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ABSTRACT: Efficient flight path design for unmanned aerial vehicles (UAVs) in urban environmental event mon-
itoring remains a critical challenge, particularly in prioritizing high-risk zones within complex urban landscapes.
Current UAV path planning methodologies often inadequately account for environmental risk factors and exhibit
limitations in balancing global and local optimization efficiency. To address these gaps, this study proposes a hybrid path
planning framework integrating an improved Ant Colony Optimization (ACO) algorithm with an Orthogonal Jump
Point Search (OJPS) algorithm. Firstly, a two-dimensional grid model is constructed to simulate urban environments,
with key monitoring nodes selected based on grid-specific environmental risk values. Subsequently, the improved
ACO algorithm is used for global path planning, and the OJPS algorithm is integrated to optimize the local path.
The improved ACO algorithm introduces the risk value of environmental events, which is used to direct the UAV to
the area with higher risk. In the OJPS algorithm, the path search direction is restricted to the orthogonal direction,
which improves the computational efficiency of local path optimization. In order to evaluate the performance of the
model, this paper utilizes the metrics of the average risk value of the path, the flight time, and the number of turns. The
experimental results demonstrate that the proposed improved ACO algorithm performs well in the average risk value
of the paths traveled within the first 5 min, within the first 8 min, and within the first 10 min, with improvements of
48.33%, 26.10%, and 6.746%, respectively, over the Particle Swarm Optimization (PSO) algorithm and 70.33%, 19.08%,
and 10.246%, respectively, over the Artificial Rabbits Optimization (ARO) algorithm. The OJPS algorithm demonstrates
superior performance in terms of flight time and number of turns, exhibiting a reduction of 40%, 40% and 57.1% in
flight time compared to the other three algorithms, and a reduction of 11.1%, 11.1% and 33.8% in the number of turns
compared to the other three algorithms. These results highlight the effectiveness of the proposed method in improving
the UAV’s ability to respond efficiently to urban environmental events, offering significant implications for the future
of UAV path planning in complex urban settings.

KEYWORDS: Orthogonal jump point search; improved ant colony optimization; urban environmental event; environ-
mental event risk values; UAV path planning

1 Introduction
The accelerated development of urbanization has brought about a series of environmental challenges [1],

among which the frequent occurrence of urban environmental events is of particular concern. These events,
including natural disasters [2], traffic accidents [3], and fire accidents [4], among others, have profound
consequences for individuals and communities. In addition to their immediate impact on human life, these
events can also lead to significant economic consequences and damage to urban infrastructure. A case study
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of a major fire and explosion accident [5] at the Tianjin Ruihai International Logistics Co., Ltd. (Tianjin,
China) dangerous goods warehouse in 2015 serves as a pertinent example, this incident resulted in significant
casualties, substantial economic losses, and prolonged ecological damage to the surrounding area.

In view of the aforementioned content, it is essential that such incidents are monitored and responded to
in a timely and accurate manner. This is of particular relevance to reducing economic losses and improving
urban safety. As emerging monitoring tools, UAVs [6] offer significant potential for urban environmental
event monitoring due to their high flexibility, relatively low cost, and ability to access areas that are difficult
for humans to reach. UAVs have been applied in a variety of fields, including environmental monitoring [7],
power inspection [8], post-disaster detection [9], etc. For instance, according to the study by Yang et al. [10],
1130 articles from 1993 to 2022 were analyzed to reveal the application knowledge field of UAV in marine
monitoring. It is pointed out that UAV remote sensing technology has become an important means of ocean
monitoring due to its flexibility, high efficiency, and low cost, which can generate system data with high
spatial and temporal resolution. According to Asadzadeh et al. [11], UAVs are expected to revolutionize
mapping, monitoring, inspection, and surveillance processes in the oil industry with their flexible, low-
cost, and efficient data acquisition capabilities. Sudhakar et al. [12] employed UAVs to monitor forest fires,
which significantly enhanced the efficiency of fire prevention and control. Similarly, Xiao et al. [13] utilized
UAVs for monitoring the water quality of urban rivers, providing crucial data for the management of urban
water environments.

