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ABSTRACT: Medical image classification is crucial in disease diagnosis, treatment planning, and clinical decision-
making. We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data
Augmentation (BSDA) with a Vision Mamba-based model for medical image classification (MedMamba), enhanced
by residual connection blocks, we named the model BSDA-Mamba. BSDA augments medical image data semantically,
enhancing the model’s generalization ability and classification performance. MedMamba, a deep learning-based state
space model, excels in capturing long-range dependencies in medical images. By incorporating residual connections,
BSDA-Mamba further improves feature extraction capabilities. Through comprehensive experiments on eight medical
image datasets, we demonstrate that BSDA-Mamba outperforms existing models in accuracy, area under the curve,
and Fl-score. Our results highlight BSDA-Mamba’s potential as a reliable tool for medical image analysis, particularly
in handling diverse imaging modalities from X-rays to MRI. The open-sourcing of our model’s code and datasets, will
facilitate the reproduction and extension of our work.
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1 Introduction

Medical imaging, a cornerstone of modern healthcare, plays a critical role in early disease detec-
tion, accurate diagnosis, treatment planning, therapeutic assessment, and medical research by providing
detailed images of the internal structures and functions of the human body [1]. It significantly enhances
clinical decision-making, improves patient care quality, and fosters the advancement of personalized and
remote medical services, thereby contributing substantially to the overall improvement of global healthcare
standards.

The rapid progress of deep learning in the field of medical imaging has notably enhanced the accuracy
and efficiency of disease detection and diagnosis [2,3]. Deep learning models have driven significant
advancements in medical image analysis, including tasks such as classification, segmentation, detection,
and image registration [4]. Furthermore, deep learning has enabled the development of computer-aided
diagnostic (CAD) systems, which support clinicians by improving the interpretation of medical images and
facilitating more accurate, objective diagnostic decisions [5,6].

Recent studies have indicated that VMamba, as an innovative Visual State Space Model (VSSM) [7],
combines the linear complexity of Convolutional Neural Networks (CNNs) [8-10] with the global receptive
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field and dynamic weight advantages of Vision Transformers (ViTs) [11-13]. By introducing a Cross-Scan
Module (CSM), VSSM addresses visual data’s non-causality and direction sensitivity issues, enabling the
model to integrate information from different directions without increasing computational complexity
and forming a global receptive field. In experiments, VMamba has shown superior results in visual tasks,
including image categorization, object localization, and semantic segmentation. Particularly in handling
high-resolution images, its performance exceeds existing benchmark models. The MedMamba model is an
extension of the Mamba model, specifically designed for medical image classification tasks. It incorporates
an SS-Conv-SSM module that combines the local feature extraction capabilities of convolutional layers
with the ability of state space models (SSM) to detect long-range dependencies, efficiently modeling
various types of medical images and having broad prospects in medical image classification [14]. Data
augmentation has gradually become a commonly employed method in medical imaging [15]. As an advanced
data augmentation technology, Bayesian Random Semantic Data Augmentation (BSDA) [16] has caught
our attention. It augments medical image data using Bayesian theory, thereby enhancing the model’s
generalization ability and classification performance. BSDA improves the model’s ability to recognize
different image features by simulating random variations in medical images, such as noise, blurring, and
deformation, which is especially crucial in medical image classification. With BSDA, the performance of
medical image classification models can be effectively enhanced, making them more accurate and reliable in
practical applications.

Building upon these studies, we conceived the idea of integrating MedMamba with BSDA for application
in medical image classification to explore if it could yield better outcomes. Based on this concept, we
successfully achieved the combination of MedMamba and BSDA, proposing the BSDA-Mamba, and adding
residual connection blocks to MedMamba. Through comprehensive experiments on eight medical image
datasets, we validated the potential of the BSDA-Mamba model in medical image classification. Specifically,
we carried out extensive classification experiments on eight medical image datasets containing 2D and 3D
images, and the results suggest that the overall performance of BSDA-Mamba surpasses that of its predecessor
MedMamba, and some other classification models, showcasing significant competitiveness.

The primary contributions of this paper can be outlined as follows:

(1) To improve the classification performance of medical images and the generalization ability of the
model, we combined MedMamba with Bayesian Random Semantic Data Augmentation and integrated
residual connection blocks in the model, successfully developing the BSDA-Mamba model for medical
image classification.

(2) Classification testing on eight datasets revealed that BSDA-Mamba performs well in medical
image classification.

(3) Employing the Grad-CAM (Gradient-weighted Class Activation Mapping) technique in processing
the Brain Tumor Magnetic Resonance Imaging (MRI) image dataset, the attention of BSDA-Mamba
and other models to the images was presented as heat maps.

