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ABSTRACT: Carotid artery plaques represent a major contributor to the morbidity and mortality associated with
cerebrovascular disease, and their clinical significance is largely determined by the risk linked to plaque vulnerability.
Therefore, classifying plaque risk constitutes one of the most critical tasks in the clinical management of this condition.
While classification models derived from individual medical centers have been extensively investigated, these single-
center models often fail to generalize well to multi-center data due to variations in ultrasound images caused by
differences in physician expertise and equipment. To address this limitation, a Dual-Classifier Label Correction
Network model (DCLCN) is proposed for the classification of carotid plaque ultrasound images across multiple medical
centers. The DCLCN designs a multi-center domain adaptation module that leverages a dual-classifier strategy to extract
knowledge from both source and target centers, thereby reducing feature discrepancies through a domain adaptation
layer. Additionally, to mitigate the impact of image noise, a label modeling and correction module is introduced to
generate pseudo-labels for the target centers and iteratively refine them using an end-to-end correction mechanism.
Experiments on the carotid plaque dataset collected from three medical centers demonstrate that the DCLCN achieves
commendable performance and robustness.
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1 Introduction
Cardiovascular disease (CVD), a leading cause of morbidity and mortality globally, is primarily caused

by the continuous development of carotid atherosclerosis [1]. One of the main causes of CVD is the continu-
ous development of carotid atherosclerosis [2]. Thus, the concept of vulnerable plaques was introduced, and
researchers have focused on CVD prevention by identifying atherosclerotic plaques with increased risk [3].
Clinically, due to the shallow position of the carotid artery, B-mode ultrasound, a noninvasive detection
method, is one of the main methods for the preoperative diagnosis of carotid plaque in clinical practice [4].
However, its imaging efficacy is strongly affected by the operator’s technique and instrument. The use of
different operators and different instruments can impact the final imaging effect. Therefore, it is necessary to
develop a computer-aided diagnosis (CAD) system based on multicenter B-mode ultrasound plaque data.

Deep learning, as an efficient auxiliary diagnostic method, has been gradually applied in carotid
atherosclerosis-related fields and has achieved good results, especially for plaque data from a single center [5].
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However, deep learning methods need a large amount of labeled data. Unfortunately, the collection of med-
ical data itself is different from that of natural images, requiring much time and consultation with hospitals
and adhering to pertinent ethical review procedures. Furthermore, the need for data annotation by domain-
specialized medical professionals with extensive experience is highly important. These problems limit the
development of multicenter plaque risk CAD to some extent. Therefore, using unsupervised learning has
been proposed to solve this kind of problem. The aim of unsupervised learning is to train a domain-invariant
classifier by narrowing the data features of two different domains, which also means that unsupervised
learning does not require target center data labels for classification [6]. Recent advances in domain adaptation
have demonstrated substantial progress in natural image classification tasks [7,8]. However, due to the
inherent challenges of medical images, domain adaptation has garnered significant attention in the field
of medical imaging. Common issues include unsupervised learning constraints, difficulties in adapting to
diverse patient populations, and challenges in handling complex medical datasets [9]. To achieve this goal
in multicenter CAD for carotid plaque risk prediction, there are some difficult problems that still need to
be solved.

Establishing an appropriate deep learning classification model for multicenter carotid artery plaque
ultrasound images still encounters two major challenges: 1) Differences in operators and equipment con-
tribute to variations in ultrasound imaging features, implying substantial disparities in plaque ultrasound
data acquired from different centers, resulting in divergent diagnostic outcomes. Consequently, these
differences present challenges in unifying unique features within datasets from various centers. 2) Inherent
deficiencies in ultrasound imaging, such as low resolution and artifacts, pose significant challenges [10].
Additionally, during examinations, factors like patient swallowing and the operator’s proficiency impact the
final image quality of ultrasound [11]. The resulting noise makes it difficult to identify and classify certain
data features, leading to the misallocation of erroneous labels by the classifier. Such labels hinder the effective
transfer of features across multiple centers. These two difficulties are shown in more detail in Fig. 1. Therefore,
it is imperative to address the aforementioned challenges to facilitate seamless integration and accurate
analysis within such systems.