When the UAV performs an urban environmental event monitoring mission, path planning [14]
technology is crucial for ensuring both monitoring efficiency and flight safety. Current path-planning
algorithms are generally classified into two primary categories: traditional algorithms and intelligent
bionic algorithms. Traditional algorithms, including graph search-based methods such as the Dijkstra
algorithm [15], the A* algorithm [16], and sampling-based approaches like the Rapidly-Exploring Random
Tree (RRT) algorithm [17], offer high accuracy but are constrained by the state space and have a high
optimization space. For example, the improved Multiple Search Strategy A* (MSSA) algorithm proposed by
Liu et al. [18] has demonstrated notable performance advantages. The efficacy of this algorithm is evidenced
by its ability to enhance search efficiency and the stability of path planning through the integration of
several key components, including the node direction discrimination rule, the two-layer domain extension
search strategy, the multi-factor heuristic evaluation function, and the dynamic adaptive weighting strategy.
Experimental results show that the MSSA algorithm exhibits superiority over the traditional A* algorithm
and other path planning algorithms in terms of reducing the number of turns and decreasing the calculation
time. Intelligent bionic algorithms, such as the genetic algorithms [19], the PSO algorithm [20], and
the ACO algorithm [21], inspired by biological behaviors and evolutionary mechanisms in nature, have
been the focus of extensive research in recent years. Despite their advantages in adaptivity, robustness,
flexibility, and scalability, for example, Xu et al. [22] proposed a bionic 3D path planning algorithm for
plant protection UAVs based on swarm intelligence algorithms and krill swarm behavior. By simulating the
biological strategies of Antarctic krill clusters, including “foraging behavior”, “enemy avoidance behavior”,
and “cruising behavior”, the algorithm integrates adaptive state-switching mechanisms and third-order B-
spline curve smoothing to enhance global exploration and local optimization capabilities. Experimental
results demonstrate that the algorithm reduces path length by 1.1%–17.5%, operation time by 27.56%–
75.15%, energy consumption by 13.91%–27.35%, and iteration counts by 46%–75% compared to traditional
swarm intelligence algorithms. This approach significantly improves the efficiency and safety of UAV
operations in complex mountainous terrains, offering a robust technical solution for agricultural automation
in challenging environments. However, intelligent bionic algorithms continue to encounter difficulties in
preserving the diversity of optimal solutions in computing time or high-dimensional problems.
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The prevailing focus of contemporary research on UAV path-planning algorithms is on the optimization
of path length. For instance, Garip et al. [23] proposed a novel hybrid metaheuristic algorithm, CS-PSO-
FA, which combines the PSO algorithm, Firefly Algorithm (FA), and Cuckoo Search (CS) to enhance the
efficiency of path planning for mobile robots. This hybrid algorithm was shown to produce shorter paths in
comparison to the individual CS, PSO, and FA algorithms. Similarly, Bai et al. [24] proposed an enhanced
path planning algorithm that integrates the A* algorithm and the Dynamic Window Algorithms (DWA)
to optimize global path planning for UAVs. This approach addresses irregular obstacles and enhances path
efficiency, safety, and smoothness. Experimental results demonstrate that this algorithm reduces path length
and planning time. However, in UAV path planning, it is not enough to focus only on path length opti-
mization. Hu et al. [25] further emphasized the significance of incorporating economic, environmental, and
social factors into UAV path planning. The study notes that, in the presence of uncertain weather conditions,
the stochastic planning model can effectively reduce operating costs and enhance the sustainability of UAV
operations. Consequently, for the UAV path planning for urban environmental event monitoring, it is one-
sided to only take the path length as the optimization goal, which needs to comprehensively consider the
path length, the significance of node monitoring, the complexity of the environment, and the accuracy
of modeling.

In light of the aforementioned issues, this paper proposes a UAV path planning method for urban
environmental event monitoring. This method utilizes an improved ACO algorithm for global path planning
and integrates it with the OJPS algorithm for local path optimization. The traditional ACO algorithm can
optimize the path length during global path planning, thereby enabling UAVs to reach their destinations
with greater expediency. In response to environmental events, the risk level exhibited by different regions
is subject to variation. Consequently, the monitoring path must not only consider the shortest path but
must also be optimized according to the risk value of the region. To this end, this paper introduces a
“regional risk value” factor based on the traditional ACO algorithm, this factor enables path planning that
considers not only the distance between nodes but also the risk weight of those nodes. This improvement
ensures that the monitoring pathways of UAVs are more aligned with actual requirements, enabling the
prioritization of monitoring in high-risk areas. Consequently, this enhancement enhances the efficiency and
accuracy of monitoring. Local path optimization is a key component in UAV path planning. Traditional
path-planning methods frequently result in an excessive number of turns in the path, thereby compromising
the flight efficiency and safety of the UAV. The OJPS algorithm reduces the number of turns in the path
by restricting the path planning to orthogonal directions through constraints on the jump points. This
approach has advantages when dealing with complex obstacles in urban environments because urban grid
maps often contain a multitude of regular obstacles, and OJPS can quickly and efficiently identify the
optimal jump points and improve the optimization efficiency of local paths. The combination of global
and local optimization in this approach enhances the efficiency of path planning while ensuring the safety
and reliability of the UAV during the monitoring process. Consequently, the UAV can respond promptly to
unexpected environmental events. Numerical experiments and comparative analysis with other algorithms
demonstrate the significant performance advantages of the proposed method.

