategy is used to sample subgraph datasets (i.e., Dateset
1, Dataset 2, Dataset 3) with different sizes (i.e., 20000, 30000, 40000). Each subgraph is sampled five times
to ensure the validity of the method. The detailed information of experimental data is provided in Table 2.

Table 2: Statistics of experimental datasets

Dataset Subgraph size Labeled nodes Edges Average degree
Dateset 1 20000 78 839,721 83.9721
Dateset 2 30000 106 1,127,359 75.1573
Dateset 3 40000 143 1,341,266 67.0633

4.1.2 Data Cleaning
For the class imbalance problem in the dataset, this paper eliminates obvious normal addresses to build

a more efficient model. Addresses with less than five or more than 1000 transactions are removed because
these addresses could be wallets or other normal types of accounts, as confirmed by data analysis. In addition,
duplicate account addresses are deleted, and the latest transaction records among them are kept. After data
cleaning, the average number of remaining nodes in each subgraph is 18,504, 27,973 and 37,542, respectively.
In the course of training the model, 80% of the dataset is used as the training data and the remaining 20% as
the testing data.

4.2 Experimental Setup
This section provides a detailed introduction to the baseline methods, evaluation metrics, and imple-

mentation details, all of which ensure the accuracy and reliability of the experiments.

4.2.1 Baseline Methods
To illustrate the validity of the HNND method, it is compared with the following blockchain anomaly

detection methods.
• Original features [21]: A set of basic account features, including eight features such as degree, strength,

etc., and the number of neighboring nodes, which are utilized and directly fed into the LightGBM model.
• Statistical features [16,23,26]: A set of general statistical features (GSFs) is designed and extracted, which

involves basic transactional features [23] and structural features [16,26] related to account transactions.
The machine learning algorithms are then employed to implement the binary classification task for
anomaly detection.

• Node2Vec [30]: Node2Vec is a network representation learning method that simulates proximity
relationships between nodes through random walks. It generates a series of node sequences, which

1https://etherscan.io, accessed on 3 March 2025.

https://etherscan.io
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are then mapped into a low-dimensional vector space through the word embedding model to obtain
node embeddings.

• E-GCN [32] and GAT [29]: The two methods perform graph convolutional operations to capture the
topological structure information and feature information of nodes in the transaction graph, including
the neighbor relations of nodes, the weights of edges, etc. They can generate more expressive node
representations for node classification.

• SCSGuard [38] and LSTM [39]: The two methods employ sequence learning neural network to learn
key information from temporal transactions data. It can effectively capture behavioral patterns in the
transaction records of abnormal accounts, thereby identifying transactions that significantly deviate
from normal behaviors.

4.2.2 Evaluation Metrics
The detection of abnormal transaction behaviors in the blockchain is essentially a binary classification

problem. Hence, the confusion matrix is utilized to evaluate the accuracy of classification. Three classification
metrics that assess model performance are introduced: (1) Precision, (2) Recall, and (3) F1-score to objectively
evaluate the performance of the HNND method in detecting abnormal transactions on the blockchain. In
which, (1) Precision refers to the proportion of samples predicted by the model as abnormal accounts that
are truly abnormal, which reflects the accuracy of the model’s prediction of abnormal accounts. (2) Recall
indicates the proportion of all actual abnormal accounts that are predicted as abnormal by the model, which
demonstrates the model’s ability to identify all abnormal accounts. (3) F1-score is the harmonic mean of
precision and recall, and it is used to evaluate the model’s performance comprehensively.

In the context of blockchain abnormal account detection considered in this paper, the importance of
recall outweighs precision. This is because the purpose of the detection model is to identify all abnormal
accounts as many as possible, even if it may mistakenly label some normal accounts as abnormal. Since
the potential harm caused by abnormal accounts is significant, overlooking some malicious accounts in
the detection process could result in large economic and financial losses as well as system disruption.
Meanwhile, mislabeling some normal accounts as abnormal may cause inconvenience to users, but this
impact is acceptable compared to the consequences of missing abnormal accounts.