Figure 1: An example of the differences in the ultrasound images of plaques from multiple centers. These three images
are from three different centers. (1) Plaque ultrasound image noise. (a) The yellow box indicates an ultrasound artifact,
which covers part of the useful information and produces noise interference. (b) It is evident that the resolution of this
ultrasound image is very low. (2) Feature inconsistency. It can be observed that in (a), (b) and (c) there are obvious
differences among the three images, causing certain difficulties for follow-up research

To address the above difficulties, we propose a multicenter plaque risk prediction algorithm based on
dual classifier noise label correction. The overarching concept is visually represented in Fig. 2. This method
introduces the ideas of adversarial and label correction. On the basis of narrowing the characteristics of
multicenter data, the collective knowledge of two classifiers is used to continuously correct labels to transfer
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information between different centers. In more detail, we construct a feature-sharing multilayer domain
adaptation layer to narrow the feature differences in different central datasets and use two independent
classifiers, which can cooperate to obtain pseudo labels for the data from the target center. Based on the
pseudolabels, iterative label updates are achieved by means of adversarial generation, leveraging feature
learning and loss function computations. Our main contributions can be summarized as follows:

1 We propose a domain adaptation framework specifically designed for multicenter ultrasound plaque
image classification, namely, the double classifier label correction network (DCLCN), which aims to
address noise and feature transfer issues more effectively.

2 The DCLCN algorithm includes the multicenter feature adaptation (MFA) module, which identifies
latent shared features between the source and target centers, facilitating the discovery of transferable
knowledge conducive to classification.

3 Building upon the MFA module, the DCLCN implements the modeling and correction of noise labels
(MCNL) module. This module performs deep correction by modeling the labels of the target center
based on the MFA module, addressing the predictions influenced by noise in the model, and maintaining
and updating the end-to-end label distributions from two center datasets.

Figure 2: Schematic of feature distribution and our main ideas. (a) The initial distribution of plaque ultrasound data
features, which is highly disordered and cannot be classified by the classifier. (b) After narrowing the feature distance,
the majority of the data can now be classified by the classifier. The classifier has difficulty in the classification and
identification of some data due to noise in certain ultrasound images, hindering feature transfer across multiple centers.
(c) By further modeling and correcting noise labels, this image represents the final goal that the DCLCN aims to achieve

2 Related Work
The role of deep learning in medical image analysis is becoming increasingly evident, particularly

in single-center plaque analysis. Single-center plaque classification research has made significant strides,
offering valuable diagnostic tools [12,13]. A deep learning-based framework for mammogram classification is
proposed to enhance the accuracy of breast cancer detection [14]. An explainable deep learning architecture,
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DeepOCT, analyses macular edema in OCT images, enhancing both diagnostic accuracy and interpretabil-
ity [15]. However, real-world applications span multiple hospitals, necessitating multicenter carotid plaque
classification. While multicenter plaque studies are limited, progress in other fields is noteworthy.

2.1 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) addresses domain differences between source and target

domains for enhanced image processing task performance. Collaborative unsupervised domain adaptation
(CoUDA) [16] combats dataset noise but overlooks center-specific feature differences. Consequently, existing
methods for multicenter ultrasound plaque risk prediction are insufficient. Relevant research integrates
multi-modal information fusion and domain adaptation techniques to enhance the generalization ability
across multi-center data [17]. However, they are often limited to specific modalities like CT, require
high-quality data, and are computationally demanding [18]. Some studies optimize cross-domain feature
alignment and semantic transfer through multi-scale adversarial learning, a mix-up discriminator, and
a self-attention mechanism, demonstrating superior performance in ultrasound image tasks [19]. These
studies highlight the need for further improvements in data quality, modality-specific strategies, and
computational efficiency.

