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ABSTRACT: The counterflow burner is a combustion device used for research on combustion. By utilizing deep
convolutional models to identify the combustion state of a counterflow burner through visible flame images, it facilitates
the optimization of the combustion process and enhances combustion efficiency. Among existing deep convolutional
models, InceptionNeXt is a deep learning architecture that integrates the ideas of the Inception series and ConvNeXt. It
has garnered significant attention for its computational efficiency, remarkable model accuracy, and exceptional feature
extraction capabilities. However, since this model still has limitations in the combustion state recognition task, we
propose a Triple-Scale Multi-Stage InceptionNeXt (TSMS-InceptionNeXt) combustion state recognition method based
on feature extraction optimization. First, to address the InceptionNeXt model’s limited ability to capture dynamic
features in flame images, we introduce Triplet Attention, which applies attention to the width, height, and Red Green
Blue (RGB) dimensions of the flame images to enhance its ability to model dynamic features. Secondly, to address
the issue of key information loss in the Inception deep convolution layers, we propose a Similarity-based Feature
Concentration (SimC) mechanism to enhance the model’s capability to concentrate on critical features. Next, to address
the insufficient receptive field of the model, we propose a Multi-Scale Dilated Channel Parallel Integration (MDCPI)
mechanism to enhance the model’s ability to extract multi-scale contextual information. Finally, to address the issue of
the model’s Multi-Layer Perceptron Head (MlpHead)neglecting channel interactions, we propose a Channel Shuffle-
Guided Channel-Spatial Attention (ShuffleCS) mechanism, which integrates information from different channels
to further enhance the representational power of the input features. To validate the effectiveness of the method,
experiments are conducted on the counterflow burner flame visible light image dataset. The experimental results show
that the TSMS-InceptionNeXt model achieved an accuracy of 85.71% on the dataset, improving by 2.38% over the
baseline model and outperforming the baseline model’s performance. It achieved accuracy improvements of 10.47%,
4.76%, 11.19%, and 9.28% compared to the Reparameterized Visual Geometry Group (RepVGG), Squeeze-erunhanced
Axial Transoformer (SeaFormer), Simplified Graph Transformers (SGFormer), and VanillaNet models, respectively,
effectively enhancing the recognition performance for combustion states in counterflow burners.

KEYWORDS: Counterflow burner; combustion state recognition; InceptionNeXt; dilated convolution; channel
shuffling

1 Overview
A counterflow burner is a combustion device commonly used in the industrial and energy sectors.

It achieves the mixing of combustion air and fuel through a counterflow arrangement, thereby enhancing
combustion efficiency, reducing the emission of harmful substances, and enabling efficient thermal energy
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conversion. Counterflow burners are widely applied in gas turbines, boilers, combustion laboratories, and
other energy conversion devices, particularly in scenarios that require precise control of the combustion
state. Accurately identifying the combustion state within a counterflow burner can optimize the combustion
process, enhance combustion efficiency, reduce the emission of harmful gases, and decrease energy waste.
However, identifying the combustion state poses significant challenges due to the complex and stochastic
nature of flames, making accurate identification difficult. With the advancement of monitoring technologies,
flame imaging combined with algorithms has emerged as a promising method and has been widely adopted.
Furthermore, with the development of artificial intelligence and deep learning technologies, recent years
have seen a transition in combustion state recognition methods within burner flames from traditional feature
extraction models to deep convolutional models. Among deep convolutional models, the InceptionNeXt
model inherits the traditional advantages of the Inception series, enabling it to process information at
multiple scales simultaneously. In flame state recognition, the features of flames are significant at various
scales. The overall shape of the flame can be perceived at larger scales, while the detailed information of
the flame edges needs to be captured at smaller scales. InceptionNeXt can utilize convolutional kernels of
different sizes across various branches to extract multi-scale features, thereby comprehensively describing the
flame state. Compared to traditional single-scale convolutional neural networks, it does not lose key infor-
mation at certain scales due to fixed convolutional kernel sizes. InceptionNeXt has demonstrated outstanding
performance in other image classification tasks, which share similarities with flame state recognition, as
both require feature extraction and classification of targets within images. In image classification tasks, it
can accurately identify objects of different categories, indicating that its feature extraction capabilities and
classifier performance are reliable. Flame state recognition can be viewed as a specialized image classification
task, where flame images are categorized into different state classes. Based on InceptionNeXt’s strong
performance in other similar tasks, it is reasonable to hypothesize that it can also achieve good results in flame
state recognition tasks. However, despite its favorable performance, InceptionNeXt still faces challenges in
combustion state recognition, such as difficulty in adapting to the dynamic changes of flames, susceptibility
to losing key information in flame images, and having a relatively small receptive field. Therefore, we propose
the TSMS-InceptionNeXt model, which enhances combustion state recognition capabilities by optimizing
the model’s ability to extract flame features.

The main contributions of our study can be summarized as follows:

(1) We analyze the defects in the feature extraction part, Stages, of the InceptionNeXt recognition
framework and introduce the Triplet Attention mechanism in the Stages componentto enhance the
model’s ability to capture dynamic flame features.

(2) We analyze the deficiencies in the MetaNeXt module of the InceptionNeXt recognition framework and
introduce the SimC mechanism to improve its ability to recognize key information.

(3) We propose a MDCPI mechanism, which combines multi-scale dilated convolutions with parallel
channel and spatial attention mechanisms to enlarge the model’s receptive field.

(4) We propose a ShuffleCS mechanism that improves the model’s MlpHead by facilitating the interaction
of information across different channels.

(5) We introduce the Focal Loss function to replace SoftTargetCrossEntropy, thereby enhancing the
model’s focus on hard-to-recognize states.

The remainder of this paper is organized as follows: Section 2 introduces related work; Section 3
describes the feature extraction-optimized TSMS-InceptionNeXt; Section 4 outlines the experimental setup
and analyzes the results; Section 5 concludes the paper.
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2 Related Work
Traditional methods for recognizing combustion states inside burners rely on visual observation and

sensor-based detection. However, these methods are highly subjective, slow to respond, and lack precision.
With advancements in detection technology, using algorithms to process flame images has emerged as a
promising approach and is widely employed for combustion state recognition. Unlike traditional detection
methods, machine learning approaches based on flame images identify combustion states by extracting
image features. Malpica et al. [1] proposed a gradient-free combustion state recognition method based on
the thermochemical state features of flame images. However, due to a lack of prior knowledge, this method
is limited to specific combustion scenarios. Sitaraman et al. [2] introduced a machine learning method
to recognize combustion states in Reactivity Controlled Compression Ignition (RCCI) engine combustion
systems using heat release rate features from flame images. However, its accuracy is low due to insufficient
prior knowledge. Bhattacharya et al. [3] developed a combustion state recognition method based on a
probabilistic finite-state automaton, which improved recognition accuracy. However, the approach requires
a large amount of data and is computationally inefficient. Compais et al. [4] applied Analysis of Variance
(ANOVA) F-variance analysis to select features from flame images and proposed a machine learning method
for identifying combustion states in laboratory devices. While it achieves high accuracy with small datasets,
it requires significant computational resources, making it unsuitable for real-time applications. Bukkarapu
et al. [5] extracted multiple features from flame images and proposed a decision tree model for recognizing
burner combustion states. This method achieved high accuracy but incurred substantial computational costs.