(4) Combining MedMamba with Bayesian Random Semantic Data Augmentation,implies strengthening
the model’s robustness and accuracy based on the model’s efficient architecture through data augmen-
tation technology. This combination not only improves the accuracy of medical image classification
but also facilitates the model’s deployment in real-world medical applications, particularly in resource-
constrained settings.

Using BSDA-Mamba to classify medical images, healthcare professionals can diagnose diseases accu-
rately and efficiently, enabling better treatment for patients. The remainder of this paper is organized as
follows. Section 2 provides an overview of the pertinent literature. Section 3 outlines the approach taken in



Comput Mater Contin. 2025;83(3) 5001

this study. The empirical results are analyzed and discussed in Section 4. The conclusions of this research
and future work are presented in Section 5.

2 Related Works

Image classification is a critical task in deep learning, particularly in fields such as medical and
agricultural imaging [17,18], where the availability of large annotated datasets is often limited. Achieving
satisfactory performance under such constraints presents a significant challenge. To overcome this issue, data
augmentation has emerged as a highly effective solution [19]. In this section, we will explore several deep
learning models and data augmentation techniques employed in the context of medical image classification.

2.1 Related Studies on Image Classification

Previously, numerous studies have showcased various deep learning models applicable to image
classification, exerting a profound impact on image classification. He et al. [9] proposed a novel network
structure, the Residual Network (ResNet). This approach reconfigures the network layers to focus on learning
the residual functions of the input, rather than directly learning non-referenced functions, facilitating
easier network optimization and enhancing accuracy with increased depth. Huang et al. [10] introduced
a novel convolutional neural network architecture, the Dense Convolutional Network (DenseNet), which
significantly improves information and gradient flow, reduces the number of parameters, and enhances
feature reuse by implementing dense connection patterns within the network, where each layer is linked
to all preceding layers. DenseNet achieves superior performance through this design compared to existing
techniques on multiple benchmark datasets while demonstrating higher computational efficiency, validating
its effectiveness and superiority in deep learning and image recognition tasks. Howard [20] presented a
streamlined convolutional neural network framework, MobileNets, designed specifically for mobile and
embedded vision applications. This framework is based on a reduced-complexity design, leveraging depth-
wise separable convolutions to create nimble deep neural networks. The paper suggests a pair of simple
global hyperparameters, namely the width and resolution multipliers, to manage the trade-off between
latency and accuracy adeptly, enabling developers to choose the appropriate model scale based on the
resource constraints of their application, such as response time and model size. Liu et al. [12] introduced an
innovative vision transformer framework, the Swin Transformer, which enables linear scalability with input
image dimensions through a hierarchical feature representation approach and a dynamic window-based
self-attention mechanism. Swin Transformer has achieved significant performance enhancements in various
visual tasks, including image classification, object detection, and semantic segmentation, outperforming
previous state-of-the-art methods and demonstrating its potential as a general visual model backbone. Zu
et al. [21] presented a novel deep learning model named RESwinT, specifically designed for pollen image
classification. This model enhanced the model’s receptive field and feature recognition ability by integrating
parallel window transformer blocks, context information aggregation, and coordinate attention modules.
Experimental results on a dataset of eight types of allergic pollen in Beijing, China demonstrated that
RESwinT achieved state-of-the-art performance in the pollen image classification task. Liu et al. [7] proposed
a visual state space model, VMamba, which is an efficient visual network architecture that achieves linear
time complexity processing capability by applying the state space model to visual data, using 2D-Selective-
Scan (SS2D) modules and a series of architectural and implementation optimizations. This model has
exhibited excellent performance in multiple visual tasks and is the foundation for implementing this study.
Subsequently, Yue et al. [14] developed MedMamba, a medical image classification model based on the
Mamba framework of the state space model (SSM). By integrating the local feature extraction capabilities
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of convolutional layers with the long-range dependency-capturing ability of SSM, MedMamba effectively
models various modalities of medical images.