4.2.3 Implementation Details
All methods are implemented based on the PyTorch framework in the experiment, with the output

dimension of all models set to 8. The walk length, window size, p, and q for the Node2Vec method are set to
20, 4, 0.25, and 0.4, respectively. The hidden layer size and learning rate for E-GCN are set to 3 and 0.001, and
the Adam optimizer is chosen for model optimization. Additionally, the number of leaves and the learning
rate for the LightGBM model are fixed at 50 and 0.03, respectively.

4.3 Experimental Evaluation
This paper conducts two groups of experiments and analyzes results from two aspects. One group

of experiments evaluates the effectiveness of the proposed HNND method by comparing it with various
baseline methods. The other group of experiments performs ablation studies by sequentially eliminating each
module within HNND to determine the impact of the removed module on the detection results.
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4.3.1 Effectiveness Results (RQ1)
The performance of all the comparison methods for blockchain abnormal account transaction behavior

detection is evaluated in this subsection. And the results are presented in Table 3. The following conclusions
can be drawn.

Table 3: The performance comparison of blockchain anomaly detection methods

Method Dataset 1 Dataset 2 Dataset 3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Original features 0.603 0.694 0.645 0.717 0.537 0.614 0.752 0.614 0.676
Statistical features 0.734 0.701 0.717 0.831 0.654 0.732 0.814 0.759 0.786

Node2Vec 0.586 0.673 0.626 0.680 0.697 0.688 0.734 0.659 0.694
E-GCN 0.713 0.635 0.672 0.738 0.679 0.707 0.746 0.684 0.714

GAT 0.738 0.604 0.664 0.747 0.692 0.718 0.708 0.717 0.712
SCSGuard 0.697 0.756 0.725 0.769 0.812 0.790 0.819 0.749 0.782

LSTM 0.766 0.703 0.733 0.836 0.773 0.803 0.732 0.873 0.796
Our HNND 0.891 0.904 0.897 0.896 0.917 0.906 0.925 0.902 0.913

• Our HNND method outperforms all other baseline methods in all three evaluation metrics. The HNND
method achieves the best performance, with 92.5% precision, 90.2% recall, and 91.3% F1-score under
Dataset 3. Deep learning methods exhibit comparable performance, with E-GCN and GAT achieving
an F1-score of approximately 71%, while SCSGuard and LSTM achieving an F1-score of around 78%.
Node2Vec demonstrates higher performance than the feature-based method, and its F1-score is 69.4%.

• Compared with the method based on the original features, the HNND method obtains about 23% higher
values in all three evaluation metrics. Of all the compared methods, the method based on the original
features performs the worst. It can be found that the parties based on the original features do not consider
the timing and network structure of the blockchain data, the feature information obtained is very limited,
and further data mining of the transaction information is lacking.

• Compared with the method based on statistical features, the F1-score of the HNND method improves
by 12.7% on Dataset 3. Although the method based on statistical features fully utilizes the network
structure information, it lacks learning from the temporal features of transaction data, so its detection
effect is worse than that of the HNND method. Meanwhile, the method based on statistical features
compared with the method based on original features increases by F1-score of 11%. The statistical method
actually is a machine learning method, and can rely on aggregation functions to obtain statistical features
containing structure information so its F1-score reaches 78.6%.

• The F1-score of Node2Vec is about 20% different from that of the HNND method. Node2Vec utilizes
random walks to mine the neighborhood information of nodes, but it ignores learning the interaction
relationships and transaction temporal information between nodes, leading to incomplete represen-
tation learning of nodes. The HNND method learns the feature information that Node2Vec fails to
learn, so it exhibits the best detection performance. However, the difference in evaluation metrics
between Node2Vec and Original feature-based methods is not significant. Though both can obtain rich
network structure information through different methods, Node2Vec’s representation learning method
can capture potential structures and patterns in the network without the need for manual feature design.

