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ABSTRACT: Automated and accurate movie genre classification is crucial for content organization, recommendation
systems, and audience targeting in the film industry. Although most existing approaches focus on audiovisual features
such as trailers and posters, the text-based classification remains underexplored despite its accessibility and semantic
richness. This paper introduces the Genre Attention Model (GAM), a deep learning architecture that integrates
transformer models with a hierarchical attention mechanism to extract and leverage contextual information from
movie plots for multi-label genre classification. In order to assess its effectiveness, we assess multiple transformer-based
models, including Bidirectional Encoder Representations from Transformers (BERT), A Lite BERT (ALBERT), Distilled
BERT (DistilBERT), Robustly Optimized BERT Pretraining Approach (RoBERTa), Efficiently Learning an Encoder
that Classifies Token Replacements Accurately (ELECTRA), eXtreme Learning Network (XLNet) and Decoding-
enhanced BERT with Disentangled Attention (DeBERTa). Experimental results demonstrate the superior performance
of DeBERTa-based GAM, which employs a two-tier hierarchical attention mechanism: word-level attention highlights
key terms, while sentence-level attention captures critical narrative segments, ensuring a refined and interpretable
representation of movie plots. Evaluated on three benchmark datasets Trailers12K, Large Movie Trailer Dataset-
9 (LMTD-9), and MovieLens37K. GAM achieves micro-average precision scores of 83.63%, 83.32%, and 83.34%,
respectively, surpassing state-of-the-art models. Additionally, GAM is computationally efficient, requiring just 6.10 Giga
Floating Point Operations Per Second (GFLOPS), making it a scalable and cost-effective solution. These results highlight
the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving
predictive accuracy while maintaining computational efficiency. With its robust performance, GAM offers a versatile
and scalable framework for content recommendation, film indexing, and media analytics, providing an interpretable
alternative to traditional audiovisual-based classification techniques.
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1 Introduction
Automated classification of movies into genres is a critical task in film data analysis, serving as the foun-

dation for effective content organization, recommendation systems, and audience-specific targeting [1–3].
As the volume of available films continues to expand, manual genre categorization, traditionally performed
by studios or distributors, is no longer sufficient to meet the growing demands for precise and scalable genre
classification [4]. Automated genre classification enables efficient navigation of large-scale cinematic datasets,
providing tailored content recommendations and enhancing user experience in digital media platforms.
Using trailers, posters, and metadata works well but needs a lot of computing power and rich audiovisual
data. This data is not always available, especially for new movies. A text-only method, using plot descriptions,
is a cheaper and easier option. Plot summaries come before trailers or posters, making text-based methods
useful for early genre prediction. Despite advancements in multimodal genre classification using audio-visual
data, recent developments in Natural Language Processing (NLP) open new avenues for text-based genre
classification, specifically through the analysis of plot summaries and synopses, which contain semantically
rich information crucial for genre identification [5].

Existing approaches to genre classification utilize audio-visual data from trailers, posters, and promo-
tional media to capture genre-specific elements through visual and auditory features. Movie trailers, rich
in both visual and audio cues, are analyzed using deep visual feature extraction, spatiotemporal modelling,
and audio-based techniques that leverage sound effects, music, and voice modulation as genre indicators
[6–9]. Similarly, movie posters convey genre cues through colour schemes, object compositions, and the-
matic visuals, with methods ranging from low-level colour analysis to high-level semantic attribute detection
[10–13]. Recent advancements involve multimodal approaches that combine audio, visual, and textual
features such as audio tracks, poster images, frame sequences, and plot summaries to improve classification
accuracy by capturing genre-specific nuances comprehensively [14–16].

Advancements in NLP and neural networks have enabled textual approaches, particularly those lever-
aging movie plots and synopses, to play a significant role in genre classification. These textual summaries,
often available from online databases and Application Programming Interface (APIs) (e.g., Internet Movie
Database (IMDb), The Movie Database (TMDb)), carry rich semantic and contextual information about
genre affiliation. Effectively capturing this information requires sophisticated models capable of navigating
the complexities of natural language and the subtle nuances that distinguish genres. Existing research
has explored various textual sources, including subtitles [17], synopses [18], plot summaries [19], movie
scripts [20], viewer reviews [21], and social media data [22]. Despite extensive research, the field still faces
notable gaps, including:

• Existing methods primarily depend on traditional feature extraction approaches, such as Term
Frequency-Inverse Document Frequency (TF-IDF), Bag of Words (BoW), and pre-trained word embed-
dings. The potential of transformers and hierarchical attention mechanisms remains largely untapped in
the context of movie genre classification.

• State-of-the-art language models, particularly DeBERTa, are underexplored despite their enhanced
capacity for contextual understanding, which could greatly benefit genre classification tasks.

• Most current studies lack comprehensive validation of model performance across multiple benchmark
datasets, raising concerns about existing models’ generalizability and robustness.

This paper proposes a novel model, the GAM, which combines hierarchical attention mechanisms
with the DeBERTa [23] language model. Hierarchical attention has been used in NLP tasks like document
classification and sentiment analysis, but applying it to movie genre classification is new and challenging [24].
Movie plots need a deep understanding of story structures and genre details, which current methods struggle
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with. GAM combines hierarchical attention with the DeBERTa model to focus on key narrative elements, like
important words or sentences. This makes it well-suited for analyzing movie plots and a unique contribution
to the field. The hierarchical attention mechanism allows GAM to focus on the most salient words and
sentences for genre classification. At the same time, DeBERTa enhances its ability to capture deep contextual
and semantic relationships within the text. By integrating these components, GAM addresses the limitations
of prior approaches and achieves superior performance in multi-label movie genre classification. To identify
the optimal transformer model, we experimented with several models, including ALBERT [25], BERT [26],
DistilBERT [27], RoBERTa [28], ELECTRA [29], XLNet [30], and DeBERTa [23], selecting DeBERTa as the
best-performing model with the hierarchical attention mechanism.

The GAM model has been extensively evaluated on three benchmark datasets: Trailers12K [6], LMTD-
9 [7], and MovieLens37K [31]. The model has been trained on the Trailers12K dataset and tested on all
three datasets to assess its generalization and performance on unseen data. The results have been evaluated
using recall, precision, F1-score, and Area Under the Precision-Recall Curve (AUPRC) to compare overall
performance with state-of-the-art methods. Additionally, the results have been benchmarked against fine-
tuned transformer-based and traditional Machine Learning (ML) models. GAM has achieved micro, macro,
weighted, and sample average precision scores of 83.63%, 82.16%, 81.73%, and 82.16% on Trailers12K;
83.32%, 82.71%, 81.66%, and 82.71% on LMTD-9; and 83.34%, 82.11%, 81.77%, and 82.11% on MovieLens37K,
demonstrating superior performance compared to existing methods.

The primary contributions of this research are as follows:

i. Proposal of the Genre Attention Model (GAM): This work introduces GAM, a novel model integrating
the DeBERTa transformer with a hierarchical attention mechanism to capture complex, genre-specific
details within movie plot text. It addresses limitations in prior genre classification models by enhancing
interpretability and contextual understanding of narrative details.

ii. Development of an Enhanced Attention Mechanism: GAM incorporates a hierarchical attention
mechanism that dynamically prioritizes keywords and sentences, enabling precise genre predictions.
This mechanism emphasizes the most salient textual components, significantly improving classifica-
tion accuracy.

iii. Demonstration of Superior Classification Accuracy: xtensive experimentation on the Trailers12K,
LMTD-9, and MovieLens37K datasets shows GAM achieving over 83% in precision metrics, out-
performing existing state-of-the-art models by up to 8%, demonstrating its efficacy in multi-label
genre classification.

iv. Comprehensive Benchmarking against Transformer-Based Models: GAM is rigorously compared
with high-performing transformer models, including BERT, RoBERTa, and XLNet. Results highlight
the synergy between rich language representations, such as DeBERTa, and hierarchical attention
mechanisms, emphasizing their combined impact on genre classification accuracy.