2.2 Related Studies on Data Augmentation

Over the past decade, numerous data augmentation methods have been applied in computer vision.
DeVries [22] proposed a simple regularization approach called “Cutout’, which enhances the robustness and
effectiveness of convolutional neural networks. It achieves this by randomly masking square patches of the
input images during training. This technique is easy to implement and can be integrated with existing data
augmentation practices and other regularization strategies to improve model performance further. Cubuk
etal. [23] presented an automated data augmentation strategy search method named “Auto Augment’, which
designs a search space containing multiple sub-strategies, each consisting of two image processing operations
such as translation, rotation, color adjustment, etc., along with the probability and magnitude of applying
these operations. The paper proposes a search algorithm based on reinforcement learning to find the optimal
augmentation strategy, enabling neural networks to achieve the highest validation accuracy on the specified
dataset. Park et al. [24] introduced a simple data augmentation technique called Spec Augment for tasks in
automatic speech recognition. This method is directly applied to the neural networks’ feature inputs (i.e.,
filter bank coefficients), including distortion of the time axis, block masking of frequency channels, and
block masking of time steps. By applying Spec Augment to the Listen, Attention, and Spell (LAS) network,
the authors achieved state-of-the-art performance on the LibriSpeech 960 h and Switchboard 300 h tasks,
outperforming all previous works and achieving significant results without language models. Chen et al. [25]
proposed an improved contrastive learning method, “Momentum Contrast” (MoCo) version 2 (MoCo v2),
which enhances the effectiveness of unsupervised learning by implementing two design improvements in
SimCLR within the MoCo framework—using a multi-layer perceptron (MLP) projection head and more
substantial data augmentation. These simple modifications allow MoCo v2 to surpass SInCLR’s performance
without needing large-scale training and can run on standard 8-GPU machines, making state-of-the-art
unsupervised learning research more accessible. Bochkovskiy et al. [26] introduced YOLOvV4, a model
that outperforms current object detection systems in terms of speed and accuracy. YOLOv4 achieves real-
time speed and high accuracy on the MS COCO dataset. These results are attributed to the integration of
innovative techniques such as weight residual links, cross-stage partial networks, batch normalization across
small groups, adversarial training with adaptability, the Mish activation function, data augmentation using
Mosaic, regularization via DropBlock, and the utilization of the CIoU loss function. Zhu et al. [16] proposed
the Bayesian Random Semantic Data Augmentation (BSDA) method for medical image classification. BSDA
improves the performance of deep learning models by semantically enhancing the original feature vectors
in the feature space, generating new sample features. This method uses variational Bayesian estimation to
improve the amplitude distribution. It augments the original features through randomly selected semantic
directions without requiring manual design or computationally intensive search, making the data augmen-
tation process efficient and easy to implement. It is also due to the efficient performance of BSDA that
BSDA-Mamba can perform efficiently in medical image classification.

3 Material and Methodology

To enable readers to have a better understanding of our model, we will provide a detailed overview of
the architecture and computational methods that make up each component of BSDA-Mamba here.
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3.1 Preliminaries

Before presenting the BSDA-Mamba model, we need to initially introduce modern State Space Models
(SSM), specifically the Structured State Space Sequence Model (S4) and Mamba. In the S4 model, sequence
data is regarded as continuous signals in the state space, and the state evolution is modeled via a set of linear
transformations. The exact mathematical formulation is provided below:

W' (t) = Ah(t) + Bx (t) 1)
y(t) = Ch(t) (2)

The first formula represents the state update equation, which is used to calculate the state h’ (t) of the
current time step based on the state 4 (t) of the previous time step and the current input x (¢) through the
state transition matrix A and input matrix B. The second formula describes how the system generates an
output y (t) from the current state h (¢), where C is the output matrix. This indicates that the output is a
linear mapping of the state, not contingent on the input.

3.2 BSDA-Mamba

Fig. 1illustrates the BSDA-Mamba framework, an integrated approach for medical image classification
that unifies BSDA with the MedMamba model. The framework operates as follows: Initially, the input image is
processed by the MedMamba neural network, where it is divided into smaller patches by the PatchEmbed2D
layer and projected into a high-dimensional feature space. These features then proceed to the Visual State
Space Layer (VSSLayer) for further refinement. The VSSLayer incorporates multiple SS-Conv-SSM modules,
which integrate self-attention mechanisms, convolutional operations, and residual connections to process
image data and extract representative features efficiently.
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Figure 1: The overall architecture of the BSDA-Mamba

Subsequently, the feature representations are subjected to BSDA for augmentation. During this phase,
BSDA introduces semantic amplitudes in the feature space, generating new sample features that retain the
original category but exhibit varied semantic content. This augmentation diversifies the training dataset,
enabling the model to generalize from specific training features to novel, unseen data, thereby bolstering the
model’s generalization capabilities. Ultimately, the augmented features are fed into a classifier to make the
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final classification decision and predict the category. The framework seamlessly integrates feature extraction,
enhancement through data augmentation, and classification prediction, aiming to enhance the model’s
performance and accuracy.

In the BSDA-Mamba framework, as depicted in Fig. 1, the MedMamba component comprises a patch
embedding layer, VSSLayer blocks, and a patch merging layer. The pipeline begins with the patch embedding
layer, which segments the input image into non-overlapping 4 x 4 patches and maps them into an embedding
space. This transformation changes the image’s original format (height H, width W, with 3 color channels)
into a new dimension, with C representing the embedding dimension, defaulting to 96. Before entering the
main network, layer normalization is applied to the embedded images to expedite the training process and
mitigate the influence of weight initialization on the model.

The main network is organized into four stages, each followed by a patch merging layer after the
initial three. These layers combine adjacent patches, reducing the spatial dimensions of the feature map
while increasing the channel count. This strategy enhances feature depth and condenses the image’s spatial
information. The four stages of the main network utilize [2, 2, 4, 2] SS-Conv-SSM blocks, with each stage
possessing varying channel capacities [C, 2C, 4C, 8C], allowing the model to comprehend information at
multiple scales.