• The detection performance of the network representation method based on deep learning is greatly
improved. E-GCN, GAT, SCSGuard, and LSTM all obtain good detection results. Compared with these
deep learning methods, the three evaluation metrics of HNND increase by about 10%. Specifically, E-
GCN and GAT can capture the topological structure information of the nodes in the transaction graph to
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generate a more expressive node representation. SCSGuard and LSTM can provide long-term memory
and effectively capture the behavior patterns in the account temporal transaction data. The two types of
methods have different focuses on feature extraction, and there is still much room for improvement in
learning features. Our HNND method combines the advantages of both E-GCN and GRU methods and
utilizes a hybrid neural network for representation learning. It fully exploits the temporal relationship in
the transaction sequence and the interaction pattern information between the network nodes, thereby
obtaining a more efficient node embedding representation.

4.3.2 Ablation Experiment (RQ2)
This subsection verifies the effectiveness of the TTFs extraction module (HNND/t), the ASFs extraction

module (HNND/s), and the SDA module (HNND/d) in the proposed HNND method, respectively, as shown
in Fig. 4. The following observations are obtained:

• Relative to HNND, the effectiveness of HNND/t significantly declines, with F1-scores that are 21.5%,
17.7%, and 19.6% less on Datasets 1–3, respectively. The main reason is that the eliminated T2GAT can
fully extract the temporal pattern of the transaction interaction between nodes, and the bias aggregation
learning can obtain expressive node embedding representation. This result indicates that it is crucial to
fully learn the timely order features of transaction attributes among nodes in the transaction graph for
the detection of abnormal account behaviors.

• The F1-score of HNND/s is only 9.4% lower than that of HNND on Dataset 3. It can be found that, to
some extent, the extracted abstract structure features are not as important as the temporal transaction
features, but they can also reflect the information of the topological network and further enrich the
representation of nodes.

• The slightly lower performance of HNND/d compared to HNND demonstrates that SDA can improve
the detection performance of anomalous transactions by denoising and adaptively integrating features
obtained from different modules. The comparison results of the E-GCN and T2GAT modules with
HNND/t and HNND/s also support this conclusion. And final fully implemented HNND method can
reach F1-score of 91.3% on Dataset 3.

• The complete HNND method is superior to other ablation models in the three evaluation metrics on
Dataset 1, Dataset 2, and Dataset 3, respectively, which proves that each model can provide effective
improvement and enable HNND to achieve the best performance in the binary classification of abnormal
transaction behaviors.

Figure 4: Precision, Recall, and F1-scores of HNND and its variants

4.3.3 Sensitivity Analysis (RQ3)
The robustness of the HNND method is evaluated by investigating its stability and reliability across

varying transaction sequence lengths and attention sizes.
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Figure 5 presents three metrics scores for the HNND model across varying transaction sequence
lengths. The findings can be summarized as follows:

• Up to a certain point, the HNND model demonstrates improved performance on all datasets as the
length of sequences fed into the GRU increases. This suggests that within an optimal range, longer
sequences provide richer behavioral features.

• Occasionally, shorter sequences yield superior results, as they focus exclusively on critical transaction
patterns and avoiding redundant information.

• Model performance deteriorates when sequence lengths exceed a threshold, potentially due to the
introduction of noise or overfitting issues from excessively long sequences.

• Beyond approximately 15 time steps, while there are minor fluctuations, the evaluation metrics generally
stabilize. This indicates that the model has effectively learned the primary behavioral patterns in the
transaction sequences, with minimal gains from further lengthening the sequences.

• According to F1-scores in Fig. 5c, model performance improves with larger dataset sizes, highlighting
the benefit of more high-quality data in capturing transaction behavior accurately.

These results underscore the importance of temporal transaction behavior features and demonstrate the
robustness and adaptability of the HNND model in handling sequences of varying lengths.

Figure 5: Sensitivity analysis of HNND with different sequence lengths

Figure 6 illustrates the model’s performance across three evaluation metrics when varying the attention
sizes of GAT. Key observations include:

• The HNND model exhibits minimal fluctuation in all evaluation metrics across different datasets and
attention size settings. This stability is likely due to the multi-head attention mechanism of GAT, which
provides sufficient temporal transaction features for nodes and allows each attention head to dynamically
adjust the weight distribution of edge representations.