The paper is organized as follows: Section 2 reviews multi-label genre classification. Section 3 describes
the GAM architecture, detailing the input, DeBERTa, attention, dense, dropout, and output layers. Section 4
presents the experimental setup, results on the Trailers12K, LMTD-9, and MovieLens37K datasets, and com-
parisons with state-of-the-art methods, including model interpretability through attention weights. Section 5
discusses the model’s strengths, limitations, and FLOPS (Floating Point Operations Per Second) effi-
ciency. Section 6 concludes with key findings and future research directions.
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2 Related Work
This section provides a systematic review of current multi-label movie genre classification methods,

focusing on approaches using trailers, posters, textual data, and multimodal strategies. The methodologies
are categorized by their primary modality, while also discussing commonly used datasets.

2.1 Trailer-Based Approaches
Movie trailers serve as a condensed representation of a film’s narrative, visual style, and audio cues,

making them a valuable resource for genre classification. Previous studies have leveraged various deep-
learning methods to extract relevant features. Wehrmann et al. [32] utilized deep visual features from trailer
frames, employing a 152-layer ConvNet (Convolutional Network) to generate temporal representations for
classification. Bi et al. [33] introduced a Convolutional 3D + Long Short-Term Memory (C3D-LSTM) model
to capture spatiotemporal features, while Lin et al. [34] combined visual and audio elements for enhanced
genre recognition. TimeSformer, proposed by Bertasius et al. [35], captures temporal relationships across
video frames, and though not explicitly applied to genre classification, it demonstrates the potential for
this purpose.

Audio features are also critical in trailer analysis. Sharma et al. [36] extracted audio characteristics for
genre prediction, and Bhattacharjee et al. [8] employed an Attention Convolutional Neural Network (ACNN)
utilizing speech-music confidence sequences to boost classification accuracy. Studies combining multiple
features, such as Montalvo et al. [6] and Shambharkar et al. [9], demonstrated the benefits of integrating
audio-visual data with 3D Convolutional Neural Networks for enriched spatial and temporal information.

2.2 Poster-Based Approaches
Movie posters are powerful visual representations, often containing genre-specific cues through design

elements like color schemes, objects, and layout. Barney et al. [10] analyzed RGB (Red, Green, Blue) color
distributions in posters to build predictive feature matrices, while Narawade et al. [11] employed dominant
colors and Global Image Descriptor (GIST) descriptors to classify visual content. More advanced techniques
incorporate object detection and semantic feature extraction; Chu et al. [37] used Convolutional Neural
Network (CNNs) with YOLO (You Only Look Once) object detection model to detect genre-relevant objects,
while Wi et al. [12] categorized posters by object themes, enhancing genre prediction for action and horror
films. High-level attributes like aesthetics, emotion, and typography were explored by Popat et al. [38], who
applied colour theory and design principles to convey genre associations, and Sirattanajakarin et al. [39],
who annotated posters with twelve semantic features for genre classification.

2.3 Multimodal Approaches
Integrating multiple modalities-such as visual, textual, and audio, features more comprehensive genre

classification models [40]. Nambiar et al. [41] combined visual features from posters (using Visual Geometry
Group (VGG16) and Residual Networks (ResNet50)) with textual data (Word2Vectors and GlobalVectors
embeddings) for improved classification. Similarly, Braz et al. [42] fused text from movie synopses with
poster images processed through Densely Connected Convolutional Networks (DenseNet-169) in a mul-
timodal fusion module. More complex multimodal approaches include Paulino et al. [43], who integrated
visual, textual, and audio data using an Inflated 3D (I3D) model, and Mangolin et al. [15], who combined
audio, video frames, and textual features via late fusion strategies.

Some studies incorporated metadata for enhanced classification. For instance, Kerger et al. [44] utilized
movie summaries and metadata attributes like production year, budget, and company in training models.
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Liang et al. [45] extracted features from individual modalities, combining them through global average
pooling for effective fusion. These multimodal approaches leverage broader data sources to capture genre
nuances more effectively.

2.4 Textual Approaches
Textual data such as plot summaries, synopses, and subtitles provide rich, narrative-based information

for genre classification. Portolese et al. [46] employed TF-IDF and pre-trained word embeddings to extract
features from synopses, while other studies [18,47] applied vectorization techniques with machine learning
algorithms (e.g., CountVectorizer (CV), K-Nearest Neighbors (KNN), Naive Bayes (NB), and Support Vector
Machine (SVM)). Deep Learning (DL) approaches, including Bidirectional-Long Short Term Memory (Bi-
LSTM) networks [48] and models incorporating the Universal Sentence Encoder (USE) [19], have also been
used to capture genre-relevant text patterns. Topic modelling has shown promise, with Matthews et al. [49]
demonstrating that topic-based features enhance genre prediction accuracy.

Scripts and subtitles offer additional avenues for genre classification. Agarwal et al. [20] used character
interactions within movie scripts, represented through eigenvectors of Laplacian matrices, to predict genres.
Hasan et al. [17] utilized TF-IDF and BoW representations to extract features from subtitles, while Rajput
et al. [50] used high-frequency words in subtitles as genre indicators. Textual approaches are also adopted in
some other studies like [51,52].

Text-based methods lag behind multimodal models, which capture extra details from trailers, posters,
and audio. However, text-based methods are still useful when visual data is missing or hard to process,
especially for older or independent films. This shows the importance of advanced text models like GAM,
which can work well using only plot descriptions.

2.5 Datasets for Genre Classification
Several datasets have facilitated research in movie genre classification. The MM-IMDb dataset [53]

contains 26,000 movies annotated with multiple genre labels and includes textual, visual, and auditory data.
The MovieLens dataset [31] is widely used in recommendation systems and includes 20 million ratings and
genre labels for 27,000 movies. MovieScope [54] offers a multimodal dataset with approximately 45,000
movies, including descriptions, posters, and trailers. The LMDT dataset [7] integrates text descriptions
with trailers, covering around 25,000 movies with multiple genre labels, and is available in various versions
like LMDT-9 and LMDT-4, focusing on nine and four primary genres, respectively. The Trailers12K
dataset [6] includes 12,000 trailers linked to YouTube videos and poster representations, encompassing ten
genre categories.

3 Methodology
This research introduces the Genre Attention Model, a novel deep-learning architecture designed for

the challenging task of multi-label movie genre classification. GAM tackles the complexity of movie genre
classification by combining the strengths of transformer-based language models with a hierarchical attention
mechanism, enabling it to discern intricate relationships between a movie’s plot description and its associated
genres effectively.
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3.1 Dataset and Problem Formalization
Movie genre classification is a multi-label classification problem, where a single film can belong to

multiple categories simultaneously. Let D = {(x1 , y1), (x2, y2), . . . , (xN , yN)}be the dataset of movies, where
N represents the total number of movie samples. Each data point comprises:

• xi : The textual plot description of the i-th movie, capturing the narrative and key events.
• yi : A binary vector of fixed length, yi ∈ {0, 1}g , where g is the total number of predefined genres. Each

element, yi j, within this vector signals the presence (1) or absence (0) of the j-th genre in the i-th movie.
Formally see Eq. (1):

yi j =
⎧⎪⎪
⎨
⎪⎪⎩

1 if the j-th genre applies to the i-th movie,
0 otherwise.

(1)

3.2 Exploration of Transformer-Based Language Models
In exploring transformer-based language models to identify one suited for hierarchical attention

mechanisms, we evaluated several advanced architectures, each with unique enhancements to the original
BERT framework. ALBERT [25] was designed with parameter reduction techniques that improve memory
efficiency, enabling faster training while preserving performance. This efficiency is achieved primarily
through factorized embedding parameterization and cross-layer parameter sharing, both of which reduce
the model size without significant accuracy loss. BERT [26] itself, the foundation of many subsequent models,
introduced the concept of bidirectional training for contextual word representations. This bidirectional
approach allows BERT to capture context from both left and right directions simultaneously, a significant
advantage in NLP tasks.