As shown in Figs. 2 and 3, each VSSLayer houses multiple SS-Conv-SSM blocks and incorporates
residual connection blocks. The input image X is split into two halves along its last dimension, yielding X s
and X,;gp;. After processing, X;.r; and X, ;5 are merged and added to the original input X, establishing
a residual connection. Residual connections allow models to directly connect inputs and outputs when
processing deep networks, which helps alleviate gradient vanishing problems and improve the stability of
model training. By adding residual connections, BSDA-Mamba can more effectively utilize information in
deep networks, improving the accuracy and robustness of feature extraction. The merged output undergoes
channel shuffling, and the final output represents the result of the residual connections, which is either passed
on for further processing or serves as the ultimate output.

In the final stage of the SS-Conv-SSM module, the output feature maps from both branches are
combined along the channel axis, and an efficient operation without parameters—channel shuffling—is used
to facilitate information exchange between the two sub-input channels. It should be pointed out that the SSM
branch and Conv branch typically use SiLU and ReLU activation functions, respectively [27,28].
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Figure 2: The architecture of VSSLayer
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Figure 3: The architecture of residual connection block

The essence of SS2D is the extension of efficient one-dimensional selective scanning techniques to two-
dimensional imagery, facilitating the creation of a global receptive field and the integration of contextual
information. As illustrated in Fig. 4 and Algorithm 1, this process is articulated in three principal stages:
Initially, the input image is partitioned into smaller blocks and linearized along four distinct traversals
during the Cross-Scan phase; subsequently, each sequence undergoes parallel processing through discrete
S6 blocks (selective SSM), a phase referred to as Selective Scanning; ultimately, in the Cross Merge phase,
the sequences are restructured and consolidated to produce the output two-dimensional feature map. This
methodology enables profound image comprehension and feature extraction, all while maintaining a linear

computational complexity.
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Figure 4: The application of SS2D in feature maps, in which the image is first processed through scan extension
techniques, and then the four features obtained are independently processed through S6 blocks. Finally, these processed
features are integrated into the final 2D feature map through a scan merging step for efficient image analysis

Algorithm 1: The S6 segment within SS2D [29,30]
Input: Feature matrix x, shape [B, L, D]

Params: nn.Parameters A, D

Operator: Linear(.)

Output: y, shape [B,L, D]

1: A, B,C = Linear(x), Linear(x), Linear(x)
2: A=exp(AA)

3: B=(AA)' (exp(AA) - 1)-AB

4: h, =Ah,, + Bx;

5: y, =Chy+ Dx,

6: y=[y1,y2 Yyl

7: return y

3.3 Bayesian Random Semantic Data Augmentation

Traditional data augmentation methods, such as random rotation, scaling, cropping, or color trans-
formation, typically operate at the pixel level. Although these methods can increase the diversity of data,
they do not directly enhance the semantic content of images and may not have a significant impact on the
classification performance of the model. However, Bayesian Random Semantic Data Augmentation is an
augmentation technique based on the Bayesian approach, which aims to generate diverse and valid training
samples by randomly transforming the semantic layer of the data. Its core concept is to employ Bayesian
reasoning to capture the latent semantic information within the data and create new samples by randomizing
this information. In this process, a Bayesian model is initially utilized to estimate the semantic structure or
latent representation of the data, and then, while maintaining semantic consistency, new training instances
are generated through random perturbations of these representations. The strength of this method lies in
that it not only increases the diversity of the data but also effectively retains the semantic consistency of
the data, thereby avoiding biases resulting from excessive augmentation and enhancing the generalization
ability of the model. The introduction of the Bayesian model enables this augmentation approach to adjust
flexibly in accordance with the uncertainty of the data, further enhancing the quality and diversity of the
generated samples.

As shown in Fig. 5 and Algorithm 2, BSDA first extracts features from the data. Then, these features
are passed through a distribution estimator that samples from specific distributions to generate diverse
feature representations. Next, these diverse features are processed by a feature reconstructor and the
feature set is enhanced by randomly selecting directions. The enhanced features are concatenated with the
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original features to form an enhanced feature set, which is then fed into the classification head for final
image classification. BSDA achieves semantic data augmentation by translating features along the semantic
direction in the feature space while ensuring that the image label remains unchanged. Variational Bayesian
is used to estimate the distribution of the amplitude that can be enhanced, and then a sample is taken from
this distribution and added to the original feature to perform semantic data augmentation.
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Figure 5: The architecture of Bayesian Random Semantic Data Augmentation

Algorithm 2: The BSDA algorithm
: Input: D;
: Randomly initialize ©®, ¢a, and ¢m;