The main contributions of this paper are as follows:

(1) An improved ACO algorithm is proposed for global path planning, which is based on the traditional
ACO algorithm, introduces the environmental event risk value into the pheromone initialisation,
the heuristic function and the pheromone updating strategy, so that the improved ACO algorithm
considers both the path length and the monitoring value in the path planning.
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(2) The OJPS algorithm is introduced for local path optimization, which effectively reduces the number
of flight turns of the UAV in localised complex environments by restricting the search direction to the
orthogonal direction strategy.

(3) A UAV path planning framework combining global and local path optimisation is proposed, and the
combination of the improved ACO algorithm and the OJPS algorithm solves the global risk prioriti-
sation and local obstacle avoidance problems, which is verified by simulating the real environment.

2 Model Description
The UAV path-planning method proposed in this paper is a staged and systematic process, as illustrated

in Fig. 1, to achieve an efficient and safe UAV monitoring task. The method is comprised of three fundamental
steps, as outlined below:

Step 1: Grid delineation and information collection of the urban environment. Firstly, the urban
environment area to be monitored is gridded, and grid information is collected to provide basic data for
subsequent risk assessment and path planning.

Step 2: Calculation of environmental event risk values. Based on the grid division, the risk value of
environmental events is further calculated for each grid cell, which involves the historical environmental
events in the area as well as the possible triggering factors to assess the risk level of different grids.

Step 3: Detection target node selection and path planning. According to the risk value obtained in Step
2, the monitoring target node is selected, and the global planning of the UAV monitoring path is carried out
based on the improved ACO algorithm, which is combined with the OJPS algorithm to locally optimize the
nodes with complex obstacles.

Figure 1: UAV monitoring path planning method
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2.1 Environmental Event Gridding
In UAV path planning, the accurate two-dimensional modeling of the UAV’s motion environment

constitutes a fundamental aspect of effective path planning. Commonly used modeling methods include
the free space method, the grid method, and the topology method. After evaluating factors such as model
complexity, validity, ease of implementation, and the clarity of obstacle representation, this paper adopts
the grid method for modeling. Fig. 2 demonstrates an example of grid mapping, where the environment
is divided into a series of grid cells, numbered sequentially from left to right and top to bottom. White
grids indicate feasible regions, while black grids denote infeasible regions. Each grid cell is assigned specific
positional coordinates, with the grid-coordinate relationship defined as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xn =
⎧⎪⎪⎨⎪⎪⎩

mod (n, N) − 0.5, Xn ≠ −0.5
N − 0.5, Xn = −0.5

Yn = ceil ( n
N ) − 0.5

, (1)

where N denotes the number of grids per row, mod denotes the remainder operation, and ceil denotes the
rounding operation.

Figure 2: Schematic diagram of grid map

2.2 Data Aggregation Node Selection
In the process of constructing the grid map, each subdivided grid is defined as a node, and these nodes

are the key units for data aggregation in monitoring path planning. The data aggregation nodes of monitoring
paths need to be filtered based on the risk value of environmental events. The calculation of the risk value is a
comprehensive assessment process, which is based on the number of environmental events inducing factors
within each grid and the consequence severity of these inducing factors. The formula used to calculate the
risk value is provided below:

R =
n
∑
i=1

ωi Di , (2)

where R is the risk value of environmental events in the node area; n is the total number of inducing factors; ωi
is the weight of the severity of the consequences of the i-th inducing factor; Di is the probability of occurrence
of the i-th inducing factor. In order to ensure the comparability of the risk values, R is standardized so
that it has a full score of 100, and a higher score indicates a higher risk of urban environmental events in
the node region. The core of risk value calculation is to comprehensively evaluate the influence of multiple
predisposing factors. Each inducing factor has a weight and an occurrence probability. The weight reflects the
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degree of influence of the inducing factors on the occurrence of environmental events, and the occurrence
probability can reflect the extent of the potential risks in the area. Through the weighted sum of all inducing
factors, the overall risk value R can be obtained so as to provide a decision basis for path planning. After
completing the calculation of all grids corresponding to the corresponding risk value R, sorting from high
to low is performed. Based on the sorting results, the top 5% of grids with the highest risk values are selected
as data aggregation nodes for the UAV monitoring path.

2.3 Global Path Optimization with ACO Algorithm Based on Environmental Event Risk Value
2.3.1 Description of the Global Path Optimization Algorithm

The ACO algorithm is a metaheuristic algorithm inspired by the foraging behavior of ants. Its applica-
tions include a wide variety of optimization problems [26]. The core principle of the ACO algorithm is to
emulate the collective behavior of ants in their search for food. Ants utilize pheromones for communication
and guidance, which enables the gradual emergence of an optimal path.

In the field of urban environmental event monitoring, the application of ACO algorithms needs to be
adapted to specific requirements. Traditional shortest path strategies are not always applicable to monitoring
tasks, as the effectiveness of monitoring is often closely related to the environmental risk value of the path.
To address this gap, this paper improves the ACO algorithm by introducing the environmental event risk
value (R value) as a key factor in the algorithm’s decision-making process, so that the improved ant colony
algorithm (R-ACO) comprehensively considers both the distance and the R value of the monitoring area
when planning the path, in order to ensure that the planned paths cover the high-risk areas, to improve the
effectiveness of the monitoring, and to achieve the objective of better data aggregation.