DistilBERT is a compressed, version of BERT, optimized for speed and memory efficiency. By retaining
approximately 97% of BERT’s language understanding ability but with fewer parameters, DistilBERT [27]
achieves a balance between performance and computational efficiency, making it suitable for real-time
applications. Another refinement of BERT, RoBERTa [28], improved on BERT’s training techniques by
extending the pretraining phase, using larger batches, removing the Next Sentence Prediction objective,
and dynamically adjusting hyperparameters. This rigorous pretraining led to stronger language representa-
tion capabilities.

ELECTRA [29] took a novel approach by introducing a discriminator-generator setup during pretrain-
ing. Instead of relying on masked language modelling like BERT, ELECTRA’s generator replaces words with
plausible alternatives, and the discriminator predicts whether each word in the input is correct or replaced.
This allows ELECTRA to learn from all tokens rather than just the masked ones, which improves efficiency,
particularly for smaller models.

XLNet [30] departed from the masked language modelling objective by using permutation language
modelling, a method that combines the benefits of autoregressive and bidirectional language models. By
predicting words in a random order, XLNet can capture bidirectional context without masking, which
allows it to understand relationships between words in various orders better and avoid limitations in BERT’s
fixed left-to-right and right-to-left contexts. Mathematically, XLNet maximizes the expected likelihood of
a sequence under all possible permutations of factorization orders, which leads to more comprehensive
learning of dependencies.

DeBERTa [23] further advanced the BERT framework by incorporating disentangled attention and an
improved mask decoder. Disentangled attention in DeBERTa separately encodes the content and position
of each word, allowing the model to differentiate between a word’s identity and its position more effectively.
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This separation leads to a finer-grained understanding of language structure and relationships, crucial
for nuanced tasks. The disentangled attention mechanism can be expressed as two distinct functions,
fcontent(w) and fposition(p), where w represents word embeddings and p denotes position embeddings. By
enhancing how DeBERTa processes contextual information, this architecture proved adept at tasks requiring
semantic subtlety.

Our experiments indicated that DeBERTa consistently outperformed other models in capturing the
semantic nuances within movie plot descriptions, leading to more accurate genre predictions. Given its
superior performance, we selected DeBERTa as the core model for our hierarchical attention mechanism.

3.3 Genre Attention Model (GAM) Architecture
GAM seamlessly integrates the DeBERTa language model with a hierarchical attention mechanism,

enabling it to focus on the most informative aspects of a movie plot for genre classification. This architecture,
visually represented in Fig. 1, comprises the following key components:

Figure 1: Deep learning model and GAM architecture

3.3.1 Input Layer
The input layer acts as the entry point for the raw plot description, pn , and prepares it for the model.

This description could be anything from a short summary to a full script. It performs crucial preprocessing
steps, including:

• Tokenization: The input text is segmented into individual tokens (words or sub-words) using a
DeBERTa-specific tokenizer. This tokenizer is responsible for mapping each token to its corresponding
numerical ID, creating a sequence of token IDs, t = [t1 , t2, . . . , tn].
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• Attention Mask Generation: An attention mask, m = [m1 , m2, . . . , mn], is created to guide the model’s
focus. Each element mi in the mask is 1 if the corresponding token ti is a meaningful part of the input
and 0 if it’s a padding token (added to standardize input lengths).

3.3.2 DeBERTa Layer
The DeBERTa layer uses the pre-trained DeBERTa model to transform the token IDs into contextualized

word embeddings, H = [h1 , h2, . . . , hn], where hi ∈ Rd is the embedding of token ti . These embeddings
capture the meaning of individual words and their semantic significance within the surrounding context.

• Disentangled Attention Mechanism: DeBERTa employs a disentangled attention mechanism, separating
content and position-based attention. This allows the model to capture both the semantic relationships
between words and their positional information within the sentence. The attention score, ei j, between
tokens i and j is computed as see Eq. (2):

ei j = (WQ hi)⊺(WKh j + ai j) + bi j (2)

where WQ and WK are weight matrices for the query and key projections, ai j is the disentangled position
embedding, and bi j is a bias term.

• Enhanced Representations: The DeBERTa layer produces enhanced representations, H′ =
[h′1 , h′2, . . . , h′n], by applying the disentangled attention mechanism and subsequent transformations.
These representations provide a comprehensive view of the input text, integrating content and
position-based information.

3.3.3 Hierarchical Attention Layer
The hierarchical attention layer is the core innovation of GAM, enabling the model to selectively attend

to the most salient information within the movie plot. It operates at two levels: first, the word level identifies
the most important words in each sentence, capturing the essence of each sentence. Then, the sentence
level identifies the most important sentences in the plot, focusing on the key elements of the narrative. This
dual-level attention allows the model to understand the plot better and figure out the movie’s genres more
accurately.

• Word-Level Attention: For each sentence in the plot, this mechanism calculates attention weights, αi j,
for each word. Let Hs = [hs1 , hs2, . . . , hsm] represent the DeBERTa output for the s-th sentence. The
attention score, ei j, between words i and j in sentence s is calculated using a compatibility function (e.g.,
dot product) see Eq. (3):

ei j = h⊺s i hs j (3)

These scores are then normalized using the softmax function see Eq. (4):

αi j =
exp(ei j)

∑m
k=1 exp(ei k)

(4)

This results in a set of attention weights, αi j, that represent the importance of each word j concerning the
word i. A context vector, ci , for each word i is then computed as a weighted sum of the word embeddings
see Eq. (5):

ci =
m
∑
j=1

αi jhs j (5)
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This process effectively highlights the most influential words within each sentence, capturing the essence
of their contribution to the overall meaning.

• Sentence-Level Attention: This mechanism operates on the output of the DeBERTa layer, which provides
a contextualized C = [c1 , c2, . . . , cn], representation of the entire plot description. It calculates attention
weights, βs , for each sentence, allowing the model to discern which sentences are most indicative of the
movie’s genre. The attention score, es , for sentence s is calculated as see Eq. (6):

es = v⊺s tanh(Wc cs + bc) (6)

where vs is a weight vector for sentence s, Wc is a weight matrix, and bc is a bias term. These scores are
normalized using softmax to obtain the attention weights see Eq. (7):

βs =
exp(es)

∑n
k=1 exp(ek)

(7)

Finally, a comprehensive sentence representation, r, is computed as a weighted sum of the context vectors
see Eq. (8):

r =
n
∑
s=1

βs cs (8)

This hierarchical attention mechanism allows GAM to discern not only which words are important
within each sentence but also which sentences contribute most significantly to the overall genre
classification.

3.3.4 Output Layer
The output layer transforms the aggregated sentence representation, r, into a format suitable for genre

prediction. It consists of the following sub-components:

• Dense Layer with ReLU Activation: This layer applies a linear transformation to the sentence represen-
tation, followed by the ReLU (Rectified Linear Unit) activation function. ReLU introduces non-linearity
into the model, enabling it to learn complex patterns and relationships between the input features and
the output genres.

• Dropout Layer: A dropout layer with a rate of 0.5 is incorporated to prevent overfitting. Dropout
randomly deactivates a fraction of the neurons during training, forcing the network to learn more robust
and generalizable features.

• Dense Layer with Sigmoid Activation: The final layer in the output stage is a dense layer that uses
the sigmoid activation function. This function maps the output values to a range between 0 and 1,
representing probabilities. Each of the multiple sigmoid outputs from this single dense layer corresponds
to a specific genre, signifying the probability that the input movie belongs to that genre.