1

2

3: For For each epoch until max do

4: Mini-batch samples {x;, y;}2, from D;
5: Extract featuresa; =G (x;);

6: Estimate magnitude variance o;;

7: Calculate magnitude m; = 0;0¢;;

8: Generate augmented features a; according to Eq. (4);
9: Reconstruct features a;;

10: Calculate loss L according to Eq. (7);
11: Update parameters ©, @,, and @ ,,;

12: End loop

The formula for enhancement is detailed below:
a=za+dyom 3)

where a is an enhanced feature, a is the original feature, d, is a binary vector used for randomly selecting
semantic directions, © represents element wise multiplication, m is the semantic amplitude sampled from
the enhanced semantic amplitude distribution p (mla).
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The calculation formula and definition for mask semantic direction are as follows:
a= a+Ia:0d,1 Om (4)

where I, is an indicator function that masks the corresponding semantic direction when the eigenvalue a
is zero, in order to maintain specific attributes of the feature, such as low rank.

The formula and definition for optimizing the objective of Bayesian distribution estimation are as
follows:

®,, = argmax Diy. (4o, (mfa) || p (m[a)) (5)

where Dy is Kullback-Leibler divergence, employed to gauge the divergence between a pair of probability
distributions, where go,, (m]a) is the estimated distribution by the model and p (m|a) is the true distribution.
The optimization objective is to make the estimated distribution as close as possible to the true distribution.

The formula and definition of the BSDA loss function are as follows:
Lg (D, Dasa) = =KL (qo,, (m[a)||p (m)) + Epngy(ma) (l0g po, (a|m)) (6)

This formula consists of two parts, the initial segment represents the divergence of the two distributions,
and the second part is the expected value of the conditional probability of feature a given m. This loss function
is used to train the BSDA model.

The formula and definition of the total loss function are as follows:

L=L% +a(Lpg+Liy) (7)
where L | is the task loss of original features, usually using cross entropy loss, L is the loss of BSDA, L? |
is the task loss of enhancing features, and « is an adjustable parameter designed to lessen the early-training

effects of BSDA on the network performance.

The key to the BSDA method is that it treats data augmentation as additive perturbations in the feature
space, estimates the distribution of enhancement amplitudes through Bayesian methods, and samples from
this distribution to perform semantic data augmentation. This approach not only enhances the precision of
medical image categorization, but also benefits from its high computational speed, can be easily integrated
as a plug and play module into different neural network architectures such as CNN or Transformer.

4 Performance Evaluation

In this section, we conducted various medical image classification tasks for the BSDA-Mamba. Specifi-
cally, we evaluated the classification performance of BSDA-Mamba on six MedMNIST [31] datasets and two
datasets provided by Kaggle as shown in Fig. 6 and Table 1.

4.1 Datasets

Blood Cell Images: Presents 12,500 JPEG images of blood cells, along with corresponding labels in
CSV format. It consists of approximately 3000 images of four different cell types—Eosinophil, Lymphocyte,
Monocyte, and Neutrophil—organized into separate folders. Brain Tumor MRI Dataset: Showcases 7023
brain MRI images across four groups: glioma, meningioma, no tumor, and pituitary. The non-tumorous
images are sourced from the Br35H dataset. The dataset has varying image dimensions, indicating the
need for size normalization during preprocessing to improve model accuracy, and is available on Kaggle.
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DermaMNIST: Contains 10,015 skin lesion images divided into 7 categories for multi-class classification
tasks. These images are derived from the HAM10000 dataset, which is a common collection of pigmented
skin lesions. PneumoniaMNIST: This dataset is based on 5856 pediatric chest X-ray images and is designed
for binary classification between pneumonia and normal conditions. It is based on a previous dataset, with
images processed by center cropping and resizing. BreastMNIST: Presents 780 breast ultrasound images,
originally segmented into three categories: normal, benign, and malignant. Due to the low image resolution,
the task has been simplified to binary classification, with normal and benign combined as the positive class vs.
malignancy, and resized to 28 x 28 pixels. PathMNIST: This dataset is based on colon pathological images and
contains 107,180 28 x 28 pixel images divided into 9 categories for multi-class classification tasks. It is based
on the previously provided dataset of 100,000 non-overlapping image patch datasets from hematoxylin-
eosin-stained histological images. OctMNIST: This dataset is based on 109,309 retinal Optical Coherence
Tomography (OCT) images and is intended for multi-class classification among four diagnostic categories
of retinal diseases. It is derived from a previous dataset, with images processed by center cropping and
resizing to a uniform size. TissueMNIST: This dataset consists of 236,386 tissue images and contains images
segmented from 3 reference tissue samples and organized into 8 categories. The original size of each grayscale
image is 32 x 32 x 7 pixels.

Blood Brain Derma | Pneumonia Breast Path OCT Tissue

{4
.:.