The traditional ACO algorithm sets the initial value of the pheromone as a constant, leading to the
algorithm’s initial blind search and a significant reduction in search efficiency. The R-ACO algorithm
incorporates the R value in the initial setting of the pheromone to enhance the accuracy of the initial search.
The initial value of the pheromone is calculated according to the following equation:

τi , j (0) =
k ⋅ Ri

di , j + δ
, (3)

where Ri is the R value of grid i, that is, the larger the R value is, the more valuable the region is to explore
and the more ants tend to this region; k is a positive constant used to adjust the influence intensity of the
R value; di , j is the distance from grid i to grid j; and δ is a very small positive number used to ensure
numerical stability.

Furthermore, to further optimize the path selection so that the ants tend to explore an optimal path
with monitoring value, R-ACO adapts the heuristic function to reduce the preference of the ants for nodes
that are in close proximity but with low R-value during the search process. The improved heuristic function
is defined by the following equation:

ηi , j (t) =
Ra

j

di , j
, (4)

where R j is the risk value of the grid j to be transferred; a is a constant used to adjust the influence of R in
the heuristic function.

In the pheromone updating strategy, the R-ACO algorithm considers the R value and length of the path
to motivate the ants to explore the nodes with high R value and guide the ants to proceed in a more optimal
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direction. The improved pheromone update strategy is shown in the following equation:

τi , j (t + 1) = ρ0 ⋅ τi , j (t) +
m
∑
k=1

Δτk
i , j (t) , (5)

ρ0 = (1 − ρ)R j , (6)

Δτk
i , j (t) =

R j

Lk
, (7)

where R j is the risk value of grid j to be transferred, ρ0 is the evaporation rate after considering the risk value;
∑m

k=1 Δτk
i , j (t) is the pheromone left behind by all the ants in the current iteration iteration, and Lk is the

path distance of ant k from grid i to grid j. This improved pheromone update strategy adds the consideration
of R value on the basis of traditional information evaporation. The higher the R value of the path, the
more pheromones the ants will leave, so as to guide the ants in the next iteration to explore this more, and
finally form a positive feedback mechanism, which makes the algorithm realize effective monitoring in path
planning. Ensure that high-risk areas receive more attention.

Finally, R-ACO uses the following state transfer probability formula to guide the ants in selecting the
grid to be transferred next:

Pk
i , j (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[τi , j (t)]
α
⋅ [ηi , j (t)]

β

∑s∈al l ow edk
[τi ,s (t)]α ⋅ [ηi ,s (t)]β

, j ε al lowedk

0, j ∉ al lowedk

, (8)

where α and β denote the degree of influence of pheromone and distance on the ants’ path selection,
respectively; al lowedk is the set of grids to be transferred; τi , j (t) represents the pheromone concentration
between the paths of grids i and j at the moment t; ηi , j (t) is the heuristic function.

2.3.2 Time Complexity Analysis of the R-ACO Algorithm
During the initialization phase of the R-ACO algorithm, an initial pheromone value is assigned to each

grid node through a complete traversal of all nodes, resulting in a time complexity of O (N), where N denotes
the total number of grid nodes. In the iterative phase, each ant evaluates and selects its next location at every
step by traversing all feasible transition nodes. This operation exhibits an average time complexity of O (M)
per ant per step, where M represents the average number of candidate nodes evaluated. After each iteration,
a global pheromone update is performed across all grid nodes, contributing an additional O (N) complexity.
Assuming the algorithm executes I iterations with A ants participating in each iteration, the overall time
complexity of the improved ant colony algorithm is expressed as:

O (I ⋅ A ⋅ (N +M)) . (9)

2.3.3 Space Complexity Analysis of the R-ACO Algorithm
The spatial complexity of the R-ACO algorithm is primarily driven by three key components: the

pheromone matrix, ant position tracking, and the candidate node set during state transitions. The pheromone
matrix, which stores pheromone values for all N grid nodes, requires O (N2) space. Additionally, main-
taining the current positions of A ants occupies O (A) space. During state transitions, the algorithm must
temporarily store feasible candidate nodes, and in the worst-case scenario where all N nodes are considered,
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this operation contributes O (N) space. Therefore, the total spatial complexity of the R-ACO algorithm is
expressed as:

O (N2 + A+ N) . (10)

2.4 Local Path Optimization Based on the OJPS Algorithm
2.4.1 Description of the OJPS Algorithm

In the complex background of an urban environment, UAVs performing global path planning tasks
often encounter localized dead zones caused by the dense distribution of obstacles, which may trigger
the algorithm’s deadlock state [27]. To overcome this issue, this paper proposes an innovative local path
optimization strategy, termed the OJPS algorithm.