By combining these layers, the output layer effectively transforms the high-level representation of the
movie plot into a set of genre probabilities.

3.4 Prediction and Model Training
A threshold is applied to the output probabilities to obtain the final genre predictions. For instance, if

the threshold is set to 0.5, any genre with a probability greater than 0.5 is considered present in the movie.
This results in a binary prediction vector for each movie, indicating its predicted genres. Sometimes, a movie
might not be assigned any genre if all the predicted probabilities fall below the threshold.
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The input to the model is tokenized with a maximum length of 100 tokens. The core of the model is
the pre-trained DeBERTa-basemodel from Microsoft, which includes 12 hidden layers, 768 hidden units,
and a maximum sequence length of 512. The hierarchical attention layer uses trainable weight matrices, bias
vectors, and context vectors to calculate attention scores, determining the importance of different words and
sentences in the input plot description. Following the attention layer, a dense layer with 128 neurons and
ReLU activation is used. A dropout layer with a rate of 0.5 helps prevent overfitting. The output layer consists
of 10 neurons (corresponding to the number of genres) with sigmoid activation, producing probabilities for
each genre.

The GAM model undergoes training using the Adam optimizer with a learning rate of 3 × 10−5. We
utilize binary cross-entropy as the loss function, which is suitable for multi-label classification problems, and
track accuracy as a metric. Early stopping monitors validation loss with patience set to 3, restoring the best
weights if no improvement occurs. Training is conducted over 20 epochs with a batch size of 32.

4 Experiments and Results
This section presents our results on multi-label genre classification for movie trailers, detailing the

datasets used (Trailers12K, LMTD-9 and MovieLens37K) and the evaluation metrics applied to assess model
performance. We begin by outlining the baseline methods, which include various fine-tuned transformer-
based models that serve as benchmarks. We then highlight the performance of our proposed model, GAM,
comparing it to these baselines and other state-of-the-art approaches on both datasets. Additionally, we
examine the class-specific results of GAM, providing insights into how well it performs across different
genres. Finally, we discuss GAMs efficiency in terms of model parameters and FLOPs, assessing its balance
between accuracy and computational cost.

4.1 DataSets and Evaluation Metrics
We used three datasets, Trailers12K [6], LMTD-9 [7] and MovieLens37K [31]. The training was

conducted using the training sets provided by the Trailers12K dataset. In this section, we provide a brief
description of these two datasets. Additionally, we explain the evaluation metrics used in our study.

4.1.1 Trailers12k, LMTD-9 and MovieLens37K Datasets
The Trailers12k, LMTD-9 and MovieLens37K datasets are essential resources for movie trailer analysis

aimed at multi-label genre classification, as summarized in Table 1. Trailers12k [6] consists of 12,000 carefully
curated movie trailers, each linked with a YouTube trailer, a movie poster, and metadata from IMDb. With
verified title-trailer pairs, Trailers12k tags each trailer with up to ten popular genres like action, comedy,
drama, and thriller. However, genres like drama (34%) are more common, leading to some imbalance.
To address this, it provides stratified splits (70% training, 10% validation, 20% test) that maintain genre
balance. Trailers12k also includes frame-level, clip-level, and poster representations, as well as predefined
evaluation splits.

LMTD-9 [7] is a focused subset of the larger LMTD dataset, concentrating on nine main genres,
excluding fantasy. With 4007 trailers tagged with up to three genres, LMTD-9 has a similar distribution
to Trailers12k, with drama (36%) as the most common, followed by comedy (24%) and action (16%). Sci-fi
and horror are less frequent (around 5% each). LMTD-9 is divided into training, validation, and test sets,
ensuring balanced genre representation.
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Table 1: Genre-wise distribution of Trailer12K, LMTD-9, and MovieLens37K datasets across training, test, and
validation sets

Genre Trailer12K1 LMTD-92 MovieLens37K3

Train Test Valid Train Test Valid Train Test Valid
Action 2176 623 316 612 163 77 5201 1535 798

Adventure 1366 390 195 433 108 51 3465 947 513
Comedy 2936 839 419 1101 301 147 9747 2757 1363
Crime 1726 497 261 479 121 59 5012 1472 709
Drama 4177 1194 597 1439 390 192 14794 4274 2098
Fantasy 1089 314 165 0 0 0 1705 490 228
Horror 1801 515 257 323 76 32 4027 1127 587

Romance 1529 446 218 470 122 59 4622 1347 651
Sci-Fi 1068 313 154 229 56 25 2026 570 309

Thriller 3106 889 452 501 129 61 7741 2213 1121
1Available at https://richardtml.github.io/trailers12k/ (accessed on 24 March 2025);
2Available at https://github.com/jwehrmann/lmtd (accessed on 24 March 2025); 3Available
at https://grouplens.org/datasets/movielens/ (accessed on 24 March 2025).

The MovieLens37K [31] dataset is a popular choice for research on recommendation systems. It
helps analyze movie genres, user preferences, and ratings. In this study, we use a smaller version called
MovieLens37K, which focuses on 10 popular genres. This selection allows for a clear analysis of genre
classification tasks. The dataset includes 37,000 movies and is split into (70% for training, 10% for validation,
and 20% for testing), as shown in Table 1.

Trailers12k, LMTD-9 and MovieLens37K reflect genre popularity trends in movies and offer a rich basis
for developing multi-label genre classification models for movie trailers. These datasets are widely used in
research and contain movies plot text data. Trailers12K and LMTD-9 use trailers, while MovieLens37K is
common in recommendations. Together, they ensure reliable results.

4.1.2 Evaluation Metrics
Four metrics were selected based on the area under the precision-recall curve, commonly employed in

multi-label trailer classification studies. μAP is calculated by considering all labels as a binary classification
task. It gives an overall idea of the model’s performance, with more frequent classes significantly influencing
the final score. mAP involves individually computing each class’s AUC (Area Under the Curve) and then
averaging the results. It provides insights into the model’s performance across different classes, regardless of
their frequency in the dataset. wAP is similar to mAP as it calculates an AUC for each class but considers the
frequency of each class by weighting the average accordingly. This means that more frequent genres have a
higher impact on the overall performance. sAP focuses on the performance at the example level. It computes
an AUC for each example and then averages the results. Apart from these aggregated metrics, precision,
recall, and F1-score have been used to present the classwise results [55].

4.2 Baseline Methods for Comparison
For comparison, we fine-tuned seven transformer-based models: ALBERT, BERT, DistilBERT,

RoBERTa, ELECTRA, XLNet, and DeBERTa on the Trailers12K dataset. We also evaluated six traditional

https://richardtml.github.io/trailers12k/
https://github.com/jwehrmann/lmtd
https://grouplens.org/datasets/movielens/
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Machine Learning models: Decision Trees, K-Nearest Neighbors, Logistic Regression, Naive Bayes, Ran-
dom Forest, and Support Vector Machine. Research findings suggest that TF-IDF performs well in text
classification tasks [56], so we used TF-IDF to convert movie plots into numerical vectors for effective
feature extraction in ML models. Additionally, we tested traditional NLP models, including LSTM, CNN,
and a hybrid CNN-LSTM, to compare their performance with both traditional ML methods and deep
learning transformers. We replaced the softmax activation function with a sigmoid function for multi-label
prediction, allowing each genre label to be predicted independently in transformer-based models. Binary
cross-entropy loss was used for each label, with the AdamW optimizer applied for practical training and
weight decay. Dropout techniques were used to prevent overfitting, and fine-tuning was performed over
three epochs to balance learning and avoid overfitting. To harness the advantages of each model and enhance
overall classification performance.

The analysis of fine-tuned models on the Trailer12K dataset in Table 2 reveals detailed differences
in performance across various metrics, showcasing which models are better suited for this specific task.
DeBERTa consistently stands out with top scores across all primary evaluation metrics, particularly in μAP
80.57 ± 0.28 and mAP 79.35 ± 0.27. This model’s stability and accuracy indicate that it captures both broader
and specific aspects of the data well, outperforming the other models in delivering robust predictions.