2.2 Pseudolabel-Based Methods
Pseudolabels enhance model performance in the target domains by aiding in feature and pattern

recognition. Several studies have explored the applications in UDA. The moving semantic transfer network
(MSTN) [20] investigates semantic representation learning with pseudolabels in UDA. Box-Adapt [21]
which uses bounding boxes for partial labeling, was also proposed. Despite the success of these approaches,
challenges remain in improving pseudolabel precision and addressing noisy labels. To address these issues,
Shi et al. [22] proposed a UDA framework based on label distribution learning, which corrects noisy
pseudolabels iteratively to retrain the model.

3 Materials and Methods

3.1 Datasets
We evaluate the proposed method with three ultrasound datasets collected from three collaborating

centers, A, B, and C. All three datasets were annotated by radiologists with years of clinical experience. In
this study, stable plaques are considered low risk, while unstable plaques are deemed high risk due to their
risk of detachment [23]. All the datasets are summarized in Table 1.

Table 1: Dataset details

Stable Unstable Total
A 506 253 759
B 132 178 310
C 248 386 634

3.2 Methods
In this study, the domain adaptation challenge within the context of B-mode ultrasound multicenter

plaques is addressed. From the source center, we obtain the image xs and its corresponding label ys , resulting
in a dataset denoted as {Xs , Ys} from the source center. Similarly, the unlabeled images xt from the target



Comput Mater Contin. 2025;83(3) 5449

center are in a dataset denoted as {Xt}. The DCLCN first adopts a shared deep neural network with feature
generator G, which is capable of extracting high-level feature representations from ultrasound images. The
ultrasound image data of the source and target centers are input into G to obtain the corresponding feature
representation. After passing through G, the DCLCN will undergo a two-stage adjustment.

As shown in Fig. 3, the first stage involves an MFA module to address the issue of multicenter feature
inconsistency. This module includes a domain feature adaptation layer and two independent classifiers (C1
and C2). The main goal of this stage is to narrow the adjustment decision boundary through the feature
adaptation layer, further expanding the classifier differences while reducing the data differences between
different centers.

Figure 3: The overall framework of the DCLCN, which consists of two main parts: the multicenter feature adaptation
(MFA) and modeling and correction of noise label (MCNL) modules. Images from different centers are input to the
model as sources and targets. Following the two parts, the label distribution of the images is continuously updated and
refined in the subsequent training iterations and utilized as the input in the next iteration

In the second stage, the MCNL module is introduced. Here, the model simultaneously provides label
distribution sets yd

s and yd
t for the source and target centers, respectively, where yd

t from the target center is
initialized by the pretrained model containing “noise”. In the second stage, the purpose of the DCLCN is to
continuously update yd through backpropagation during the training process to process the “noise”.

3.2.1 Multicenter Feature Adaptation
To solve the multicenter data alignment problem in the first stage, the DCLCN introduces the MFA

module based on the dual classifier. We designed a domain adaptation layer after the feature generator G. For
model implementation, this component comprises two fully connected layers. The primary objective of the
MTA module is to enhance feature alignment. To effectively quantify feature disparities, the DCLCN uses
the Maximum Mean Difference (MMD) [24] as the chosen metric. The MMD projects features into a high-
dimensional space using the kernel function and computes the expected difference between the random
variables of the two feature distributions after mapping. The maximum value of this calculation serves as
the standard for measuring the distance. By minimizing the MMD loss, the DCLCN can identify invariant
features among multiple centers.
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To further measure the difference between the two classifiers, the DCLCN introduces diversity loss,
which uses the difference in absolute values of the output of the classifier for the target center data to perform
quantitative measurements. The specific definition is shown in Eq. (2).

Ld iv ers i t y(θF , θG , θC) =
1
K

K
∑
k=1
∣ f1(x , θF , θG)k − f2(x , θF , θG)k ∣ (2)

where f1 and f2 represent the outputs of the two classifiers and k represents the corresponding plaque
category, which is a stable plaque or vulnerable plaque in this study. We attempted to use the classifier
determinacy disparity (CDD) [25] distance rather than the absolute values, and the impact was not
prominently evident.