The OJPS algorithm is a derived version of the Jump Point Search (JPS) algorithm [28], which in itself is
an improvement on the A* algorithm. The JPS algorithm markedly enhances the efficiency of path search by
identifying and retaining the pivotal nodes (i.e., jump points) in the path search while discarding the non-
critical nodes. This approach not only optimizes the search process but also maintains the accuracy of path
planning. The core innovation of the OJPS algorithm is its further simplification of the search space. The
algorithm considers only orthogonal (i.e., horizontal and vertical) movements in the grid map and excludes
the search in the diagonal direction, as shown in Fig. 3, which shows the flowchart of the OJPS algorithm.
This strategy is based on the observation that obstacles in urban environments are usually arranged in an
orthogonal grid, which reduces the number of nodes that need to be evaluated during the search process,
thereby enhancing the efficiency of the algorithm and the accuracy of path planning.

Figure 3: Flowchart of OJPS algorithm
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With this orthogonal direction search strategy, the OJPS algorithm is able to effectively avoid local
dead zones and provide a clearer path planning scheme for UAVs. In addition, the simplified search space
characteristic of the OJPS algorithm makes it scalable and adaptable while maintaining high efficiency, which
is suitable for a variety of complex urban environmental event monitoring tasks.

In the OJPS algorithm, an orthogonal jump point is defined as a move from the current position to the
next reachable position along an orthogonal direction, that is, only along the horizontal or vertical axes. The
screening of orthogonal jump points represents the core of the OJPS algorithm, as it determines the accuracy
of node selection during the search process. In the grid map G, each grid is considered as a node, and the
eight grids adjacent to the current node are called the set of nodes “around the current node”. Let the current
node position be the parent node P (x), and the next node to be moved to is x. The jump-point filtering
mechanism can be divided into two cases: one is when there is no obstacle around the current node, and the
other is when there is an obstacle.

2.4.2 No Obstacles around the Current Node
As shown in Fig. 4, when searching upward from point P (x) in an obstacle-free environment, the path

through node x to reach the next node n (e.g., from node 7 through node 4 to reach node 1) is deemed to
be a valid jumping point if it is shorter than the path without x to reach node n (e.g., by jumping from node
7 directly to node 1) directly from P (x). In this case, the gray nodes (2, 3, 5, 6, 8, 9) are considered invalid
nodes, and they do not participate in the calculation of the path length; they are defined as invalid nodes.
Therefore, the filtering condition can be expressed as:

L (P (x) , ⋅ ⋅ ⋅, n/x) ≥ L (P (x) , x , n) , (11)

where L() denotes the path length, [P (x) , . . . , n/x] is the path from P (x) to n without passing through x;
[P (x) , x , n] is the path P (x) passing through x to n. n is the movable nodes around node x.

Figure 4: Schematic diagram of search without obstacles around the node

2.4.3 Obstacles around the Current Node
As shown in Fig. 5, when there is an obstacle node around node x (node 2 in Fig. 5), the screening

method in the case of no obstacle is inapplicable, necessitating the adoption of an alternative screening rule.
In this case, a node n is said to be a forced neighbor of node x if the path through node x to the next node n
(from node 7 through node 4 to node 2 in Fig. 5) is shorter than the path directly to node n without nodes
(from node 7 to node 2 in Fig. 5), and node n is not a natural neighbor of node x. MN in Fig. 5 is the required
neighbor point. The mandatory neighbors are filtered as follows:
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n ∉ Natural Neighbors (x) , (12)

and:

L (P (x) , ⋅ ⋅ ⋅, n/x) > L (P (x) , x , n) , (13)

where Natural Neighbors (x) denotes the set of natural neighbors of node x.

Figure 5: Schematic diagram of search with obstacles around the node

Through the screening of these two cases, the OJPS algorithm can effectively identify the critical jump
points, thus optimizing the path search process and improving the efficiency of the algorithm and the quality
of path planning.

When the screening of orthogonal jump points is completed, the obtained orthogonal jump points will
be added to the Openlist table of the A* algorithm for evaluation, and the evaluation function is shown
in Eq. (14):

f (n) = h (n) + g (n) , (14)

where f (n) is the evaluation function, h (n) is the path cost from the current node to the target node
and g (n) is the path cost from the start node to the current node. The target node with the smallest
surrogate value is selected and added to the Closer list table of the A* algorithm, and then the paths are
obtained by connecting the nodes in the Closer list table. The A* algorithm can only select the neighboring
8 directions in the next node selection for the computation, whereas the OJPS algorithm selects from the
orthogonal jumping points, which allows the algorithm to perform a long-distance move across multiple
nodes. This long-range and restricted orthogonal direction jump selection mechanism significantly improves
the operational efficiency of the path search while maintaining the accuracy of the path planning. This
feature of the OJPS algorithm makes it particularly suitable for local path optimization of UAVs in urban
environmental event monitoring, where fast response and efficient path optimization delineation are crucial
for the success of the monitoring mission.