Table 2: Comparison of different fine tuned and ML models over Trailer12K dataset

Models μAP mAP wAP sAP
Decision trees 65.91 ± 0.30 63.84 ± 0.28 62.92 ± 0.28 63.84 ± 0.28

KNN 59.92 ± 0.06 58.41 ± 0.10 58.17 ± 0.18 58.41 ± 0.10
Logistic regression 72.66 ± 0.03 68.87 ± 0.07 70.29 ± 0.05 68.87 ± 0.07

Naive bayes 68.26 ± 0.09 63.48 ± 0.25 65.83 ± 0.06 63.48 ± 0.25
Random forest 67.19 ± 0.19 63.37 ± 0.20 64.84 ± 0.29 63.37 ± 0.20

SVM 74.00 ± 0.04 71.98 ± 0.10 72.41 ± 0.05 71.98 ± 0.10
LSTM 75.50 ± 0.25 73.20 ± 0.30 73.50 ± 0.20 73.20 ± 0.30
CNN 76.20 ± 0.30 74.00 ± 0.35 74.30 ± 0.25 74.00 ± 0.35

Hybrid CNN-LSTM 77.80 ± 0.35 75.50 ± 0.40 75.80 ± 0.30 75.50 ± 0.40
AlBERT 78.04 ± 0.40 75.51 ± 0.29 75.72 ± 0.29 75.51 ± 0.29

BERT 79.48 ± 0.39 78.04 ± 0.41 77.88 ± 0.31 78.04 ± 0.41
DistilBERT 79.64 ± 0.40 77.35 ± 0.12 77.34 ± 0.17 77.35 ± 0.12
RoBERTa 79.93 ± 0.39 77.58 ± 0.66 77.57 ± 0.48 77.58 ± 0.66
ELECTRA 79.08 ± 0.20 76.84 ± 0.46 76.99 ± 0.27 76.84 ± 0.46

XLNet 80.15 ± 0.39 79.01 ± 0.62 78.55 ± 0.40 79.01 ± 0.62
DeBERTa 80.57 ± 0.28 79.35 ± 0.27 79.12 ± 0.23 79.35 ± 0.27

Note: Bold values indicate the best performance for each metric.

XLNet also performs impressively, with μAP and mAP values closely following DeBERTa’s scores
(80.15 ± 0.39 and 79.01 ± 0.62, respectively). Although slightly behind, XLNet still shows strong generaliza-
tion across the dataset and maintains high consistency, as evidenced by its competitive scores in the wAP
and sAP metrics. This positions XLNet as a reliable model choice, though slightly less precise than DeBERTa
in certain areas.

BERT, RoBERTa, and DistilBERT fall into a middle-performance range. RoBERTa (μAP = 79.93 ± 0.39,
mAP = 77.58 ± 0.66) slightly edges out BERT and DistilBERT, particularly in wAP and sAP, suggesting it can
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effectively capture semantic relationships. BERT’s overall performance is relatively close, achieving a μAP of
79.48 ± 0.39 and a mAP of 78.04 ± 0.41. DistilBERT, as a lighter version of BERT, slightly underperforms its
larger counterpart but shows acceptable results, which could make it a practical choice when computational
efficiency is prioritized over marginally higher accuracy.

ELECTRA and AlBERT score the lowest among the tested transformer models, with AlBERT achieving
the lowest mAP at 75.51 ± 0.29. These results suggest that both models may struggle to capture the nuances
within the Trailer12K dataset as effectively as other architectures. ELECTRA, although not the lowest, still
underperforms compared to BERT-derived models, which may indicate less compatibility with this dataset’s
specific characteristics.

As expected, the traditional machine learning models generally perform less than the transformer-based
models. SVM achieves the highest accuracy among these models with a μAP of 74.00 ± 0.04, while KNN
shows the lowest with a μAP of 59.92 ± 0.06. This difference highlights the advantages of transformer models
in capturing complex relationships in textual data for movie genre classification.

We also tested traditional NLP models like LSTM, CNN, and a hybrid CNN-LSTM. These models are
good at finding patterns in sequences and local text features. However, they struggle to understand long-
range connections and deep meanings in movie plots. As shown in Table 2, transformer models performed
better than these traditional methods.

In summary, the analysis highlights DeBERTa as the most effective model on the Trailer12K dataset,
followed closely by XLNet, making both strong candidates for tasks requiring nuanced understanding.
RoBERTa, BERT, and DistilBERT offer moderate performance, while AlBERT and ELECTRA appear less
suited to this dataset’s requirements. This comparative performance insight could guide model selection for
similar datasets or tasks.

4.2.1 Transformer Models Combination with Hierarchical Attention Network
The results in Table 3 from combining the attention network with various transformer models reveal

clear distinctions in model performance for genre classification tasks. DeBERTa+Attention emerges as the
top-performing combination, significantly outperforming all other pairings across each evaluation metric.
With a μAP of 83.63 ± 0.29, mAP of 82.16 ± 0.47, and similarly high scores in wAP and sAP, this com-
bination demonstrates that DeBERTa’s rich contextual understanding synergizes well with the hierarchical
attention mechanism, capturing nuanced genre features effectively. The strong performance suggests that the
DeBERTa+Attention pairing is highly adept at identifying both broad and subtle genre-specific patterns.

Table 3: Results of transformer models with the attention network

Models μAP mAP wAP sAP
ALBERT+Attention 75.47 ± 1.26 72.87 ± 1.42 73.26 ± 1.25 72.87 ± 1.42

BERT+Attention 77.72 ± 0.12 75.18 ± 0.60 75.38 ± 0.53 75.18 ± 0.60
DistilBERT+Attention 77.22 ± 0.26 74.76 ± 0.60 75.11 ± 0.39 74.76 ± 0.60
RoBERTa+Attention 78.17 ± 0.18 76.02 ± 0.19 76.15 ± 0.23 76.02 ± 0.19
ELECTRA+Attention 77.43 ± 0.38 75.68 ± 0.80 75.65 ± 0.59 75.68 ± 0.80

XLNet+Attention 77.63 ± 0.80 75.25 ± 0.88 75.14 ± 0.85 75.25 ± 0.88
DeBERTa+Attention 83.63 ± 0.29 82.16 ± 0.47 81.73 ± 0.26 82.16 ± 0.47

Note: Bold values indicate the best performance for each metric.
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Among the other combinations, RoBERTa+Attention achieves the second-best results, with a μAP
of 78.17 ± 0.18 and mAP of 76.02 ± 0.19. While this combination falls short of the DeBERTa+Attention’s
scores, the improvement over other models like BERT+Attention and DistilBERT+Attention suggests that
RoBERTa’s robust pre-training allows it to leverage the hierarchical structure of the attention network,
making it a viable option for tasks that don’t require the highest precision of DeBERTa+Attention but still
benefit from a balanced performance.

The BERT+Attention and DistilBERT+Attention combinations show moderate success, with μAP
values of 77.72 ± 0.12 and 77.22 ± 0.26, respectively. BERT+Attention outperforms DistilBERT+Attention
slightly across all metrics, indicating that while the distilled, lighter version of BERT offers computational
advantages, it sacrifices some accuracy when used with attention network. This performance gap highlights
that the BERT model’s full capacity contributes more effectively to the hierarchical attention structure for
this classification task.

The results of the ELECTRA+Attention and XLNet+Attention combinations indicate lower efficacy in
capturing genre-specific information than other models. ELECTRA+Attention achieves a μAP of 77.43 ±
0.38, and XLNet+Attention scores 77.63 ± 0.80, with both combinations showing higher variability in their
performance (as indicated by more significant standard deviations). This may suggest that while ELECTRA
and XLNet are competitive, they might lack the specific attributes necessary to fully exploit the attention
mechanism, making them less consistent and precise for this genre classification task.