From the above methods, it can be observed that machine learning approaches for extracting flame
image features and recognizing combustion states face the following issues: heavy reliance on domain
experts’ prior knowledge, a large amount of required data, low processing efficiency, and high computational
cost. Therefore, a more precise and efficient method for extracting flame image features is needed. In recent
years, deep learning methods have garnered significant attention in the field of combustion state recognition.
By employing multi-layer nonlinear transformations to autonomously extract discriminative features from
large amounts of flame data for recognition, deep learning overcomes the reliance on prior knowledge
seen in machine learning and other shallow models, while also avoiding the need for complex feature
extraction processes. Choi et al. [6] proposed a fusion layer combined with the Residual Network (ResNet)
model for recognizing the combustion states of gas turbine burners. This model does not require prior
knowledge and captures flame features by extracting image frames. However, the features of each channel
are learned independently, with no feature exchange between channels. Roncancio et al. [7] proposed a
Convolutional Neural Network (CNN) combined with data augmentation to recognize turbulent flame states
using turbulent flame images. The method achieves high accuracy by extracting image features based on heat
release rates, but it does not consider dependencies between flame image channels and spatial dimensions,
making it unable to handle dynamically changing flames. Omiotek et al. [8] proposed a flame image
segmentation method based on the red component of the flame image and employed the Visual Geometry
Group 16 (VGG16) model for combustion state recognition. This approach improved the segmentation
quality of flame regions and enhanced recognition accuracy, but the model is limited by its small receptive
field due to using only 3 × 3 convolutions. Pereira et al. [9] proposed an improved convolutional neural
network for recognizing the states of combustion devices in production lines. The method maintained
high accuracy with short processing times and expanded the receptive field. However, the downsampling
process led to the loss of local critical information. Natsui et al. [10] combined class activation mapping
with convolutional neural networks to recognize different combustion states by analyzing temporal sequence
images extracted from videos. This approach overcame disturbances caused by dynamic flame changes, but
the model’s receptive field was small. Pan et al. [11] proposed a combustion state recognition method based on
the Vision-Transformer-Improved Deep Forest Classification (ViT-IDFC) algorithm, improving the feature
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extraction component. The model achieved a large receptive field and high accuracy but lacked information
exchange between channels. Wang et al. [12] proposed an improved Artificial neural network (ANN) model
for recognizing combustion states in Moderate or Intense Low-Oxygen Dilution (MILD) burners. However,
the model overlooked spatial relationships between pixels, resulting in an inability to capture critical
information in images. Wu et al. [13] proposed a convolutional neural network combining Long Short-Term
Memory (LSTM) and Proximal Policy Optimization (PPO) to detect and recognize combustion states in
pulverized coal boilers. While this method focused on temporal dependencies in image sequences, it lacked
attention to spatial relationships within the images. Lv et al. [14] proposed an unsupervised learning method
combining the Convolutional Block Attention Module (CBAM) and Stacked Convolutional Autoencoders
(SCAE) to extract features and recognize combustion states from flame images of burners. This approach
established dependencies between channel and spatial dimensions and enhanced channel-wise information
interaction, but it suffered from a small receptive field.

Yu et al. [15] proposed dilated convolution to efficiently expand the receptive field, addressing the issue
of reduced resolution in traditional convolutions when increasing the receptive field. This method also
captures multi-scale contextual information. Jaderberg et al. [16] proposed the spatial attention mechanism
based on spatial invariance, solving the problem of traditional CNN failing to recognize images effectively
after transformations. Hu et al. [17] introduced the channel attention mechanism based on the significance
of different channel features, addressing the issue of traditional CNN neglecting channel features. Zhang
et al. [18] proposed the channel shuffle strategy to enhance channel information utilization, addressing the
problem of traditional convolutions losing channel information. Wang et al. [19] proposed the Efficient
Channel Attention (ECA) mechanism, which avoids the information loss caused by dimensionality reduction
in traditional channel attention and has low computational cost. Yang et al. [20] introduced the Simplified
Attention Mechanism (SimAM) inspired by human brain attention, addressing the issue of traditional spatial
and channel attention mechanisms requiring additional parameters, which increase model complexity.
Misra et al. [21] proposed the Triplet Attention mechanism based on cross-dimensional interaction, which
enables better understanding of complex input feature structures through channel and spatial information
interaction. Ding et al. [22] proposed the RepVGG model based on re-parameterization. This model features
a simple structure and fast inference speed but relies primarily on local convolution operations, lacking
interaction modeling between channel and spatial dimensions, and has a small receptive field. Wan et al. [23]
introduced the Seaformer model based on self-attention, enabling interaction modeling between spatial and
channel dimensions in lightweight models. However, it tends to overlook critical information in detail-rich or
long-distance dependency images, and self-attention limits feature exchange across channels. Wu et al. [24]
proposed the SGFormer model based on the Transformer architecture, utilizing a multi-scale design to
extract features at different scales with a large receptive field. However, its lightweight structure limits its
ability to fully capture long-distance detail information and features despite maintaining a large receptive
field. Chen et al. [25] proposed the VanillaNet model based on basic convolutional modules. By stacking
convolutional layers, the receptive field was expanded. However, the lack of inter-channel feature interaction
in its design resulted in insufficient fusion of channel information, reducing recognition performance.

From the current state of research in deep learning, it is evident that deep learning methods based
on flame image feature extraction have been widely applied to combustion state recognition tasks. These
methods not only enable combustion state recognition but also extract potential flame features through
feature maps, leading to better performance. However, current deep learning methods for combustion state
recognition based on flame image feature extraction suffer from issues such as small receptive fields, lack of
channel interaction, and low recognition accuracy. With the deepening of research, Yu et al. [26] inspired
by models such as Inception [27], ConvNeXt [28], and Vision Transformer (ViT) [29], decomposed large
kernel depth convolutions into four parallel branches and proposed an InceptionNeXt model based on the
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CNN architecture. Experimental results show that InceptionNeXt outperforms traditional CNN models
on both the ImageNet-1K and ADE20K datasets, demonstrating its high potential for image recognition
tasks. Subsequent research has also confirmed the effectiveness of the InceptionNeXt model in various
image recognition tasks. Li et al. [30] addressed the issue of insufficient receptive field in the InceptionNeXt
model by proposing an InceptionNeXt Attention Differentiable Binarization Network (INA-DBNet) scene
text detection method based on semantic segmentation. This method integrates InceptionNeXt and a multi-
scale attention mechanism to resolve the receptive field limitations of existing text detection methods.
However, the introduction of new modules decreased the computational efficiency of the model. Lau
et al. [31] proposed an AudioRepInceptionNeXt audio recognition model to address the lack of inter-channel
information interaction in InceptionNeXt. This model was improved by using an inverted bottleneck design,
where parallel multi-scale depth separable convolution kernels were placed before the 1 × 1 expansion
layer of InceptionNeXt to enable inter-channel information exchange. However, the model relies on large
convolution kernels to capture global information, leading to a neglect of local critical details. Although some
improvements have been made in these studies, there are still some deficiencies. In summary, to address
the common issues in the InceptionNeXt model and other models in combustion state recognition, and to
more accurately identify the combustion states of counterflow burners, this paper proposes an improved
InceptionNeXt model optimized for feature extraction. The proposed model was tested on a visible light
flame image dataset of a counterflow burner, which includes six common combustion states of the burner.
This dataset covers a wide range of combustion conditions used in the laboratory and provides a foundation
for experimental design.