2.4.4 Time Complexity Analysis of the OJPS Algorithm
The core mechanism of the OJPS algorithm lies in its effective identification of orthogonal jump points.

This process systematically examines the neighborhood of each node to determine eligible jump points.
For any given node, the algorithm evaluates up to four neighboring nodes, with this number reaching its
maximum in obstacle-free environments or increasing adaptively in the presence of obstacles. Since this
process primarily involves a fixed number of comparison and calculation operations, its time complexity
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is classified as O (1) (constant time complexity). During the path search phase, the OJPS algorithm adopts
the A* algorithm framework while optimizing the Openlist update strategy through orthogonal jump point
recognition. Although extreme cases may require revisiting most graph nodes, the ability to filter non-
critical nodes via jump point identification significantly reduces the number of evaluated nodes. Let V denote
the total number of nodes in the graph, and V′ represent the actual number of nodes evaluated by OJPS.
Empirically, V′ is often less than V. Thus, the overall time complexity of the OJPS algorithm is expressed as:

O (V ′) .

2.4.5 Space Complexity Analysis of the OJPS Algorithm
The OJPS algorithm relies on two critical data structures: the Openlist and Closelist. The Openlist

temporarily stores unevaluated nodes, whereas the Closelist records evaluated nodes. In the worst-case
scenario, where all nodes require evaluation, both lists must store the entire set of V nodes, resulting in a space
complexity of O (V) for each list. Considering the storage demands of these data structures and auxiliary
information for orthogonal jump points, the total spatial complexity of the OJPS algorithm remains: O (V).

3 Numerical Experiments and Analysis of Results

3.1 Experimental Setup
In order to verify the feasibility and superiority of the R-ACO and OJPS algorithms proposed in this

paper in UAV path optimization, numerical experiments are conducted through MATLAB. The UAV model
is set to fly at a speed of 1 m/s, and each turning time is set to 4 s. The experimental setup includes:

Global path planning: The classic solution strategy of the traveling salesman problem is adopted, the eil51
standard data set is used, and the corresponding risk value is attached to each coordinate. The average risk
value of the R-ACO algorithm, PSO algorithm, and ARO algorithm under different time scales of parameters
is compared.

Local Path Optimization: Comparing the performance of the OJPS algorithm with other path planning
algorithms in terms of path duration and number of turns in a 2D grid model of a simulated urban
environment, using the Manhattan distance as a heuristic function.

3.2 Experimental Results and Analysis
3.2.1 Comparison of Global Path Planning Experiment Results

Fig. 6 shows the path planning results of the three algorithms, where the green node is the starting
position, the number labeled next to each node indicates the risk value of the environmental event at that
node, and the direction of the path is indicated by the direction of the arrow. In Fig. 6a, the path length
planned by the R-ACO algorithm is 671.9681 m; in Fig. 6b, the path length planned by the PSO algorithm
is 1308.6833 m; in Fig. 6c, the path length planned by the ARO algorithm is 1336.0146 m. By comparing the
path planning graphs of the three algorithms, it can be observed that there is a significant difference between
the PSO algorithm and the ARO algorithm in the global path planning using the strategy of solving the TPS
problem and the R-ACO algorithm. The optimal path length planned by the two algorithms is still larger
than that of the R-ACO algorithm without considering the environmental risk value. The R-ACO algorithm
shows a trade-off between risk value and distance in path planning, which ensures effective data aggregation
for key nodes with high R value.
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Figure 6: Path planning results of the different algorithms. (a) R-ACO algorithm path planning diagram; (b) PSO
algorithm path planning diagram; (c) ARO algorithm path planning diagram

Fig. 7 shows the average R value of the path node traversed by the three algorithms at different times.
In the figure, I is the average R value of the path node traversed within 5 min, II is the average R value of the
path node traversed within 8 min, and III is the average R value of the path node traversed within 10 min.
Within 5 min, the average R value of the path nodes of the R-ACO algorithm is 71.21, which is 48.33% and
70.33% higher than that of the PSO algorithm and ARO algorithm, respectively. Within 8 min, the average
R value of path nodes is 59.87, which is 26.10% and 19.08% higher than that of the PSO algorithm and ARO
algorithm, respectively. Within 10 min, the average R value of path nodes is 53.79, which is 6.746% and
10.246% higher than that of the PSO algorithm and ARO algorithm, respectively. Although the average R
value of the path traversed by R-ACO algorithm in the first 8 and 10 min is lower than that in the first 5 min,
and the improvement degree is also lower than that of PSO algorithm and ARO algorithm, this is because R-
ACO algorithm is close to the end of path planning at 8 and 10 min. The PSO algorithm and ARO algorithm
are in the middle stage of exploration, and the R-ACO algorithm at this time explores more areas with low R
value so that the final average R value is reduced. However, in general, the R-ACO algorithm still performs
better than the PSO algorithm and ARO algorithm in the average R value of the path traversed in three time
nodes, which shows that the R-ACO algorithm can comprehensively consider the R value and the distance
in the search process, to carry out more reasonable path planning. Therefore, the proposed algorithm has
higher practical application value in UAV path planning for urban environmental event monitoring.