Finally, the ALBERT+Attention combination records the lowest scores across all metrics, with a μAP
of 75.47 ± 1.26 and mAP of 72.87 ± 1.42. ALBERT’s smaller architecture, while efficient, appears to struggle
in supporting the hierarchical structure of the network, potentially due to its limitations in representing
complex genre-related subtleties compared to larger models like DeBERTa or RoBERTa.

The analysis shows the DeBERTa+Attention combination as the most effective pairing for genre
classification, suggesting that DeBERTa’s contextual depth works exceptionally well with a hierarchical
attention structure. RoBERTa also shows promising results, while BERT and DistilBERT provide moderate
performance. ELECTRA, XLNet, and especially ALBERT exhibit limitations when paired with an attention
network, indicating that their architectures may not be as compatible with hierarchical attention for this
task. These insights can inform model selection for applications with similar hierarchical attention needs in
genre-based classification.

4.2.2 Ablation Study of GAM
To see how hierarchical attention and DeBERTa affect GAM, we did an ablation study in Table 4. We

tested three versions of the model: (1) GAM with both DeBERTa and hierarchical attention, (2) GAM with
only DeBERTa and no hierarchical attention, and (3) GAM with hierarchical attention but without DeBERTa.
The results in Table 4 show that both components help improve performance. The full GAM model, with
both DeBERTa and hierarchical attention, gave the best results with a μAP of 83.63%. Removing hierarchical
attention dropped the score to 80.57%, showing that it helps capture important genre details. When we used
hierarchical attention without DeBERTa, the score fell even more to 77.00% μAP, proving that DeBERTa plays
a big role in improving accuracy. These results show that hierarchical attention makes genre classification
better, and DeBERTa makes the model even stronger.
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Table 4: Impact of hierarchical attention and DeBERTa in GAM performance comparison

Model Variant μAP mAP wAP sAP
GAM (DeBERTa+Attention) 83.63 ± 0.29 82.16 ± 0.47 81.73 ± 0.26 82.16 ± 0.47

GAM only with DeBERTa 80.57 ± 0.28 79.35 ± 0.27 79.12 ± 0.23 79.35 ± 0.27
GAM only with Hierarchical Attention 77.00 ± 0.35 75.50 ± 0.40 75.30 ± 0.38 75.50 ± 0.40

Note: Bold values indicate the best performance for each metric.

4.3 Interpretability through Attention Weights in Movie Genre Classification
To showcase the explainability of Genre Attention Model (GAM), which is a combination of

DeBERTa+Attention, we visualize the attention weights for a movie plot of “Committed (2000)”. The chosen
plot corresponds to a movie classified under the Romance and Drama genres.

4.3.1 Movie Plot Example
“A young woman goes in search of her midlife crisis suffering husband who left her. The plot of

‘Committed’ is centred around the story of an intense young woman, played by Graham, whose husband
leaves her in order to find himself. She then follows him cross-country and when she catches up with him,
complications arise.”

4.3.2 Visualization of Attention Weights
The hierarchical attention mechanism and DeBERTa’s self-attention layers identify the keywords and

phrases in the plot that contribute most to the genre classification. The attention weights with threshold of
0.5 for this plot are visualized in Fig. 2, highlighting the attention Weights of words in sentences with level
of importance.

Figure 2: Visualization of GAM model word-level attention weights

4.3.3 Word-Level Attention Weights Table
The attention weights for key words in the movie plot, highlighting their significance for genre classi-

fication, are shown in Table 5. These words correspond to key thematic elements, with their interpretations
provided there.
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Table 5: Word-level attention weights and descriptions for Movie “Committed (2000)” plot classification

Word Attention weight Description
Young woman 0.45 Indicates a central character, pivotal for the Drama

genre, as it sets up the emotional narrative.
Husband leaves her 0.60 Captures the relational conflict, aligning strongly

with both Romance and Drama.
Follows him cross-country 0.55 Suggests themes of pursuit and personal growth,

central to Romance.
Complications arise 0.50 Adds narrative tension, a hallmark of Drama.

4.3.4 Sentence-Level Attention Weight Table
Table 6 shows the average attention weight for each sentence in the movie plot, highlighting the

sentences most influential for the genre classification:

Table 6: Sentence-level attention weights for movie “Committed (2000)” plot classification

Sentence Attention weight
A young woman goes in search of her midlife crisis

suffering husband who left her.
0.45

The plot of ‘Committed’ is centered around the story of
an intense young woman, played by Graham, whose

husband leaves her in order to find himself.

0.60

She then follows him cross-country and when she
catches up with him, complications arise.

0.55

4.3.5 Analysis of Genre Prediction
The model predicted the genres Romance and Drama with high probabilities of 0.87 and 0.91,

respectively. The attention mechanism effectively highlighted key elements that distinguish these genres.
Words such as husband leaves her and follows him received high attention weights for Romance, capturing
themes of love and emotional pursuit. Similarly, terms like complications arise and intense young woman
strongly aligned with Drama, emphasizing conflict and emotional depth inherent to the genre.

4.4 Comparison of GAM with State-of-the-Art Methods on Trailers12K, LMTD9 and MovieLens37K
Datasets
In this section, we evaluate the proposed GAM model, which combines DeBERTA+Attention, against

state-of-the-art methods on the Trailer12K, LMTD-9 and MovieLens37K datasets.
Trailer12K dataset is divided into three splits, each with different training and test sets. Our comparison,

shown in Fig. 3, highlights how GAM performs alongside other notable models like CTT-MMC-A [32],
fastVideo [54], TimeSformer [35], and the DIViTA [6] models.
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Figure 3: Comparison of GAM with state-of-the-art methods on Trailer12K dataset

GAM scores 83.63% ± 0.29 for μAP, along with 82.16% ± 0.47 for mAP, 81.73% ± 0.26 for wAP, and
82.16% ± 0.47 for sAP. This gives GAM a strong lead over the next best model, DIViTA Swin-3D, which has
a μAP of 75.57% ± 0.66 and an mAP of 70.48% ± 0.41. The over 8% difference in μAP clearly shows GAM’s
ability to capture and generalize the unique features of different genres in trailers.

When we look at the other models, we see that CTT-MMC-A, fastVideo, and TimeSformer don’t
quite measure up, with μAP scores of 69.27% ± 2.87, 68.21% ± 0.73, and 64.98% ± 1.16, respectively. GAM’s
strong performance across all metrics showcases its effectiveness and points to its potential for real-world
applications where accurate genre classification is vital.

Next, look at the LMTD-9 dataset, which presents a slightly different mix of nine genres. The trained
model on the Trailer12K dataset was tested on the LMTD-9 test set, which represents a 20% split of the
dataset. Here, GAM continues to impress. According to Fig. 4, it achieves a μAP of 83.32% ± 0.66, mAP
of 82.71% ± 0.87, wAP of 81.66% ± 0.78, and sAP of 82.71% ± 0.87. This consistency between both datasets
shows that GAM is adaptable and reliable, making it a solid choice for various trailer classification tasks.

Figure 4: Comparison of GAM with state-of-the-art methods on LMTD9 test dataset
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The Trailer12K dataset includes ten genres, while LMTD-9 has nine, with the Fantasy genre excluded
from LMTD-9. Regarding competition, ILDNet [57] stands out as the closest contender with a μAP of 81%,
but it falls short in providing detailed metrics for a comprehensive comparison. Other models, such as CTT-
MMC-TN [32] and AFAnet+ASM [36], score 74% and 75%, respectively, but they don’t match the depth and
performance that GAM offers. Additionally, VGG16+SVM combined with XGBoost [58] reports a mAP of
73%, though the lack of a μAP score makes it hard to gauge its full effectiveness. C3DLSTM+VRFN [33]
achieves a μAP of 74% and an mAP of 64%, showing some capability but also leaving a noticeable gap in its
performance across metrics. Meanwhile, LOVA [14] posts an mAP of 73% and a wAP of 77%, but it lacks
data for μAP and sAP, which raises concerns about its ability to classify genres accurately.