B

h
3
#N

Figure 6: Sample images of medical images with fdifferent modality

Table 1: Overview of datasets

Dataset Data modality Tasks (Classes/Lables) Samples
Blood Cell Images Blood Cell Microscope Multi-Class (4) 12,500
Brain Tumor MRI Brain MRI Multi-Class (4) 7023

DermaMNIST Dermatoscope Multi-Class (7) 10,015
PneumoniaMNIST Chest X-Ray Binary-Class (2) 5856
BreastMNIST Breast Ultrasound Binary-Class (2) 780

PathMNIST Colon Pathology Multi-Class (9) 107,180

OctMNIST Retinal OCT Multi-Class (4) 109,309

TissueMNIST Kidney Cortex Microscope Multi-Class (8) 236,386
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4.2 Implementation Details

In this study, BSDA-Mamba was utilized to train the network. Subsequently, the training and testing
phases occurred within the same environment, employing the PyTorch 2.1.0 deep learning framework and
the Python 3.10.0 environment as the programming language. Network training involved the utilization of
the hyperparameters outlined in Table 2.

Table 2: Hyperparameters of the models

Parameter Value
Input size 32 x 32
Batch size 64
Learning rate 1x107*
Optimizer AdamW [32]
Epochs 100

Loss function  Cross-Entropy Loss [33]

During data preprocessing, the designated datasets are first loaded and partitioned into training and
validation sets according to a specified ratio, which can be found on the official websites of each dataset.
Next, data augmentation is applied to the training set, including techniques such as random cropping and
horizontal flipping, to increase data diversity. This augmentation is achieved by passing the train_transform
parameter during data loading, utilizing the transforms module in PyTorch. Data normalization is per-
formed using the Normalize operation to ensure that the pixel values of the images adhere to a standard
distribution. Additionally, the “Infomation” (INFO) global variable is employed to store metadata for each
dataset, such as task type, number of image channels, label information, sample quantity, and image size.
Finally, the DataLoader is used to construct batch iterators for both the training and validation sets, with
support for multi-threaded parallel loading, thereby optimizing data loading efficiency.

4.3 Classification Performance Evaluation

In this research, we utilized three main metrics to evaluate the performance of the BSDA-Mamba model
in medical image classification: Accuracy (ACC) [34], Area Under the Curve (AUC) [35], and F1 Score [36].
In addition, 95% confidence interval (95%CI) [37], Floating Point Operations (FLOPs) [38] and Big O
notation [39] were additionally employed in the Brain Tumor MRI dataset. The levels of these indicators can
reflect the potential of the model. The definitions of these metrics are as follows:

Accuracy (ACC): Accuracy is a basic metric that quantifies the percentage of total correct predictions.
It is computed as the sum of true positives and true negatives divided by the total number of predictions.
Accuracy provides a simple measure of how often the model makes correct classifications. Area Under the
Curve (AUC): The AUC refers to the area under the Receiver Operating Characteristic (ROC) curve, which
plots the true positive rate against the false positive rate at different threshold settings. AUC provides a
single scalar value that summarizes the model’s ability to discriminate between classes, with higher values
indicating better performance. An AUC of 1 represents perfect classification, while a value of 0.5 indicates
no discriminatory power, equivalent to random guessing. F1 Score: The F1 Score is the harmonic mean of
precision and recall, offering a balance between the two. Precision measures the proportion of true positives
among all positive predictions made by the model, while recall (or sensitivity) is the proportion of actual
positives that are correctly identified. The F1 Score is especially useful when dealing with imbalanced datasets,
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as it penalizes both high false positive and false negative rates, thereby providing a more comprehensive view
of the model’s performance. To better comprehend the stability of the model, we employed 95% confidence
interval and Floating Point Operations to evaluate the performance metrics of all models in the Brain Tumor
MRI dataset. The merit of using 95% confidence interval lies in its ability to offer uncertainty quantification
for the estimation of model performance, rendering the results more transparent and dependable [40]. By
calculating the FLOPs required by the model during forward propagation, encompassing multiplication and
addition operations in convolutional layers, fully connected layers, and other layers, a metric is provided to
measure the computational resources needed by the model during inference, which aids in evaluating and
optimizing the efficiency and performance of the model. Big O notation is used to quantify the time and space
complexities of a model’s algorithm. It provides a theoretical framework for evaluating the efficiency and
scalability of the model when processing data. This notation helps researchers and developers understand
how the model’s performance may change as the size of the input data increases and how much computational
resources the model requires in the worst-case scenario. Such insights are crucial for optimizing model
design, predicting operational costs, and planning hardware resource allocation. Furthermore, calculating
the Big O notation for different models allows for a clearer comparison of their performance characteristics.