Figure 7: Value of R in different methods
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3.2.2 Comparison of Experimental Results for Local Path Optimization
Fig. 8 shows the experimental path results of the four algorithms in the two-dimensional grid model

simulating the same complex urban environment, where the heuristic function of the A* algorithm, JPS
algorithm, and OJPS algorithm is to choose Manhattan distance, which is more conducive to the comparison
of results. In the figure, the green grid is the starting position, the red grid is the end position, the gray grid is
the obstacle, and the white grid is the feasible region. Fig. 8a shows the path result of the Dijkstra algorithm,
and the path length is 58 m. Fig. 8b shows the path result of the A* algorithm, and the path length is 58
m. Fig. 8c shows the path result of the JPS algorithm, and the path length is 45.7 m. Fig. 8d shows the path
result of the OJPS algorithm with a path length of 58 m. Fig. 8 shows that although the OJPS algorithm has
no obvious advantage in path length, its path is more concise and direct and has a better search range, which
can improve the search efficiency in practical applications.

Figure 8: The stimulation of path planning results in different ways. (a) Dijkstra algorithm; (b) A* algorithm; (c) JPS
algorithm; (d) OJPS algorithm

Fig. 9 comprehensively shows the performance of the four algorithms in terms of the number of path
turns and the total flight duration, where I is the number of turns and II is the total flight duration. The
OJPS algorithm is significantly better than the other algorithms in the number of turns with only 9, which
is 40%, 40%, and 57.1% less compared to the JPS algorithm, the A* algorithm, and the Dijkstra algorithm,
respectively. Considering that the ability to turn the Angle of a UAV is limited by dynamic and environmental
factors, reducing the number of turning angles can not only improve the flight stability of UAV but also
improve its monitoring efficiency. The OJPS algorithm effectively reduces the number of nodes that need
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to be considered by restricting the search direction of jumping points to the orthogonal direction and thus
performs well in terms of the number of turning times, which is especially important for UAVs to perform the
task of monitoring urban environmental events. In terms of total flight time, the OJPS algorithm completes
the flight in 94 s, which is 11.1%, 11%, and 33.8% shorter than the JPS algorithm, the A* algorithm, and the
Dijkstra algorithm, respectively. The result is due to the optimization of the OJPS algorithm in terms of the
number of turns, which also significantly reduces the flight time. This is crucial for responding to urgent
urban environmental events, enabling the UAV to respond quickly and complete the monitoring task in time.

Figure 9: Flying time and number of turns of UAV in different methods

In summary, the advantages of the OJPS algorithm in reducing the number of turns and flight time
demonstrate high efficiency and effectiveness in monitoring urban environmental events. These properties
make the OJPS algorithm ideal for rapid local optimization in UAV path planning, helping to facilitate the
successful completion of monitoring tasks.

3.3 Sensitivity Analysis of Key Parameters of R-ACO Algorithm
To further explore the effects of different parameters on the performance of the proposed R-ACO

algorithm, we conduct a sensitivity analysis. By systematically changing the number of ants, the pheromone
influence degree factor, and the power of R value, and the change of path length is also observed when other
conditions remain unchanged, the specific effects of these parameters on the performance of the algorithm
can be evaluated.

Table 1 shows how the path length varies with different parameter combinations. As shown in Table 1,
the number of ants has a relatively minor effect on the path length, with an increase in the number of ants
leading to a slight reduction in path length. In contrast, the pheromone influence degree factor and the power
of R value have more pronounced impacts. Specifically, increasing the pheromone influence degree factor
from 2 to 3 significantly decreases the path length, whereas reducing it to 1 leads to a substantial increase.
Most notably, the power of R value exhibits the most significant influence on the path length, with its increase
from 3 to 4 resulting in a dramatic rise in the path length.

In summary, sensitivity analysis showed that the pheromone influence degree factor and the power of
R has the most significant effect on the path length, especially the power of R. These findings provide an
important reference for optimizing algorithm parameters and lay a foundation for further research.
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Table 1: Impact of parameter variations on path length in R-ACO algorithm

Parameter Baseline
value

Changed
value 1

Changed
value 2

Path length
(Baseline)

Path length
(Change 1)

Path length
(Change 2)

Number of ants 20 10 30 671.9681 697.1904 670.4234
Pheromone influence

degree factor
2 1 3 671.9681 769.6096 668.2838

Power of R value 3 2 4 671.9681 693.2274 850.7875

4 Simulation Experiment
At the end of the simulation experiment, an actual path experiment will be conducted. In the experi-

ments, a 20× 20 grid map with distributed obstacles is designed in this paper for simulating the real situation.
The black areas in the map indicate obstacles, the white areas indicate feasible regions, and the grid of each
feasible region is labeled with the corresponding R value. In this experiment, the R-ACO algorithm and the
traditional ACO algorithm are used for path planning on the same grid map, and the starting point and
the end point of the experiment are set as Grid 1 and Grid 400, respectively. A comparison graph of the
experimental results is shown in Fig. 10.