The results for the MovieLens37K dataset in Fig. 5 show that GAM outperforms all other models in
genre classification. It achieves the highest scores across all metrics, with an μAP of 83%, mAP of 80%, wAP
of 80%, and sAP of 80%, demonstrating its strong ability to classify genres accurately. In comparison, models
like SVM+GD [59] and Bernoulli [60] perform less score but Bi-LSTM+RNN+LR [48] perform effectively
high score near to 70% in μAP. DenseNet [61] and ResNet34 [12] also show lower performance, especially
with DenseNet achieving just 56% for mAP.

Figure 5: Comparison of GAM with state-of-the-art methods on MovieLens37K test dataset

To sum it all up, GAM stands out as a top performer in the Trailer12K, LMTD-9 and MovieLens37K
datasets, showcasing its strengths in multi-label genre classification.

4.4.1 GAM Class wise Results on Trailer12k, LMTD-9 and MovieLens37K
The class-wise performance of GAM on the Trailer12K, LMTD9, and MovieLens37K datasets reveals

insightful trends and differences across genres, as shown in Fig. 6. This analysis highlights GAM’s strengths
and identifies areas for improvement, focusing on precision, recall, and F1 scores for each genre across all
three datasets.
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Figure 6: GAM class-wise results for Trailer12K, LMTD9 and MovieLens datasets

GAM performs exceptionally well in identifying genres like Comedy and Drama. For Comedy, the
MovieLens37K dataset shows further improvement, with an F1-score of 0.90, surpassing both Trailer12K
(0.80) and LMTD9 (0.84). This indicates that MovieLens37K provides rich, diverse samples for comedic
content, aiding better recognition. Drama achieves the highest F1-score on MovieLens37K at 0.96, compared
to 0.81 on Trailer12K and 0.88 on LMTD9, reflecting GAM’s robust ability to classify this genre consistently
across datasets.

Action exhibits a notable improvement in recall on both LMTD9 (0.91) and MovieLens37K (0.86)
compared to Trailer12K (0.66). However, the precision on MovieLens37K (0.77) is slightly lower than
Trailer12K (0.87), resulting in a balanced F1-score of 0.81. Adventure also sees better performance on
MovieLens37K, with an F1-score of 0.66, slightly surpassing Trailer12K (0.64) but lower than LMTD9 (0.76).

Genres like Romance and Fantasy remain challenging for GAM across all datasets. Romance achieves
a consistent F1-score of 0.74 on MovieLens37K, a slight improvement over LMTD9 (0.67) but lower than
Trailer12K (0.64). Fantasy is absent in LMTD9, but on MovieLens37K, it shows a balanced F1-score of 0.66,
comparable to Trailer12K (0.61).

For Horror, MovieLens37K exhibits the best recall (0.98) among the three datasets, resulting in an F1-
score of 0.90, a significant improvement from Trailer12K (0.83) and LMTD9 (0.77). Similarly, Sci-Fi shows
its strongest performance on MovieLens37K with an F1-score of 0.88, far better than LMTD9 (0.71) and
Trailer12K (0.80).

Thriller and Crime exhibit mixed trends. On MovieLens37K, Thriller achieves a balanced F1-score
of 0.78, higher than Trailer12K (0.79) and LMTD9 (0.62). Crime remains consistent, with MovieLens37K
scoring an F1-score of 0.74, slightly higher than Trailer12K (0.75) and LMTD9 (0.72).
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In summary, GAM’s performance varies across genres and datasets, with MovieLens37K showing the
best results for genres like Drama, Horror, and Sci-Fi. These findings emphasize the importance of dataset
diversity and balanced splits in improving model performance for multi-label genre classification tasks.
GAM performs well in common genres like Drama and Comedy but struggles with rare ones like Sci-Fi and
Horror due to class imbalance. Since movies have multiple genres, oversampling can’t fully fix this. Advanced
NLP and model improvements can help. Genre overlap adds complexity, but GAM’s attention mechanism
improves accuracy by focusing on key narrative elements.

4.5 Perfomance Comparison Based on Parameters and FLOPs
Table 7 presents a performance comparison between the GAM and several state-of-the-art models in

terms of two key metrics: the number of parameters (in millions) and the floating-point operations per
second (FLOPS) measured in gigaflops.

Table 7: Performance comparison of GAM with state-of-the-art methods

Model Parameters (M) FLOPS (G)
ALBERT 11.68 28.05

BERT 109.48 27.33
DistilBERT 66.36 13.66
RoBERTa 124.64 26.65
ELECTRA 108.89 27.33

XLNet 116.72 27.96
DeBERTa 138.60 26.66

ALBERT+Attention 12.37 9.00
BERT+Attention 110.17 10.50

DistilBERT+Attention 67.05 8.82
RoBERTa+Attention 125.34 11.50
ELECTRA+Attention 109.58 10.00

XLNet+Attention 117.41 12.00
Bi-LSTM [48] 18.00 7.80

Universal Sentence Encoder (USE) [19] 60.00 12.50
DIViTA Swin-2D [6] 27.90 114.00
DIViTA Swin-3D [6] 27.90 1590.00

GAM 139.29 6.10

The table lists various models, including ALBERT, BERT, DistilBERT, RoBERTa, ELECTRA, XLNet,
and DeBERTa, alongside their corresponding parameters and FLOPS. For instance, BERT, with a parameter
count of 109.48 million, exhibits a FLOPS value of 27.33 G. In contrast, ALBERT, which is significantly
smaller at 11.68 million parameters, shows a slightly higher FLOPS of 28.05 G, indicating its efficiency despite
fewer parameters.

Furthermore, the table highlights the performance of GAM when the attention mechanism is combined
with these architectures. For example, the ALBERT+Attention combination features 12.37 million parameters
and 9.00 G of FLOPS, demonstrating a reduction in computational load compared to ALBERT alone.
Similar patterns are observed with other attention network-enhanced models, such as BERT+Attention and
RoBERTa+Attention, which show lower FLOPS values (10.50 and 11.50 G, respectively) despite maintaining
a high parameter count.
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Moreover, Bi-LSTM (18 M parameters, 7.80 G FLOPS) improves sequence learning with moderate cost,
while Universal Sentence Encoder (USE) (60 M parameters, 12.50 G FLOPS) excels in semantic similarity
but requires higher computation.

Additionally, the table includes the DIViTA [6] models, specifically the Swin-2D and Swin-3D archi-
tectures. These models demonstrate significantly higher FLOPS, particularly the Swin-3D model, which
achieves an impressive 1590.00 G but also has a larger parameter count of 27.90 million.

Finally, the performance of GAM is highlighted in bold, showcasing a parameter count of 139.29 million
and a notably low FLOPS of 6.10 G, indicating a trade-off between model size and computational efficiency.
This comparative analysis emphasizes these models’ varying efficiencies and capabilities, shedding light on
the potential advantages of integrating GAM with existing architectures.

4.6 True Labels vs. Predicted Labels Analysis for Trailer12K, LMTD-9 and MovieLens37K
The co-occurrence matrices for Trailer12K, LMTD9, and MovieLens37K present a comparative analysis

of predicted and true labels across various movie genres, revealing insights into classification perfor-
mance. These tables provide an evaluation of the model’s performance in the multi-label, multi-class
setting. Tables 8–10 show the co-occurrence matrices for the Trailer12K, LMTD9, and MovieLens37K
datasets, respectively. The tables display the model predictions, with true labels on the vertical axis and
predicted labels on the horizontal axis. Diagonal values indicate correct predictions, while off-diagonal values
highlight misclassifications.