In recent years, large-kernel depthwise convolution has been widely studied and adopted due to its large
receptive field. However, its high memory access cost results in low model efficiency. Reducing its memory
access cost could improve detection speed. To address this, InceptionNeXt proposed an Inception Depthwise
Convolution, which significantly improves model efficiency while maintaining the performance of large-
kernel depthwise convolution.

Let the input be X, and the computation of traditional large-kernel depthwise convolution is expressed
as Eq. (1).

X′ = DWConvC→C
k×k (X) (1)

In the equation, X′ represents the result after the large-kernel depthwise convolution operation;
DWConvC→C

k×k () denotes a depthwise convolution with a kernel size of k × k, where C represents the input
and output channels.

The computation of the Inception Depthwise Convolution is expressed as Eq. (2).

XhW , XW , Xh , Xid = Spl it (X)
X
′

hW = DWConv g→g
ks×ks
(XhW)

X
′

W = DWConv g→g
1×kb
(XW)

X
′

h = DWConv g→g
kb×1 (Xh)

X
′

id = Xid

X′ = Concat (X
′

hW , X
′

W , X
′

h , X
′

id)

(2)

In the equation, XhW , XW , Xh , Xid are the four decomposed convolution branches; ks and kb represent
the sizes of the decomposed convolution kernels; and Concat() denotes the operation of concatenating the
outputs of each branch.
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By comparing Eqs. (1) and (2), it is evident that traditional large-kernel depthwise convolutions require
k × k operations each time, whereas Inception Depthwise Convolution decomposes the traditional large-
kernel depthwise convolution into four parallel branches: a small square convolution (kernel size ks × ks),
two strip convolutions (kernel sizes 1 × kb and kb × 1), and an identity mapping. Each parallel branch requires
far less computation than k × k, thus significantly reducing computational cost. The small square convolution
preserves the ability of traditional convolutions to capture small-scale features, the two orthogonal strip con-
volutions extend the receptive field and reduce computational cost, and the identity mapping keeps certain
channels unchanged. This design addresses the high memory access cost and reduced computational speed
of traditional large-kernel depthwise convolutions. By decomposing large-kernel depthwise convolutions
into multiple small-kernel convolutions and one-dimensional strip convolutions, it retains the advantage of
a large receptive field while reducing computational complexity. Using InceptionNeXt as the baseline model
provides a solid foundation for subsequent combustion state recognition tasks.

The InceptionNeXt image recognition model comprises three main components: Input for image pre-
processing, Stages for feature extraction, and MlpHead for classification. The Input component preprocesses
the counterflow burner flame images by resizing, performing convolution operations, and applying batch
normalization. The Stages component uses the MetaNeXtBlock module to extract feature information from
the flame images and outputs feature maps. The MlpHead component applies global average pooling to
the feature maps, followed by two fully connected layers for feature transformation, ultimately producing
recognition results of size Num_classes. The structure of the baseline model is shown in Fig. 1. The black
dashed boxes on the left side of Fig. 1 indicate the parts of the model, and the text in the corners of the black
dashed boxes indicates the name of the part, while the two black dashed boxes on the right side illustrate
the internal structure of the MetaNeXtBlock and the Inception deep convolution in the original model of
InceptionNeXt, respectively. To address the common issues of the InceptionNeXt baseline model and other
models in combustion state recognition, strategies for improving the baseline model are proposed in the
following sections.
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Figure 1: Schematic diagram of the InceptionNeXt baseline model structure
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3 Our Methods
The structure of the proposed TSMS-InceptionNeXt model is shown in Fig. 2, with the improvements

highlighted by red dashed lines. Firstly, the Triplet Attention mechanism is introduced before the Stages
component, applying attention across the height, width, and Red Green Blue (RGB) dimensions to enhance
the model’s ability to capture dynamic flame features. Second, the MetaNeXtBlock in the feature extraction
component is improved by integrating the SimAM and ECA mechanisms to increase the module’s focus on
critical image information. Next, a MDCPI mechanism is proposed after the Stages component to expand
the model’s receptive field. Finally, a ShuffleCS mechanism is proposed and embedded into the MlpHead to
enhance information interaction between channels, further improving the model’s recognition performance.
The dashed box on the right in Fig. 2 represents the structure of the improved MetaNeXtBlock.
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Figure 2: Schematic of the TSMS-InceptionNeXt model structure optimized for feature extraction

3.1 Triplet Attention Mechanism
The InceptionNeXt baseline model struggles to capture the dynamic features of flames. To address

this issue, the Triplet Attention mechanism is introduced in the model’s Stages component, with the aim
of enhancing the model’s ability to capture dynamic features of flame images. The structure of the Triplet
Attention mechanism is shown in Fig. 3.

Existing attention mechanisms predominantly rely on the aggregation of global or local information.
In contrast, Triplet Attention integrates the height, width, and channel information of images, enabling
it to more effectively extract subtle feature variations in flame images compared to traditional self-
attention mechanisms. This enhancement improves the model’s classification capability under complex
flame conditions.
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Triplet Attention focuses on the input features across multiple dimensions by dividing the feature map
into three dimensions: height, width, and channel. It then applies attention separately to each dimension
using a three-branch structure. For an input flame image M ∈ RC×H×W , the computations are performed
through three branches, and the final weights are obtained by averaging, as described by Eqs. (3)–(6).