By maximizing Ld iv ers i t y , the differences are maximized by the two classifiers, enhancing the model’s
discriminative ability for the target center. The goals of this stage is shown in Eq. (3).

min(γLMMD − Ld iv ers i t y) (3)

Through multicenter domain adaptation, the model can obtain prediction results f1(x , θ) and f2(x , θ)
from the two classifiers. Data that are difficult to correctly classify as well as those for which it is difficult
to transfer knowledge are also difficult to classify using the two classifiers. Therefore, averaging the output
results f1(x , θ) and f2(x , θ) can further reduce the interference of ultrasonic noise on the results. In addition,
the model can obtain a prediction distribution that is convenient for label modeling, the definition is shown
in Eq. (4).

ỹ(x , θ) = f1(x , θ) + f1(x , θ)
2

(4)

3.2.2 Modeling and Correction of the Noise Label
For plaque images, simply reducing the distance does not significantly enhance the accuracy because

the inherent noise can make data transfer between centers challenging. Hence, the DCLCN initially models
the labels and subsequently refines them to reduce the impact of noise; thus, the MCNL is proposed. The
MCNL contains two parts. In the following sections, we will elucidate these two components separately.

Label modeling: To model the labels, the DCLCN uses two sets of label distributions yd
s and yd

t to
describe the data from the two centers. In the specific model learning process, during each training iteration,
yd

s and yd
t are input into the model as pseudoground truth labels (especially for the target center).

For label initialization, the source center uses its ground truth label ys . For the target center data, since
there is no initial ground truth label for initialization, the DCLCN utilizes the source center’s pretrained
model to provide an initial estimation of the distribution. This initial distribution estimate for pseudolabels
at the target center includes factors such as image noise and the presence of noisy labels.

Correction of noise labels: yd
s and yd

t are two sets of label distributions that include the influence of
noise. The DCLCN progressively mitigates the effect of this aspect during ongoing learning. To achieve this
goal, the parameters θ of the network are continuously updated. The label distributions yd

s and yd
t for the

source and target centers are also added to the training process and are continuously updated during the
training process. Furthermore, there are four types of labels, namely, ỹ, ŷ, y̌, and y. Among them, ỹ is the
prediction result from the previous part of the classifier, which is the probability distribution of a category; y
is the real label of the dataset (note that in this article, the data label of the target center does not participate
in the training); ŷ is the pseudolabels assigned to the target center by the pretrained classifier; and y̌ is a set
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of hard labels that are continuously updated by backpropagation. For the initialization of y̌, the source center
uses y, which is the ground truth label. The target center uses the initial noise pseudolabel ŷ:

y̌s = My (5)
y̌d = M ŷ (6)

where M is a large constant. The softmax function’s rule inherently diminishes the distinction between results
approaching values of 0 and 1. Therefore, M is used to make the hard label y̌ more discriminative after being
activated by the softmax function later.

Thus, the softmax function is applied to y̌ to obtain a set of continuously updated probability
distributions yd needed by the model.

yd = so f tmax( y̌) (7)

Cross-entropy loss: The data from the source center have ground truth labels. The DCLCN utilizes the
cross-entropy loss to enhance the classification capability of the source center.

LCE(θc , θG , θF) = CrossEntropy( ỹS , y) (8)

Classification loss: To reduce the impact of noise, the model needs to continuously update the label yd

and the parameter θ. The update in this section relies mainly on the guidance of yd and the deviation of the
prediction result ỹ of the dual classifier in the previous section. The DCLCN uses the Kullback Leibler (KL)
loss to measure bias. This loss is is shown in Eq. (9).