1
AUC=“A TPR (fpr) d for (8)

| TP+ TN
ccuracy =
Y= TPYTN+FP+FN

)

2 x Precision x Recall
F1 - Score = — (10)
Precision + Recall

4.4 Results

Researchers conducted a series of experiments to validate the performance of BSDA-Mamba on different
modalities of medical images. The comparative models selected for these experiments include MedMamba,
ResNet50 [9], EfficientNet [41], and Vit [42]. As illustrated in Fig. 7 and detailed in Table 3, BSDA-Mamba
outperforms its counterparts in crucial performance indicators such as accuracy (ACC), area under the
curve (AUC), and F1 Score. Notably, on the PathMNIST dataset, BSDA-Mamba achieves an accuracy of
98.3%, an AUC of 0.999, and an F1 Score of 99.8%. This result indicates that BSDA-Mamba can identify
pathological images with extremely high accuracy. The AUC value is close to perfect classification, suggesting
that the model has an extremely high ability to distinguish different pathological categories. The high value
of the F1 Score reflects that the model has achieved an excellent balance between precision and recall, which
is particularly important for pathological image classification as it reduces the possibility of misdiagnosis
and missed diagnosis. On the TissueMNIST dataset, BSDA-Mamba also exhibits outstanding performance,
attaining an accuracy of 69.6%, an AUC of 0.934, and an F1 Score of 69.7%, outperforming the compared
models. It indicates that although this dataset might be more challenging, the BSDA-Mamba model can still
provide reliable classification results, which is conducive to clinical decision-making.
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Figure 7: Comparison of experimental results of BSDA-Mamba and other models
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Table 3: The performance of BSDA-Mamba on various datasets and comparison with reference model

Datasets  Samples Model ACC (%) AUC (%) F1Score (%)
MedMamba 98.4 99.7 97.7
Resnet50 98.1 99.3 97.3
Blood 12,500 Efficientnet 97.6 99.1 97.1
Vit 96.9 98.3 96.7
BSDA-Mamba 98.1 99.9 98.0
MedMamba 94.8 99.1 93.7
Resnet50 94.5 99.3 94.5
Brain 7023 Efficientnet 815 95.4 81.1
Vit 81.1 87.9 80.7
BSDA-Mamba 96.6 99.5 95.8
MedMamba 75.8 90.7 75.8
Resnet50 79.1 93.0 78.5
Derma 10,015 Efficientnet 772 91.4 74.3
Vit 773 88.6 67.5
BSDA-Mamba 79.9 93.2 78.5
MedMamba 91.2 96.5 91.0
Resnet50 95.2 98.1 96.2
Pneumonia 5856 Efficientnet 88.9 854 89.1
Vit 91.8 96.4 91.8
BSDA-Mamba 95.6 98.7 95.6
MedMamba 87.2 87.9 87.5
Resnet50 873 86.1 86.4
Breast 780 Efficientnet 74.3 57.7 64.6
Vit 56.4 76.7 82.3
BSDA-Mamba 89.7 88.5 88.9
MedMamba 95.1 99.7 99.5
Resnet50 97.7 99.5 99.3
Path 107,180 Efficientnet 88.9 95.6 94.5
Vit 78.6 89.3 974
BSDA-Mamba 98.3 99.9 99.8
MedMamba 91.3 97.9 91.3
Resnet50 93.8 98.9 93.7
OCT 109,309 Efficientnet 91.3 98.3 91.1
Vit 70.8 86.0 66.0
BSDA-Mamba 92.8 99.2 93.0
MedMamba 69.2 92.6 69.1
Resnet50 68.2 92.8 67.9
Tissue 236,386 Efficientnet 61.4 89.7 62.3
Vit 59.8 88.4 60.3

BSDA-Mamba 69.6 93.4 69.7
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The diagnosis and classification of brain tumors constitute an essential research subject in the domain of
medical image analysis. The Brain Tumor MRI dataset encompasses images of various types of brain tumors
along with precise classification labels. Simultaneously, significant variations in morphology and size exist
among the images of different patients, which augment the complexity of model classification and can better
showcase the classification efficacy of different models. Therefore, we carried out further experiments on
the 95%CI, FLOPs and Big O notation indicators using the Brain Tumor MRI dataset. From Table 4, it can
be seen that BSDA-Mamba has the best classification performance on the Brain Tumor MRI dataset, with
ACC 0f 94.7% (confidence interval 93.5%-96.6%), AUC of 99.1% (confidence interval 97.3%-99.9%), and F1
Score of 93.9% (confidence interval 91.2%-98.6%), all significantly better than other models. Meanwhile,
the FLOPs of BSDA-Mamba stands at 0.04 G, identical to that of MedMamba, yet lower than 0.08 G of
Resnet50 and 0.29 G of Vit. This demonstrates that BSDA-Mamba attains superior performance while
maintaining the equivalent computational efficiency as MedMamba. Furthermore, the time complexity of
BSDA Mamba is O(n), which is the same as MedMamba, ResNet50, and EfficientNet, but better than the
O(n?) of Vit. This indicates that BSDA-Mamba has linear time complexity and high computational efficiency
when processing data.