M∗H− = (MH−σ (ω1 ∗ (Z − pool (MH−))))H+ (3)
M∗W− = (MW−σ (ω2 ∗ (Z − pool (MW−))))W+ (4)
M∗ = Mσ (ω3 ∗ (Z − pool (M))) (5)

M′ = 1
3
(M∗H +M∗W +M∗) (6)

In the equations, H− represents a 90○ counterclockwise rotation along the H-axis; W− represents a 90○
counterclockwise rotation along the W-axis; σ denotes the activation function; ω1 and ω2 are convolution
kernels; ∗ indicates the convolution operation; H+ represents a 90○ clockwise rotation along the H-axis; W+

represents a 90○ clockwise rotation along the W-axis; and Z − pool preserves feature representations.
The three-branch design of Triplet Attention enables it to apply attention separately from different

spatial dimensions (height, width, and channel). Over different times and combustion states, flame shapes
and colors undergo changes. In terms of shape, flame features vary vertically and horizontally. Triplet
Attention extracts attention information from the height and width of flame images, dynamically adjusting
the model’s sensitivity to these changing features, thereby better capturing variations in flame shapes;
Regarding color, changes in flame colors under different combustion states essentially involve alterations
in Red Green Blue (RGB) components, which are reflected through the channel dimension of the image.
Triplet Attention extracts attention information from the channel dimension, allowing the model to adapt
more flexibly to changes in flame colors. In summary, these two improvements enhance the model’s ability
to capture the dynamic features of flames.
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3.2 SimC Mechanism Based on Energy Function
The Inception deep convolution used in the InceptionNeXt baseline model decomposes large-kernel

deep convolutions, which leads to the neglect of key features in the image during the decomposition process.
To address the issue of Inception deep convolutions overlooking key information and thereby improve the
model’s recognition accuracy, this paper designs a SimC mechanism based on an energy function, which is
embedded after the Inception deep convolution. The fundamental principle of the SimC is to enhance pixels
and channels containing critical information. Its structure is shown in Fig. 4.
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Figure 4: Structure of the SimC mechanism

The SimC mechanism optimizes information extraction by selectively focusing on features, thereby
reducing the impact of redundant features. Compared to traditional convolutional networks, it places greater
emphasis on the similarities and differences between features, enabling the model to more accurately identify
key features in variable flame images and thereby enhancing recognition accuracy.

The specific calculation formulas for SimC are provided in Eqs. (7)–(10), where Eq. (7) defines the
energy function.

e∗i = −
4 (σ̂ 2 + λ)

(ti − μ̂)2 + 2σ̂ 2 + 2λ
(7)

X̃ = sigmiod ( 1
E
)⊙X (8)

k = ψ (C) = ∣
log2 (C)

γ
+ b

γ
∣

odd
(9)

out = Conv1Dk (X̃) (10)

In the equations, e∗i is used to determine pixel similarity, where i represents the pixel index; σ̂ 2 denotes
the variance of all neurons in a single channel; λ is the regularization term; ti represents the i-th pixel in
the input feature map of a single channel; μ̂ is the mean of all pixels in a single channel; X̃ is the enhanced
tensor; E is the sum of e∗i ;⊙ denotes the Hadamard product; C represents the number of channels; b and γ
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adjust the ratio of channels to kernel size; odd refers to odd numbers; and Conv1Dk() is a one-dimensional
convolution operation with a kernel size of k.

For the input feature tensor, the SimC mechanism uses an energy function based on local image
similarity to identify highly similar pixels and enhance them in subsequent operations, thereby emphasizing
key features critical for accurate recognition. After obtaining the feature tensor with enhanced pixels, to
maintain the lightweight advantage of Inception Depthwise Convolution, fast one-dimensional convolution
operations are used to learn the importance of each channel relative to others, thereby increasing the weights
of channels related to critical information. This achieves the goal of focusing on important information in
the feature map. The SimC mechanism adaptively weights the input feature maps and dynamically adjusts
channel weights, effectively improving the model’s sensitivity to critical image information and addressing
the issue of Inception Depthwise Convolution overlooking important details.

3.3 Multi-Scale Dilated Channel Parallel Integration (MDCPI) Mechanism Based on Dilated
Convolutions
To expand the model’s receptive field and enhance its focus on the contextual information of flame

images, this paper designs a Multi-Scale Dilated Channel Parallel Integration (MDCPI) mechanism based on
dilated convolutions. This mechanism uses multiple dilation rates and integrates channel and spatial attention
mechanisms to improve the model’s perception of multi-scale contextual information. The structure of the
MDCPI mechanism is shown in Fig. 5.
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Figure 5: Structure of the MDCPI mechanism

When dealing with tasks involving flame images characterized by multi-scale features, existing convo-
lutional layers often constrain the size of the receptive field. The MDCPI mechanism introduces multi-scale
dilated convolutions, effectively expanding the receptive field and enabling the model to capture flame
features at multiple levels. Compared to single-scale convolution methods, the MDCPI mechanism not only
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enhances the model’s expressive capacity but also significantly improves the accuracy of identifying different
combustion states.

The workflow of the MDCPI mechanism consists of two steps. The first step is multi-scale dilated
convolution, which utilizes five parallel convolution branches with different dilation rates to extract features
at various scales. These features are concatenated along the channel dimension, producing a composite
feature map as the output. Dilated convolutions increase the spacing between convolutional kernels by
introducing holes, thereby expanding the receptive field without altering the kernel size. Unlike traditional
convolutions, dilated convolutions perform convolution operations at intervals of pixels, allowing the
convolution to cover a broader area of the input image. One of the key features of the MDCPI mechanism is
its multi-scale dilated convolutions, which utilize multiple dilation rates to perform convolution operations
at various scales. This approach enables the fusion of information across multiple levels and effectively
captures features at different scales, thereby expanding the receptive field. Consequently, the model can
extract more useful information from larger regions of the image, enhancing its ability to understand the
image comprehensively. The expressions for multi-scale dilated convolution are shown in Eqs. (11)–(16):

F1 (x) = ReLU (BN (Conv2D (x , 1 × 1, dil ation = 1))) (11)
F2 (x) = ReLU (BN (Conv2D (x , 3 × 3, dil ation = 6))) (12)
F3 (x) = ReLU (BN (Conv2D (x , 3 × 3, dil ation = 12))) (13)
F4 (x) = ReLU (BN (Conv2D (x , 3 × 3, dil ation = 18))) (14)
F5 (x) = ReLU (BN (Conv2D (Global AvgPool (x) , 1 × 1))) (15)
Fconcat (x) = Concat (F1 (x) , F2 (x) , F3 (x) , F4 (x) , F5 (x)) (16)

In Eqs. (10)–(15), ReLU() is the nonlinear activation function; BN() represents batch normalization;
Conv2D() is a two-dimensional convolution; dil ation indicates the dilation rate; Global AvgPool()
denotes global average pooling; and Concat() refers to concatenation of five tensors along a specific
dimension.

However, experiments revealed that the feature maps output by dilated convolutions lacked certain
pixels. This is due to the grid effect inherent in dilated convolutions: the dilation rate causes the convolution
kernel to skip pixels during sampling, resulting in a grid-like distribution of sampled points rather than
a continuous pixel region, leading to the loss of local information. To address the issue from the first
step, the second step employs parallel channel and spatial attention mechanisms. The feature maps output
from the first step are processed in parallel through channel and spatial attention mechanisms, and the
outputs of the two parallel branches are fused via element-wise addition, producing the final enhanced output
feature map.