LC =
1
K

K
∑
k=1

KL( ỹ(x , θ), yd) (9)

Compatibility loss: Although the pseudolabels predicted by the model include hard-to-classify and
hard-to-transfer plaque predictions, in each subsequent iteration of training, the model’s outcomes should
largely align with the initial pseudolabels. This viewpoint has also been confirmed in prior research [26].
Therefore, a compatibility loss function is added to the model. This loss is shown in Eq. (10).

LO = −
1
K

K
∑
k=1

ŷlog yd (10)

Finally, the overall loss in the second stage is shown in Eq. (11).

Ll abe l =LCE + αLC + βLO (11)

where α and β are two hypermeters whose values are determined based on the experimental results.
The goal of this stage is shown in Eq. (12).

minLl abe l (12)

3.2.3 Training Steps
DCLCN training is divided into three steps.
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Step A To obtain a preliminary model that is more suitable for multicenter plaque classification, the
DCLCN uses plaque data from the source center to train the model. The training goal of this step is to
minimize the cross-entropy loss, and the goal is shown in Eq. (13).

min
θF ,θG ,θC

LCE (13)

Step B The DCLCN adds data from the target center for training. For a clearer algorithm flow, please
refer to Algorithm 1. First, the multicenter field adaptation layer is used to shorten the discrepancy between
the target center and source center, and the LMMD loss is calculated accordingly. Moreover, the difference
between the two classifiers is enlarged by maximizing LDivers i t y . Second, after these two steps, for the
modeling and updating part of the label, the three losses LCE , LC and Lo are calculated to update the network
parameters and pseudolabels. The specific parameters of each loss function are explained in the experimental
section.

min
θF ,θG ,θC

(LCE + γLMMD + αLC + βLO −LDivers i t y) (14)

Finally, the previous feature extraction part and the multicenter domain adaptation layer are trained to
minimize LDivers i t y in these two parts. α, β and γ are hyperparameters.

min
θF ,θG

LDivers i t y (15)

Step C Through Step B, the model obtains a set of pseudolabels from the target center. The model
subsequently used this set of final fixed pseudolabels to perform the final fine-tuning of the target center.

Algorithm 1: The proposed DCLCN
Input: Source data {xs , ys}; Target data {Xt} and the number of training epochs T; Feature generator G;
Classifiers {C1 , C2}; Multicenter adaptation layer {F1 , F2}.
Output: The label corrected label predictiond .
for t = 1 to T do

Generate features f s and f t based on G, F1 and F2
Obtain the prediction f1(x , θ)s and f2(x , θ)s of source data Xs based on C1 and C2
Obtain the prediction f1(x , θ)t and f2(x , θ)t of source data Xt based on C1 and C2
Compute ỹs and ỹt by Eq. (3)
Compute LMMD based on f s and f t by Eq. (1)
Compute LDiversity based on f 1 and f 2 by Eq. (2)
Compute LCE of source data based on ỹs and ys by Eq. (5)
Compute LC of source data and target data based on ỹ and yd by Eq. (6)
Compute Lo based on ŷ and yd by Eq. (7)

for n = 1 to N do
Compute LDiversity based on f 1 and f 2 by Eq. (2)

end for
end for
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4 Results

4.1 Performance Evaluation Measures
This study uses accuracy, regression precision and AUC to evaluate the performance of the DCLCN.

These four metrics are shown in Eqs. (16)–(20).

Accurac y = TP + TN
TP + TN + FP + FN

(16)

Recal l = TP
TP + FN

(17)

Precision = TP
TP + FP

(18)

AUC = 1
N1N2

N1

∑
i=1

N2

∑
j=1

1 (Ti > Fj) (19)

F1score = 2 × Precision × Recall
Precision + Recall

(20)

where TP, TN, FP, and FN represent the true positive, true negative, false-positive, and false-negative
classifications, respectively. Ti is the predicted score of the i-th positive sample. Ji is the predicted score of
the j-th negative sample. N1 is the number of positive samples. N2 is the number of negative samples.