Table 4: The classification performance of different models on Brain Tumor MRI (including 95% confidence intervals,
FLOPs and Big O notation)

Datasets Model ACC (%) AUC (%) F1Score (%) FLOPs (G) Big O
MedMamba 93.1 98.8 914 0.04 O(n)
(92.3-94.8) (97.8-99.7) (88.3-96.4)
Brain Resnet50 92.4 98.5 92.3 0.08 O(n)
(90.3-94.5)  (95.6-99.6) (88.6-85.9)
Efficientnet 80.2 93.5 78.7 0.01 O(n)
(78.8-815)  (92.7-972)  (72.5-85.4)
Vit 80.5 85.4 76.2 0.29 O(n?)
(78.6-81.1) (81.5-89.8) (70.3-82.7)
BSDA- 94.7 99.1 93.9 0.04 O(n)

Mamba (93.5-96.6) (97.3-99.9) (91.2-98.6)

In the context of using deep learning for medical image classification, improving the interpretability
and understanding of the results is crucial. Grad-CAM (Gradient-weighted Class Activation Mapping) is a
powerful visualization technique that offers valuable insights by highlighting the important regions in an
image that contribute to a model’s decision, thus enhancing the interpretability of deep learning models.

This study visualized the attention of different models in processing Brain Tumor MRI image data
using Grad-CAM. As shown in Fig. 8, while MedMamba effectively focuses on key features in the image,
its broad attention span causes it to capture irrelevant edge areas, which reduces the model’s accuracy in
identifying specific tumor characteristics. In contrast, ResNet50, EfficientNet, and Vit maintain a certain
level of attention to the images, but they fail to focus sufficiently on the critical features. BSDA-Mamba,
however, strikes a balance by incorporating both global information and focused attention on key features.
This well-distributed attention enables the model to accurately and comprehensively identify brain tumors.
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Figure 8: Visualization of MRI test images under different model influences using Grad-CAM technology

The significant achievements of the BSDA-Mamba model in medical image classification tasks can
largely be attributed to its innovative approach in feature extraction and data augmentation. By integrating
residual connections, the model mitigates the gradient vanishing problem in deep networks, improving
information flow and feature combination in deeper layers. This enhancement contributes to better accuracy
and robustness in feature extraction. Additionally, the BSDA-Mamba model employs BSDA technology,
which simulates random variations in medical images to generate new sample features, thereby enhancing the
model’s ability to extract semantic information. This capability not only strengthens the model’s recognition
of diverse image features but also significantly boosts its generalization ability. Given these advantages, the
BSDA-Mamba model has demonstrated exceptional performance across multiple medical image datasets,
particularly excelling in key performance metrics such as accuracy (ACC), area under the curve (AUC), and
F1 Score.

5 Conclusion

This study introduces the BSDA-Mamba model, a novel approach for medical image classification
that integrates Bayesian Random Semantic Data Augmentation (BSDA) technology with the MedMamba
model, which features residual connection blocks. Our extensive experimental evaluation demonstrates that
the BSDA-Mamba model achieves outstanding performance in medical image classification. The model
consistently excels across multiple evaluation metrics, including accuracy, area under the curve (AUC), and
F1 Score, on a variety of benchmark datasets. This high level of performance highlights the robustness of the
model, positioning it as a reliable tool for medical image analysis.

Furthermore, the BSDA-Mamba model is adept at handling diverse imaging modalities, ranging
from X-rays to MRI scans, underscoring its versatility and adaptability in various clinical settings. This
capability enables the model to be seamlessly integrated into different diagnostic workflows without requiring
substantial modifications. The development of BSDA-Mamba also emphasizes the significance of combining
data augmentation techniques with deep learning architectures, illustrating how such strategic integration
can lead to synergistic improvements in model performance.

Despite the promising results achieved by the BSDA-Mamba model, certain limitations remain. Notably,
its reliance on high-quality annotated data, which can be difficult to acquire in some medical fields, poses
a challenge. Additionally, the interpretability of the model is a significant concern. Although deep learning
models, including BSDA-Mamba, demonstrate remarkable accuracy, their “black-box” nature complicates
the understanding of their decision-making processes. This is particularly critical in application domains,
such as medical image analysis, where interpretability is essential. Furthermore, computational efficiency and
scalability remain key challenges. As datasets continue to expand and models grow in complexity, ensuring
that the model maintains high precision while minimizing computational costs and ensuring scalability is
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a crucial avenue for future research. Future efforts will focus on improving the model’s ability to handle
noisy or incomplete data and exploring transfer learning techniques to adapt the model for specific medical
imaging tasks.
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