The MDCPI mechanism significantly expands the model’s receptive field through multi-scale dilated
convolution, enabling it to capture a broader range of contextual information in flame images. Due to the grid
effect of dilated convolution, the feature maps processed by multi-scale dilated convolution are calibrated
using parallel channel and spatial attention mechanisms. Channel attention enhances global contextual
information, mitigating the issue of local information loss caused by dilated convolutions and making
features more comprehensive along the channel dimension; Spatial attention corrects the discontinuities in
the spatial dimension of features, ensuring spatial consistency of the feature map and counteracting the local
irregularities caused by the grid effect. Finally, the features from the two parallel branches are integrated to
ensure that the model’s receptive field is expanded, enabling it to effectively capture the multi-scale contextual
information of flame feature maps.
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3.4 Channel Shuffle-Guided Channel-Spatial Attention (ShuffleCS) Mechanism
In the InceptionNeXt baseline model, the MlpHead relies solely on Global Average Pooling (GAP) to

extract global features, which isolates all computations and prevents information exchange between groups,
thereby reducing the representational power of the input features. To address this issue, a channel-shuffling
based feature expression mechanism, ShuffleCS, is designed. The structure of this mechanismis shown
in Fig. 6.

Permutation

C×H×W→W×H×C
MLP

Reverse 

permutation

Sigmoid

Conv2d

7×7

Conv2d

7×7

Sigmoid

×H×W

C×H×W

Spatial Attention

Channel Attention

Input features

Output features

Channel Shuffle

Figure 6: Structure of the ShuffleCS mechanism

Traditional convolutional neural networks often lack effective utilization of interactions between
channels. In contrast, the ShuffleCS mechanismenhances inter-channel interactions through channel shuffle
techniques, thereby strengthening the expressive capability of features.

The ShuffleCS mechanismuses a channel attention submodule combined with a multilayer perceptron
(MLP) to enhance inter-channel dependencies, achieving an initial mixing of channel information. To
prevent insufficient mixing, channel shuffle operations are introduced. The aforementioned feature fusion
may overlook spatial dependencies, so a spatial attention submodule combined with a 7 × 7 convolution is
used to enhance the effectiveness of feature fusion.

The specific calculation formulas for the ShuffleCS mechanismare provided in Eqs. (17)–(19):

Tc = Sigmoid (σ (Wav g ⋅ Fav g + bav g) + σ (Wmax ⋅ Fmax + bmax))⊙T (17)
Ts = Shu f f l e (Tc) (18)
T ′s = Sigmoid (Wa ⋅ [AvgPool (Ts) ; MaxPool (Ts)] + ba)⊙Ts (19)

In this mechanism, Tc is the feature map weighted by channel attention, Sigmoid() and σ are activation
functions, Wav g and Wmax are the weights of the fully connected layers, Fav g is the global average pooling,
and Fmax is the global maximum pooling, bav g and bmax are the bias terms, ⊙ denotes element-wise
multiplication, Ts is the shuffled feature map, Shu f f l e() is the operation that shuffles the grouped channels,
Tc is the feature map after channel attention weighting, and T ′s is the feature map after spatial attention
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processing, Wa is the convolution kernel, AvgPool (Ts) is the global average pooling operation on the feature
map Ts along the channel dimension, and MaxPool(Ts) is the global maximum pooling operation on the
feature map Ts along the channel dimension, ba is the bias term, Ts is the input feature map.

3.5 Loss Function Optimization
The loss function in the InceptionNeXt baseline model is SoftTargetCrossEntropy, whose fundamental

principle is to calculate the discrepancy between the predicted probability distribution and the target
probability distribution, using this discrepancy to update model parameters. The formula is provided
in Eq. (20).

L = −∑C
i=1 yi log (pi) (20)

Here, L is the loss value; C is the number of categories; yi represents the target probability distribution,
which is the probability of a sample belonging to the i-th category; and pi represents the predicted probability
distribution, which is the model’s predicted probability of the sample belonging to the i-th category.

In the combustion state recognition task of this study, the six classes have varying levels of recognition
difficulty. However, SoftTargetCrossEntropy cannot effectively emphasize attention to the hard-to-recognize
states. To address the model’s insufficient focus on hard-to-recognize samples, this paper adopts the Focal
Loss [32] function as a replacement for SoftTargetCrossEntropy. Focal Loss dynamically adjusts the loss
function weights to make the model pay more attention to hard-to-recognize states. The formula is provided
in Eq. (21).

FL (pt) = −∑
C
c=1 αt (1 − pt)γ log (pt) (21)

Here, pt represents the probability obtained by applying the softmax function to the logit output; C is
the number of categories; αt is a parameter to adjust the weight of positive and negative samples; and γ is a
parameter to adjust the weight of easy and hard samples.

4 Experimental Results and Analysis

4.1 Experimental Environment and Dataset Description
To validate the effectiveness of the improved InceptionNeXt model for combustion state recognition,

experiments were conducted on a visible light flame image dataset of a counterflow burner. The experiments
were performed on a 64-bit Ubuntu operating system using an NVIDIA GeForce RTX 4060 Ti GPU,
the PyTorch deep learning framework, and Python as the programming language. The experimental
environment configuration is shown in Table 1.

The dataset used in this study originates from the work of Kang et al. [33] (2022), which includes visible
flame images of a counterflow burner in six different combustion states, captured by the FASTEC TS-5 high-
speed CMOS camera. The FASTEC TS-5 high-speed CMOS camera is sensitive to wavelengths ranging from
350 to 950 nm, covering the visible light spectrum, and is equipped with a high sampling rate of 100 frames
per second. The authors simulated six different combustion states by adjusting the gas ratios entering the
counterflow burner and separately collected flame videos under each of these six combustion states. After
collecting the video data, the authors performed frame extraction on the videos to select visible flame images
corresponding to the six combustion states, totaling 2640 images with a resolution of 640 × 480 pixels each.
The working principle of the counterflow burner is illustrated in Fig. 7.
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Table 1: Experimental environment configuration

Experimental environment configuration Version information
CPU 13th Gen Intel(R) Core (TM) i5-13490F
GPU NVIDIA GeForce RTX 4060 Ti

Operating system Ubuntu 18.04
GPU memory 16 G

Programming language Python 3.8
CUDA 11.8

Deep learning framework PyTorch 2.3.1

Figure 7: The working principle of counterflow burner

Based on the gas ratios entering the counterflow burner, the six combustion states in the dataset
are named as follows: Oxygen-Enriched Stable Combustion (OESC), High Oxygen Combustion (HOC),
Nitrogen-Diluted High Oxygen Combustion (ND-HOC), Low Oxygen and Low Methane Combustion
(LO-LMC), High Nitrogen-Diluted Moderate Combustion (HNMC), and Balanced Combustion (BC). This
dataset essentially covers various combustion conditions of the counterflow burner. Utilizing this dataset for
experiments facilitates the validation of the effectiveness of the combustion state recognition model proposed
in this paper. Visible flame images of the six combustion states are shown in Fig. 8. To simplify subsequent
discussions, the corresponding English abbreviations will be used to refer to each combustion state in the
following sections.