Classification performance metrics with a 95% confidence interval provide robust performance
measures while quantifying uncertainty, which is critical for high-stakes applications such as medical
imaging. They also enable meaningful comparisons between models, ensuring that statistically significant
improvements are accurately identified.

4.2 Experimental Results
4.2.1 Effect Validation on Six Classification Tasks

To prove the feasibility and advancement of the proposed DCLCN, we conduct experiments for all
possible combinations of the three centers (six potential source-to-target center mappings). The results of
these efforts are presented in Table 2.

Table 2: Accuracy (%), precision (%) and recall (%) of different tasks on the DCLCN

Accuracy Precision Recall
A→ B 73.55 78.90 72.96
B→ A 73.79 79.89 73.42
A→ C 71.54 78.99 72.43
B→ C 72.44 71.55 72.28
C→ A 70.28 72.75 69.75
C→ B 69.37 70.37 71.95

Note: The bold entries represent the best-performing results
among the compared methods.
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The experimental results show that the accuracy, precision and recall metrics are consistently approxi-
mately 70% or greater across the six specified tasks.

4.2.2 Model Comparison
In addition, we select one of the 6 tasks (B→ A) and compare the proposed method with classical and

current mainstream methods. The detailed results are shown in Table 3. The following is a brief overview
of the comparison methods. Classification performance metrics provide essential insights into a model’s
accuracy and its ability to generalize to new data. The 95% confidence interval quantifies the uncertainty
around these performance estimates, ensuring statistical rigor in the analysis.

Table 3: Comparison of the DCLCN with several other methods

Accuracy Precision Recall F1-score AUC
Resnet-50

(Source only)
45.47 ± 3.73% 41.41 ± 2.73% 41.20 ± 3.73% 41.30 ± 3.11% 53.32 ± 3.73%

Resnet-50 (Fully
supervised)

77.35 ± 0.79% 80.90 ± 0.62% 76.33 ± 0.58% 78.55 ± 0.58% 85.54 ± 0.39%

DANN [27] 68.32 ± 2.33% 64.57 ± 1.76% 62.30 ± 2.03% 63.42 ± 1.85% 74.34 ± 2.00%
DAN [28] 74.29 ± 1.57% 75.37 ± 1.33% 72.95 ± 1.75% 74.14 ± 1.49% 78.84 ± 1.56%
MCD [6] 71.44 ± 1.69% 68.13 ± 1.53% 73.05 ± 1.70% 70.52 ± 1.57% 77.46 ± 1.68%

DMCD [29] 73.06 ± 1.32% 72.89 ± 1.78% 72.00 ± 1.54% 72.71 ± 1.64% 76.27 ± 1.64%
(AD2A) [30] 72.89 ± 1.53% 73.56 ± 1.63% 71.33 ± 1.60% 72.43 ± 1.60% 79.84 ± 1.60%
CoUDA [16] 73.38 ± 1.73% 78.34 ± 1.75% 72.47 ± 1.55% 75.31 ± 1.63% 80.45 ± 1.75%

TRANS-DA [31] 74.30 ± 1.02% 77.83 ± 1.03% 73.78 ± 1.10% 75.78 ± 1.05% 82.63 ± 1.08%
DCLCN (ours) 73.79 ± 0.98% 79.89 ± 1.05% 73.42 ± 1.48% 76.29 ± 1.25% 81.35 ± 1.32%

Note: All classification performance metrics with a 95% confidence interval.

These methods aim to improve cross-domain transfer learning performance. DANN reduces feature
distribution discrepancies with adversarial networks; DAN [28] aligns feature distributions for better model
generalization; MCD minimizes classifier output differences for improved cross-domain performance;
DMCD [29] combines maximum classifier discrepancy and denoising techniques without requiring source
domain data; AD2A [30] uses attention-guided domain adaptation for multisite data harmonization;
CoUDA [16] introduces domain discriminators and noise adaptation layers to improve classification,
focusing on labeling errors; TRANS-DA [31] uses Vision Transformers and self-supervised learning to
enhance cross-domain feature mapping.