• Even with a smaller attention size (e.g., sizes = 2), HNND achieves relatively strong performance.
This indicates that the model possesses good stability and maintains generalization capabilities on
unseen data.

These findings highlight the robustness of the HNND model in learning node features, particularly
regarding the dimensions of TTFs (i.e., the attention sizes of GAT).
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Figure 6: Sensitivity analysis of HNND with different attention sizes

5 Conclusion
To address the challenge of detecting anomalous transaction behaviors in blockchain application

networks, this study introduces a hybrid neural network-based detection method, called HNND. The
proposed method utilizes T2GAT and GCN to effectively capture temporal patterns (TTFs) and structural
features (ASFs) from transaction graphs, respectively. Subsequently, these abstract features are adaptively
fused with hand-engineering features (GSFs) using SDA, resulting in enhanced node representations that
significantly improve anomaly detection performance. In addition, our experimental analysis reveals that the
detection performance of HNND is sensitive to the length of transaction sequences, indicating a limitation
in handling varying sequence lengths. Future research should focus on enhancing the model’s robustness
by improving its capability to process variable-length sequences. Potential directions for improvement
include developing mechanisms for dynamically adjusting to sequence lengths or refining feature extraction
techniques to better identify salient behavioral features within transaction sequences.
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29. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: Proceedings of
the International Conference on Learning Representations (ICLR); Vancouver, BC, Canada ; 2018 Feb.

30. Yuan Q, Huang B, Zhang J, Wu J, Zhang H, Zhang X. Detecting phishing scams on ethereum based on transaction
records. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS); Seville, Spain:
IEEE; 2020 Oct. p. 1–5.

31. Wu J, Yuan Q, Lin D, You W, Chen W, Chen C, et al. Who are the phishers? Phishing scam detection on ethereum via
network embedding. IEEE Trans Syst Man Cybern: Syst. 2022 Feb;52(2):1156–66. doi:10.1109/TSMC.2020.3016821.

32. Chen L, Peng J, Liu Y, Li J, Xie F, Zheng Z. Phishing scams detection in ethereum transaction network. ACM Trans
Internet Technol. 2021 Feb;21(1):1–16. doi:10.1145/3450630.

33. Ahn SJ, Kim M. Variational graph normalized autoencoders. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management (CIKM); New York, NY, USA: ACM; 2021 Oct. p. 2827–31.

34. Ding K, Li J, Bhanushali R, Liu H. Deep anomaly detection on attributed networks. In: Proceedings of the SIAM
International Conference on Data Mining (SDM); Philadelphia, PA, USA: SIAM; 2019 May. p. 594–602.

35. Sun X, Yang T, Hu B. LSTM-TC: bitcoin coin mixing detection method with a high recall. Appl Intell. 2022
Jan;52(1):780–93. doi:10.1007/s10489-021-02453-9.

36. Li S, Gou G, Liu C, Hou C, Li Z, Xiong G. TTAGN: temporal transaction aggregation graph network for ethereum
phishing scams detection. In: Proceedings of the ACM Web Conference (WWW); New York, NY, USA: ACM;
2022 Apr. p. 661–9.

37. Chung J, Gülcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv:1412.3555. 2014.

38. Hu H, Bai Q, Xu Y. SCSGuard: Deep scam detection for ethereum smart contracts. In: Proceedings of the IEEE
Conference on Computer Communications Workshops (WKSHPS); New York, NY, USA: IEEE; 2022 May. p. 1–6.

39. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997 Nov;9(8):1735–80. doi:10.1162/neco.
1997.9.8.1735.

https://doi.org/10.1109/TSMC.2020.3016821
https://doi.org/10.1145/3450630
https://doi.org/10.1007/s10489-021-02453-9
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

	HNND: Hybrid Neural Network Detection for Blockchain Abnormal Transaction Behaviors
	1 Introduction
	2 Related Work
	3 The HNND Method
	4 Experiments
	5 Conclusion
	References