In this study, to expand the dataset, each flame image undergoes occlusion processing, where random
regions of the image are selected and obscured with black rectangles. Subsequently, noise is applied to the
images. These types of noise include rotation, flipping, blurring, noise addition, brightness and contrast
adjustments, and perspective transformations, which enhance the diversity and robustness of the images
through these operations. By repeatedly using existing images and applying various noise combinations
multiple times, we successfully expanded the dataset to 6000 images. After eliminating lower-quality images,
we ultimately selected 5820 images covering the six combustion states, thereby providing sufficient data
for subsequent model training. These augmentation methods aim to simulate the various changes that
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flames in the counterflow burner might undergo, including different lighting conditions, angles, and image
interferences. Through these techniques, the model can better adapt to complex real-world combustion envi-
ronments, enhance its robustness to variations in flame images, and reduce the risk of overfitting. This study
employs a stringent dataset partitioning strategy to ensure the fairness and reliability of the deep learning
model during training and evaluation processes. The complete dataset comprises 5820 images, covering six
different categories. For each category, the dataset is divided into three parts: training set, validation set,
and test set, with the number of images in the three parts in the ratio of 70:20:7. This partitioning method
ensures that the model can learn from ample training data and evaluate its generalization ability and actual
performance through the validation and test sets.

(a) OESC (b) HOC (c) ND-HOC (d) LO-LMC (e) HNMC (f) BC

Figure 8: Visible light flame images of six combustion states

4.2 Evaluation Metrics
To further validate the effectiveness and accuracy of the model, the performance of combustion state

recognition was evaluated using Precision (P), Recall (R), F1-score (F1), overall Accuracy (Acc), TOP-3
Accuracy (TOP-3), Log Loss, number of Parameters (Params), and Frames Per Second (FPS).

Precision indicates the proportion of images predicted by the model to belong to a certain combustion
state that actually belong to that state. A high precision indicates a low error rate. Recall represents the
proportion of images that are correctly identified by the model out of all images that actually belongs to a
certain combustion state. A high recall indicates the model is capable of identifying most of the true positive
cases with minimal omissions. The F1-score represents the harmonic mean of precision and recall, providing
a comprehensive measure of the model’s performance in recognizing the six combustion states. Accuracy
indicates the proportion of correctly identified images out of all flame images. TOP-3 Accuracy denotes
the proportion of cases where the correct category is included among the top three most likely categories
predicted by the model. Log Loss measures the difference between the predicted states and the true states.
A higher Log Loss indicates lower confidence in the model’s predictions. The specific formulas for the above
evaluation metrics are provided in Eqs. (22)–(26):

P = TP
TP + FP

(22)

R = TP
TP + FN

(23)

F1 = 2 × P × R
P + R

(24)
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Acc = TP + TN
TP + TN + FP + FN

(25)

LogLoss = − 1
N ∑

N
i=1∑

C
c=1 yi ,C log (pi ,C) (26)

In the equations, TP (True Positive) represents the number of samples belonging to a certain combustion
state and correctly identified as such; FP (False Positive) denotes the number of samples that do not belong to
a certain combustion state but are incorrectly classified as such; TN (True Negative) indicates the number of
samples that do not belong to a certain combustion state and are correctly classified as other states; FN (False
Negative) represents the number of samples that belong to a certain combustion state but are incorrectly
classified as other states; N is the total number of samples; C is the number of categories; yi ,C denotes the
true label of the i-th sample for category C; and pi ,C is the predicted probability of category C by the model.

Since the dataset includes six types of flame images, the macro average and weighted average of
precision, recall, and F1-score for each category must be calculated. The macro average is the simple average
of each metric across all categories without considering the number of samples in each category, reflecting the
model’s balanced performance across categories; The weighted average, on the other hand, is weighted based
on the number of samples in each category, providing a closer approximation of the model’s performance in
real-world scenarios.

4.3 Training Process
When training the model on the dataset, the learning rate (model_lr) was set to 0.0001, the batch size

to 16, the number of epochs to 150, and the gradient clipping parameter to 5.0. For data preprocessing and
augmentation, random rotation by 10 degrees, Gaussian blur, adjustments to color saturation and brightness,
and the Mixup method were used, followed by resizing and normalization. During training, the AdamW
optimizer with L2 regularization was used, and the learning rate was adjusted using a cosine annealing
learning rate scheduler. The Exponential Moving Average (EMA) method was employed to smooth time-
series data, with the EMA decay coefficient set to 0.9998, making the model more consistent and stable. The
Loss and Accuracy (Acc) curves for the InceptionNeXt baseline model and the TSMS-InceptionNeXt are
shown in Fig. 9.

Figure 9: Loss and accuracy curves of the baseline and TSMS-InceptionNeXt during training

From the Loss curve in Fig. 9, it can be observed that the TSMS-InceptionNeXt converges after 80
epochs, indicating that the improved InceptionNeXt model successfully achieves convergence on the dataset,
with parameters adapting to the flame image features and effectively performing the recognition task.
Additionally, the converged loss value of the TSMS-InceptionNeXt stabilizes around 0.22, significantly
lower than that of the original model, indicating better fitting capability, more accurate capture of flame
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image features, and reduced errors. Furthermore, the TSMS-InceptionNeXt exhibits faster convergence,
demonstrating enhanced optimization efficiency. From the Acc curve in Fig. 9, it is evident that the overall
accuracy of the TSMS-InceptionNeXt surpasses that of the original model, indicating improved feature
extraction capability.

4.4 Comparative Experiments
To validate the superiority of the improved InceptionNeXt model in the combustion state recognition

task, comparative experiments were conducted using other classical models, including RepVGG, SeaFormer,
SGFormer, and VanillaNet, on the same dataset. The improved InceptionNeXt model and other models were
trained and tested on the same devices and datasets. In the comparative experiments, when selecting other
models, the application scenarios, performance metrics, and data types of the other models were similar to
those of the model proposed in this study. To ensure fairness in parameter settings, all models used identical
parameters: a learning rate (model_lr) of 0.0001, a batch size of 16, 150 epochs, a gradient clipping parameter
set to 5.0, and the AdamW optimizer combined with L2 regularization during training. A Cosine Annealing
Learning Rate Scheduler was employed to adjust the learning rate, and the EMA method decay coefficient
(model_ema_decay) was set to 0.9998. The performance of each model was evaluated based on the macro
and weighted averages of Precision, Recall, and F1-score for each category, as well as overall Accuracy, TOP-3
Accuracy, Log Loss, and the number of Parameters. The comparative experiment results are shown in Table 2.