The DCLCN has demonstrated good performance across the metrics compared to the other semi-
supervised approaches for addressing multicenter problems. Although the accuracy of the DCLCN is slightly
lower than that of the DAN, the difference in accuracy is minimal (0.5%). However, the DCLCN achieves
substantial increases in precision and recall, with a notable 4.52% (79.89% vs. 75.37%) improvement in
precision. Additionally, the p-values of the model are all less than 0.05. It can be observed that DCLCN
performs lower than TRANS-DA in terms of Accuracy (Acc) and AUC. DCLCN outperforms the second-
best model by 2.06 in precision and 0.51 in F1-score. For other metrics, DCLCN ranks second and is very
close to the best-performing model. DCLCN is in an optimal or near-optimal position, demonstrating the
best performance across all the metrics.
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4.2.3 Ablation Study
Since the DCLCN involves five loss functions, to prove the rationality of the loss function selected by

the method, we conduct ablation experiments. The combined utilization of domain adaptation and two label
correction losses significantly contributes to the ultimate classification accuracy. Hence, integrating these
two stages proves to be effective in addressing multicenter plaque risk prediction. The findings of these
experiments are displayed in Table 4.

Table 4: Comparison to determine the optimal layer count

Multicenter Feature Adaptation (MFA) Label Modeling and Correction (MCNL) Accuracy

LMMD LDivers i t y LO LC

✓ 67.58
✓ 69.23

✓ ✓ 71.89
✓ ✓ 70.55

✓ ✓ ✓ 72.03
✓ ✓ ✓ ✓ 73.79

4.2.4 Domain Adaptation Layer Determination
Due to the varying effects of multicenter domain adaptation layers with different numbers on model

performance, a series of systematic experiments were conducted to determine the optimal number of layers.
The results of these experiments are shown in Table 5. The data from these tests indicate that the inclusion
of multicenter domain adaptation layers improves domain adaptation performance.

Table 5: Comparison to determine the optimal layer count

Layers Accuracy Precision Recall
0 73.03 78.80 72.80
1 74.20 73.91 65.55
2 73.79 79.89 73.42
3 71.20 79.54 71.24

4.2.5 Pseudo-Label Prediction Accuracy Trend Analyze
In this section, we collected the ratio of correct predictions for pseudo-labels to the total number of

pseudo-labels generated during the training process on the B–A dataset and plotted the trend (as shown
in Fig. 4). Whether for stable or unstable plaques, the overall trend of pseudo-label accuracy is upward with
fluctuations, particularly showing a stable upward trend in the later epochs. This suggests that the pseudo-
label generation has strong adaptability and stability. The model’s accuracy curve does align with the quality
of pseudo-labels in Fig. 4, further demonstrating that changes in pseudo-labels influence the results. This
result validates the effectiveness of the unsupervised domain adaptation method in handling multi–center
data, ensuring the model’s predictive stability.
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Figure 4: Trend of correct predictions for pseudo-labels in the B-A dataset during training

4.2.6 Visualization Study
To validate the classification performance of DCLCN and enhance model interpretability, this section

selects the B-A center pairing and employs Grad-CAM [32] to visualize the feature representations of the
target center A. Additionally, a comparative visualization analysis is conducted on two baseline models,
DANN [27] and MCD [6], as shown in Fig. 5. It can be observed that, compared to the ground truth
annotations by medical experts, the DANN model primarily focuses on information outside the blood vessel,
failing to adequately attend to the core vascular region. In contrast, while the MCD model demonstrates
some degree of focus on the vascular area, its attention remains partially misaligned.

Figure 5: Feature visualization and comparative analysis of DCLCN, DANN, and MCD on target center A
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5 Discussion
The experiments in this study are based on ResNet-50 and pretraining parameters from ImageNet [33].