Figure 10: Path planning results of the R-ACO and ACO algorithms. (a) R-ACO algorithm; (b) ACO algorithm

Fig. 10a shows the path planned by the R-ACO algorithm and Fig. 10b shows the path planned by the
ACO algorithm, from the figure it can be seen that the path planned by the ACO algorithm suffers from
a high number of turns and a complex path, while the R-ACO algorithm, due to the adoption of the OJPS
algorithm in the local planning, makes the planned path have the advantage of simplicity and clarity and a
low number of turns.

Fig. 11 shows the comparison between the R-ACO algorithm and the ACO algorithm in terms of path
average R value, path length, and number of turns, where I is the path average R value, II is the path length,
and III is the number of turns. The path average R-value and the number of turns for the R-ACO algorithm
are 67.79 and 9, respectively, which is an increase of 9.55% and 47.06% in the two performance indexes
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compared with the ACO algorithm, respectively. This is due to the fact that the R-ACO algorithm considers
the R value during path planning and utilizes the OJPS algorithm for local path planning, which enables
the UAV to plan a monitoring-valued path when performing environmental event monitoring tasks, and at
the same time effectively reduces the number of turning times in order to improve flight efficiency when
encountering complex obstacles. As for the path length, although the R-ACO algorithm plans a path length
of 38 m, which is slightly inferior to the 34.97 m planned by the ACO algorithm, this path gap is obviously
acceptable considering that the R-ACO algorithm is a combination of the R value as well as the distance for
the path search.

Figure 11: Path-averaged R-value, path length, and number of turns for R-ACO and ACO algorithms

Furthermore, experiments were conducted on path planning in a 3D environment, as illustrated
in Fig. 12. The experiment utilizes a 5 × 5 × 5 3D rasterized map to depict the urban environment, wherein
the grid points represent the monitoring points present in the 3D environment, and the colors of the different
grid points indicate the R values of the environmental events, with a color gradient from blue (low risk) to
red (high risk). The black connecting line indicates the flight path generated by the UAV according to the
optimized path planning algorithm. The green star symbolizes the initial point, while the blue square denotes
the terminal point.

Figure 12: Path planning results in 3D environment
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As illustrated in Fig. 12, the path planning method proposed in this paper prioritizes the exploration
of monitoring points with high R-values in urban environments. Additionally, searching along orthogonal
directions can minimize excessive cornering when the UAV performs the monitoring task. This can assist
the UAV in effectively reducing energy loss due to excessive cornering during flight. In summary, the UAV
path planning method for environmental event monitoring proposed in this paper is effective.

5 Conclusion
This paper presents an innovative UAV path-planning method that incorporates the OJPS algorithm

and the R-ACO algorithm. After reviewing the blindness of the traditional ACO algorithm in the initial
search phase and the limitations of its applicability in urban environmental event monitoring, this paper
introduces the concept of R value to critically improve the ACO algorithm. This improvement significantly
enhances the relevance and effectiveness of path planning, ensuring that the generated paths not only
consider the R value but also synthesize the distance factor between grids, thus providing a path with practical
monitoring significance for UAVs in urban environmental event monitoring. Aiming at the common
vertical or horizontal obstacles in the urban environment, the OJPS algorithm proposed in this paper
effectively solves the path planning difficulties caused by local complex obstacles by restricting the search
direction to orthogonal directions. Both numerical experiments and practical application cases fully prove
the effectiveness and superiority of the method.

Although the path planning method proposed in this paper shows a broad application prospect, there
are still some aspects that need to be further explored.

(1) UAV Battery Capacity: The current method does not explicitly account for UAV battery constraints. In
real-world applications, battery capacity directly impacts flight duration and mission success. Future
work should explore strategies to optimize path planning while considering energy consumption.

(2) Communication Range: Effective communication between UAVs and ground stations is crucial for
successful missions. Our method assumes reliable communication; however, varying communication
ranges can affect task coordination. The study of adaptive communication protocols will be an effective
means of improving the reliability of operations in the future.

(3) Environmental Variables: Environmental factors, such as weather conditions (e.g., wind, precipitation),
can significantly influence UAV performance. Incorporating dynamic environmental variables into
the path planning process is an important future research direction to improve the robustness of
algorithms in different and unpredictable environments.
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