Table 2: Comparative experiment results

Model Macro Avg Weighted Avg Acc/% TOP-
3

Acc/%

Log
Loss

Params
(MB)

FPS

Precision Recall F1-Score Precision Recall F1-Score
RepVGG 80.12 74.84 75.80 80.02 75.24 75.89 75.24 91.43 0.6892 29.89 419.33

SeaFormer 83.04 80.67 81.07 82.96 80.95 81.13 80.95 93.81 0.5674 6.18 217.14
SGFormer 77.57 74.35 74.74 77.60 74.52 74.82 74.52 90.48 0.7436 84.06 48.64
VanillaNet 80.85 76.07 76.60 80.82 76.43 76.73 76.43 92.62 0.8407 294.15 255.85

TSMS-InceptionNeXt 87.14 85.45 85.79 86.97 85.71 85.82 85.71 95.95 0.4901 256.59 114.02

From the overall results of the comparative experiments, the TSMS-InceptionNeXt outperformed the
comparison models across all metrics. For macro-average F1-scores, the TSMS-InceptionNeXt showed sig-
nificant improvements of 9.99%, 4.72%, 11.05%, and 9.19% compared to RepVGG, SeaFormer, SGFormer, and
VanillaNet, respectively, reflecting more balanced classification performance across all categories. Weighted
average F1-scores improved by 9.93%, 4.69%, 11.00%, and 9.09%, respectively, demonstrating that the TSMS-
InceptionNeXt achieved higher recognition performance even when considering category sample sizes. This
validates the effectiveness of expanding the receptive field in the model. In terms of overall classification
accuracy, the TSMS-InceptionNeXt achieved an outstanding performance of 85.71%, surpassing the next best
VanillaNet (80.95%) by 4.76%. This indicates the TSMS-InceptionNeXt’s superior accuracy in the combus-
tion state recognition task, validating the effectiveness of channel shuffling in enhancing performance. For
TOP-3 accuracy, the TSMS-InceptionNeXt reached 95.95%, outperforming the next best SeaFormer (93.81%)
by 2.14%. This demonstrates that even when the TSMS-InceptionNeXt’s TOP-1 prediction is incorrect, it still
includes the correct combustion state in its TOP-3 predictions, enhancing reliability and validating the focus
on critical image information. Regarding Log Loss, the TSMS-InceptionNeXt achieved a score of 0.4901,
reducing Log Loss by 0.1991, 0.0773, 0.2535, and 0.3506 compared to RepVGG, SeaFormer, SGFormer, and
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VanillaNet, respectively. This indicates higher confidence in the combustion state recognition of the TSMS-
InceptionNeXt. Although the TSMS-InceptionNeXt has a relatively large parameter size (256.59 MB), it
demonstrated higher accuracy and stability across multiple performance metrics. In contrast, SeaFormer has
a parameter size of only 6.18 MB but falls short of the TSMS-InceptionNeXt in terms of precision and recall.

In the comparative experiments, the confusion matrices of the proposed TSMS-InceptionNeXt and
the comparison models on the test set are shown in Fig. 10. Observing the accurate recognition counts for
each state (OESC, HOC, ND-HOC, LO-LMC, HNMC, BC) across models, it is evident that the TSMS-
InceptionNeXt achieves a higher total of correctly identified samples (i.e., the sum of diagonal elements
for all states) compared to all comparison models. This reflects a consistent improvement across all state
categories. The misclassification counts of the TSMS-InceptionNeXt are more evenly distributed, with no
concentration in specific states, indicating that the model performs relatively balanced across all combustion
states rather than relying on a single class. This validates the effectiveness of incorporating Focal Loss into the
model. Specifically, in terms of state categories, the TSMS-InceptionNeXt achieved significant advantages
in recognizing easily confusable categories (OESC and LO-LMC). For the OESC state, the number of
misclassified samples by the TSMS-InceptionNeXt was reduced by 12, 6, 14, and 10 compared to other
models (RepVGG, SeaFormer, SGFormer, and VanillaNet, respectively). For the LO-LMC state, the number
of misclassified samples was reduced by 12, 5, 15, and 16 compared to the same models. This indicates
that the TSMS-InceptionNeXt is more accurate in identifying subtle differences in easily confusable state
categories, thereby validating the importance of focusing on key local detail features in flame images for
performance enhancement.

(a) RepVGG (b) SeaFormer (c) SGFormer

(d) Vanillanet (e) TSMS-InceptionNeXt

Figure 10: Confusion matrices of the improved and comparison models on the test set

Table 2 shows that the TSMS-InceptionNeXt has slower inference speed than other models, including
the traditional InceptionNeXt, due to more complex attention mechanisms and multi-scale convolution
modules requiring greater computational resources. However, it achieves significantly higher accuracy,
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which is essential for precisely identifying flame combustion states. In tasks involving counterflow burners,
where combustion states change slowly, high precision is more critical than speed. Therefore, the current
trade-off between precision and computational efficiency is justified. To further enhance computational
efficiency, we plan to implement network lightweighting techniques, optimize the model with more efficient
architectures, reduce computational load, and explore deployment on edge devices in future work.

4.5 Ablation Study
To validate the effectiveness of the proposed improvements to the InceptionNeXt model for combustion

state recognition, InceptionNeXt was used as the baseline model. Under the same dataset conditions, an
ablation study was conducted to analyze the contributions of five improvement strategies: Triplet Attention,
SimC, MDCPI, ShuffleCS, and Focal Loss. In Table 3, “Groups” represents the experiment indices, “

√
”

indicates the use of a mechanism, and “×” indicates its absence. The results of the ablation study are shown
in Table 3.

Table 3: Ablation study results

Groups Triplet
attention

SimC MDCPI ShuffleCS Focal
Loss

Macro
Avg

F1-Score

Weighted
Avg

F1-Score

Acc/% TOP-3
Acc/%

Log
Loss

Params
(MB)