The number of epochs is set to 150, of which the first 20 epochs are related to source center pretraining, the
next 100 epochs are the dual classifier pseudolabel domain adaptation stage, and the remaining epochs are
used to fine-tune the model. To determine the optimal values for the parameters of the loss function, we
evaluated various combinations of α, β, and γ, and found that the best results were obtained with α = 0.3,
β = 0.3, and γ = 0.4 (Table 6). The parameters α and β share the same value, indicating that the classification
loss and compatibility loss contribute equally. The parameter γ corresponds to the MMD layer in MFA, which
suggests that, for domain adaptation, reducing the feature distance between centers plays a more critical role.

Table 6: Hyperparameter selection

α β γ ACC
0.3 0.4 0.3 73.45
0.5 0.2 0.3 72.98
0.4 0.3 0.3 73.50
0.3 0.3 0.4 73.79
0.3 0.2 0.5 73.63

SGD 0.9 The learning rate 0.002
Weight decay 10−4 Batch size 16

In terms of pre-processing, random vertical flipping, random rotation and random horizontal flipping
were performed, enhancing the model’s generalization ability and increase data utilization. Specifically, the
horizontal flipping and vertical flipping operate on the image randomly with a probability of 0.5, and the
random rotation of the image is between 30 and 60.

In Table 3, in contrast to ResNet-50 (source only), which has undergone no multicenter adaptation,
all methods have made remarkable advancements, indicating the significance of multicenter research.
Nonetheless, when juxtaposed against a fully supervised method, there exists a discernible gap that warrants
further investigation. The DMCD and CoUDA are two models that account for noise. Compared with these
two methods, the DCLCN yields improvements in all three metrics. CoUDA considers the impact of noisy
labels on knowledge transfer, while DMCD addresses noise by incorporating high-confidence samples into
the training set. However, neither of these methods considers the influence of ultrasound noise itself on
multicenter knowledge transfer. AD2A more closely considers the more valuable regions in medical images.
However, its effectiveness is limited in the context of plaque ultrasound images. Noise reduction remains a
crucial aspect that requires further consideration.

In terms of time complexity, Big O notation and FLOPs analysis are shown in Table 7. CoUDA [16]
and TRANS-DA [31] were chosen because CoUDA is based on the CNN framework, and TRANS-DA is
based on the Transformer framework, making them representative in terms of complexity. The FLOPs of
DCLCN is very close to CoUDA, and an order of magnitude smaller than the Transformer framework. The
big O notation of DCLCN exhibits lower complexity than TRANS-DA, while higher than CoUDA. However,
DCLCN outperforms CoUDA on all metrics of classification performance (as shown in Table 3).

In this study, datasets from three different centers were used. Although these datasets provided valuable
cross-center learning opportunities, the limited number of data sources may somewhat affect the model’s
generalizability and performance. The collection of medical images is subject to objective constraints.



5458 Comput Mater Contin. 2025;83(3)

Currently, the number of centers is typically limited to 2–3 in multi-center studies of ultrasound images, with
an average of about 300 samples per center [18]. The data collected in our study is similar to this scale, and
will be expanded to include data from more centers to further validate the model’s robustness in future work.

Table 7: FLOPs analysis and Big O notation

Methods FLOPS Big O notation
CoUDA [16] 4.0 G O(n)

TRANS-DA [31] 55 G O(n3)
DCLCN (ours) 4.2 G O(n2)

6 Conclusions
Existing deep learning models for carotid artery ultrasound images typically rely on data from a single

center, and extending them to multiple centers often leads to a significant drop in accuracy due to center-
specific differences and ultrasound image noise. To address this, we propose an unsupervised domain
adaptation method, DCLCN, for predicting the risk of multicenter plaques. DCLCN incorporates the MFA
and label modeling and correction modules to mitigate discrepancies and noise between centers. While
it shows promising results on three ultrasound datasets, its performance still lags behind fully supervised
models. Future work will focus on improving DCLCN by integrating multimodal and multicenter data, along
with expert collaboration, to enhance clinical diagnosis.
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