1 × × × × × 83.61 83.63 83.33 95.48 0.5741 179.61
2

√ × × × × 83.61 83.64 83.33 93.57 0.5658 179.61
3

√ √ × × × 83.24 83.22 83.10 94.76 0.5495 179.61
4

√ √ √ × √
84.72 84.52 84.52 94.76 0.5117 256.19

5
√ √ √ √ √

85.79 85.82 85.71 95.95 0.4901 256.59

Using the baseline InceptionNeXt model’s performance across various evaluation metrics as the foun-
dation for the ablation study analysis. Firstly, by introducing Triplet Attention, the weighted average F1-score
saw a slight improvement. This is because adding Triplet Attention to the Stages componentenables the
model to capture flame feature variations from the height, width, and channel dimensions, thereby enhancing
the model’s adaptability to dynamic flame changes. Additionally, the overall accuracy remained at 83.33%,
and the number of model parameters remained unchanged, validating the effectiveness of incorporating
this mechanism in enhancing model performance. Secondly, with the addition of the SimC mechanism,
the Log Loss decreased to 0.5495. This is because incorporating the SimC mechanism into the Stages
component allows the model to focus on key features important for accurate recognition through the energy
function. Experimental results indicate an improvement in the model’s stability. Subsequently, by adding
the MDCPI mechanism and Focal Loss, the macro and weighted average F1-scores reached 84.72% and
84.52%, respectively, representing increases of 1.48% and 1.3%. The overall accuracy rose to 84.52%, and
the Log Loss significantly decreased to 0.5117. This indicates that the combination of MDCPI and Focal
Loss plays a significant role in improving recall rates and overall recognition performance, while also being
more effective in reducing the confidence of misclassifications. It validates the contribution of expanding
the receptive field to enhancing model performance. The calculation of Log Loss is based on the difference
between the predicted probabilities and the true labels. The MDCPI mechanism enhances the model’s
ability to extract boundary, detail, and global information through multi-scale dilated convolutions, thereby
improving the model’s capability to recognize these hard-to-classify samples. Meanwhile, Focal Loss helps
the model focus more on hard-to-classify samples, enhancing the learning of these challenging instances.
Since these samples typically have higher losses, Focal Loss can reduce the prediction errors associated with
them. Through the synergistic effect of the MDCPI mechanism and Focal Loss, the model is better able
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to understand these difficult samples during training, achieve greater accuracy in handling hard-to-classify
instances, reduce erroneous predictions, and ultimately attain a significant decrease in Log Loss. Finally,
after incorporating the ShuffleCS mechanism, the macro and weighted average F1-scores reached 85.79% and
85.82%, respectively, representing increases of 1.07% and 1.30%. The overall accuracy improved to 85.71%,
and the TOP-3 Accuracy rose to 95.95%. The Log Loss further decreased to 0.4901, enhancing the model’s
prediction stability and recognition performance. This improvement is attributed to the modification of
the MlpHead component with the ShuffleCS mechanism, which allows the model to enhance its ability to
recognize different states through feature mixing. Although the number of parameters slightly increased to
256.59 MB, the significant performance gains validate the effectiveness of inter-channel information fusion
in enhancing model performance.

In the experiments, a synergistic interaction between the MDCPI mechanism and Focal Loss was
discovered. The experimental data for different mechanism combinations are presented in Table 4. As shown
in Table 4, introducing the MDCPI mechanism or Focal Loss individually results in a decrease in the
model’s recognition accuracy. However, when used in combination, their performance is enhanced. The
MDCPI mechanism enhances both the global and local representations of flame features but simultaneously
introduces redundant information, leading to increased noise and altered feature distributions, which
negatively impact the model’s performance. Focal Loss assigns excessively high weights to hard-to-classify
samples in this dataset, thereby diminishing the model’s focus on easily identifiable samples. Therefore, when
combined, Focal Loss helps the model better utilize the features provided by the MDCPI mechanism and
focus on easily confusable categories, thereby improving recognition performance.

Table 4: Experimental data for different mechanism combinations

Groups Triplet
attention

SimC MDCPI ShuffleCS Focal
Loss

Macro
Avg

F1-Score

Weighted
Avg

F1-Score

Acc/% TOP-3
Acc/%

Log
Loss

Params
(MB)

1 × × √ × × 80.14 80.31 80.00 94.29 0.6068 256.19
2 × × × × √

82.50 82.49 82.14 93.57 0.5645 179.61
3 × × √ × √

84.07 84.20 84.05 93.81 0.5382 256.19

A heatmap is a visualization tool that represents data intuitively through varying color intensities.
Heatmaps can illustrate the key regions that a model focuses on when processing images. Warmer colors
indicate higher attention to those areas, while cooler colors denote lower attention levels. In the context of
flame combustion state recognition, heatmaps can reveal the flame regions that the model deems critical for
determining the combustion state, such as high-temperature areas and intensely burning sections. This aids
in understanding the model’s decision-making process, allowing us to assess whether the model accurately
focuses on task-relevant image features rather than being distracted by irrelevant backgrounds or noise.

We present GradCAM heatmaps for a typical flame image from the dataset, as shown in Fig. 11. These
correspond to the baseline InceptionNeXt model, the progressively TSMS-InceptionNeXts, and the fully
improved TSMS-InceptionNeXt model. The group numbers of the model heatmaps in Fig. 11 correspond
to the group numbers of the models in Table 3. In Fig. 11b, Group 1 represents the heatmap of the baseline
InceptionNeXt model, and in Fig. 11f, Group 5 represents the heatmap of our proposed TSMS-InceptionNeXt
model. The heatmap of the original model exhibits widespread and scattered activation regions, indicating
that the model’s focus areas within the image are not sufficiently concentrated, resulting in imprecise
recognition of combustion states. As the model undergoes gradual optimization, the heatmaps of subsequent
models display more concentrated and distinct activation regions, primarily focused on the core areas of the
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flame and surrounding key regions. This indicates that during the improvement process, the model gradually
learned to focus on features closely related to the combustion state, thereby enhancing recognition accuracy
and reliability. The heatmap of the fully TSMS-InceptionNeXt ultimately shows highly concentrated and
intense activation regions, clearly focusing on the main combustion areas of the flame. This demonstrates a
significant enhancement in the model’s ability to identify key flame features, validating the effectiveness of
the proposed model optimization methods in improving the accuracy of flame combustion state recognition.

(e) Group4 (f) Group5

(c) Group2 (d) Group3

(a) Visible Light Images of Flame (b) Group1

Figure 11: Flame image and corresponding heatmaps from ablation experiments

5 Conclusion
As a combustion device widely utilized in the industrial, energy, and combustion research sectors,

accurately identifying the internal combustion states of a counterflow burner is of significant importance.
Addressing the issues in traditional and existing deep learning methods, this study selects Inception-
NeXt, a state-of-the-art model in image recognition, as the baseline model and proposes an improved
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InceptionNeXt-based combustion state recognition model for counterflow burners, optimized for feature
extraction. First, the Triplet Attention mechanism was introduced to apply attention across image width,
height, and Red Green Blue (RGB) dimensions, enhancing the model’s adaptability to capture dynamic flame
features. Second, a SimC mechanism was added after the Inception depthwise convolution to address the loss
of critical flame information inherent to Inception convolutions. Next, a MDCPI mechanism was embedded
after the Stages componentto expand the receptive field, capture broader contextual information in flame
images, and synergize with Focal Loss to enhance recognition performance. Finally, a ShuffleCS mechanism
was added to the classification head to address the original MlpHead’s lack of channel interaction. By fusing
features, the MlpHead’s ability to recognize different states was improved, further enhancing the model’s
performance. Experimental results demonstrate that the proposed method is effective for combustion state
recognition tasks, achieving an overall accuracy of 85.71%, outperforming the baseline and comparison mod-
els. However, the TSMS-InceptionNeXt has a relatively large parameter size, and the proposed improvements
were primarily focused on optimizing feature extraction, which presents certain limitations. Future work will
focus on finding a balance between overall accuracy and lightweight design to further enhance recognition
performance and exploring alternative approaches to optimize model performance.
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