Table 8: Co-occurrence matrix for Trailer12K

True labels vs. Predicted labels

Action Adventure Comedy Crime Drama Fantasy Horror Romance Sci-Fi Thriller
Action 415 145 50 200 200 57 78 17 129 333

Adventure 181 222 96 21 96 89 32 17 86 69
Comedy 135 113 530 105 340 55 77 166 60 111
Crime 169 18 48 317 306 2 40 8 14 351
Drama 203 91 318 263 830 41 121 191 79 431
Fantasy 103 131 89 9 78 125 65 33 41 56
Horror 68 29 51 28 94 25 368 5 82 319

Romance 31 30 221 38 304 22 18 199 16 53
Sci-Fi 147 83 38 6 60 26 82 6 211 139

Thriller 250 54 58 288 390 20 262 26 125 651

Table 9: Co-occurrence matrix for LMTD9

True labels vs. Predicted labels

Action Adventure Comedy Crime Drama Horror Romance Sci-Fi Thriller
Action 120 31 22 48 28 13 3 35 78
Adventure 58 62 34 4 13 6 2 26 18
Comedy 38 22 221 34 103 27 68 13 46
Crime 53 0 19 80 44 5 3 3 81
Drama 59 18 115 71 283 16 64 9 110

(Continued)
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Table 9 (continued)

True labels vs. Predicted labels

Action Adventure Comedy Crime Drama Horror Romance Sci-Fi Thriller
Horror 8 3 8 0 12 60 3 12 37
Romance 4 1 79 8 69 1 68 1 10
Sci-Fi 17 6 5 2 10 20 1 41 17
Thriller 36 1 7 38 46 34 5 13 93

Table 10: Co-occurrence matrix for MovieLens37K

True labels vs. Predicted labels

Action Adventure Comedy Crime Drama Fantasy Horror Romance Sci-Fi Thriller
Action 4301 1454 1534 2248 2606 443 697 276 966 2571

Adventure 1749 1932 997 382 1190 571 279 195 583 722
Comedy 1406 1433 9387 1861 5500 682 982 2781 588 1437
Crime 1254 140 941 3090 2506 32 480 176 68 2516
Drama 2910 2045 5571 3931 15675 932 1603 4685 698 5282
Fantasy 641 866 757 60 686 1090 501 246 341 365
Horror 774 289 969 454 1013 455 3641 87 733 2995

Romance 534 522 3319 669 4540 371 231 3559 151 857
Sci-Fi 1365 785 855 105 639 366 880 120 2017 1157

Thriller 2148 419 1006 3002 3595 250 2346 332 750 5380

From the co-occurrence tables, varying performance between different genres can be observed across
the three datasets. For instance, in Table 8, the model exhibits lower accuracy for genres like “Sci-Fi”
and “Romance” in the Trailer12K dataset. Similarly, in Table 9, genres like “Action” and “Adventure”
show relatively lower accuracy in the LMTD9 dataset. This performance variation can be attributed to
several factors, including the imbalanced distribution of samples across different genres in the datasets.
Additionally, the semantic and thematic similarities between specific genres, such as “Sci-Fi” and “Action,”
or “Fantasy” and “Adventure,” make it challenging for the model to differentiate between them accurately.
Interestingly, Table 10 shows a generally higher accuracy across most genres for the MovieLens37K dataset,
suggesting the potential impact of a larger dataset on model performance.

In the Trailer12K (Table 8), the diagonal values represent correctly predicted labels, with “Drama”
showing the highest accuracy (830) followed by “Comedy” (530) and “Thriller” (651). The off-diagonal
values illustrate misclassifications, notably high for “Action” (415), indicating some overlap between genres,
particularly with “Thriller” (333) and “Drama” (200). This overlap is expected, as action movies often
incorporate elements of thrill and drama. From the table, the model’s difficulty in distinguishing genres like
“Sci-Fi” and “Romance” is evident, potentially reflecting the imbalance in data and the semantic overlap
between similar genres. For example, a movie labelled as “Action” might also belong to genres like “Thriller”
or “Adventure.” If the model predicts “Thriller” but not “Action,” the co-occurrence matrix will record this as
a misclassification for “Action,” highlighting the model’s potential confusion between the two genres.
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For example, a movie labelled as “Action” might also belong to genres like “Thriller” or “Adventure”. If
the model predicts “Thriller” but not “Action”, the co-occurrence matrix will record this as a misclassification
for “Action”, highlighting the model potential confusion between the two genres.

In contrast, the LMTD9 (Table 9) exhibits a lower overall predictive accuracy. The highest diagonal value
is for “Comedy” (221), significantly lower than in Trailer12K. Other genres, like “Drama” (283), also reflect
improved prediction compared to others, but overall misclassifications are more pronounced. For instance,
“Action” (120) and “Adventure” (62) show much lower correct predictions and higher misclassifications
across various genres, with notable confusion in categories such as “Crime” (81) and “Thriller” (93). This
lower accuracy, particularly for “Action” and “Adventure,” may be attributed to the imbalanced data and the
inherent difficulty in distinguishing between genres with thematic similarities, such as “Crime” and “Thriller.”

Finally, Table 10 presents the co-occurrence matrix for the MovieLens37K dataset. This table shows a
generally higher accuracy across most genres compared to the Trailer12K and LMTD9 datasets. “Drama”
exhibits the highest number of correct predictions (15675), followed by “Comedy” (9387) and “Action”
(4301). However, similar patterns of misclassification persist, particularly between genres with close the-
matic relationships. For example, there’s notable confusion between “Action” and “Thriller,” “Comedy” and
“Romance,” and “Sci-Fi” and “Thriller.” This highlights the ongoing challenge of accurately classifying movies
with overlapping genre elements, even with a larger and potentially more balanced dataset.

5 Discussion and Limitations
GAM demonstrates significant advancements in text-based multi-label genre classification by com-

bining the DeBERTa language model with hierarchical attention mechanisms. GAM’s text-only method is
great for streaming platforms. It improves recommendations and tagging, even for released and unreleased
movies with little or no audiovisual data. It also runs efficiently in real-time for audience targeting and
content organization. Platforms like Netflix and Amazon Prime can use it to sort movies by genre using
plot summaries. GAM handles overlapping genres better than traditional models by focusing on key
narrative elements. It links chase and explosion to Action, while suspense signals Thriller. Unlike fixed-rule
models, GAM adapts to context, improving accuracy and clarity. This approach capitalizes on the textual
richness of plot descriptions, achieving high classification accuracy on both the Trailers12K, LMTD-9 and
MovieLens37K datasets. GAM’s performance, particularly its μAP scores of 83.63% on Trailers12K, 83.32%
on LMTD-9 Tables and 83.34% on MovieLens37K, outperforms current multimodal state-of-the-art models.
Notably, GAM’s success emphasizes the potential for sophisticated text-only models to serve as reliable tools
for genre classification, especially when computational or data limitations make multimodal approaches
less feasible.

The model’s class-wise results (Fig. 6) reveal GAM’s ability to identify key genres effectively, with
high F1 scores in Drama, Comedy, and Thriller. This demonstrates that hierarchical attention can capture
genre-defining words and phrases within plot summaries, giving GAM a detailed understanding of diverse
narratives. Moreover, GAM’s efficiency in terms of computational load (Table 7) requiring just 6.10 GFLOPS
compared to models like DIViTA Swin-3D-reinforces its suitability for real-world applications, where
efficient processing is essential. By prioritizing salient information in plot descriptions, GAM offers a
precise and computationally viable solution for genre classification, even for large-scale streaming and
recommendation systems.

Despite these strengths, GAM has limitations. Its reliance on plot summaries makes it less effective for
genres that heavily rely on audio-visual cues, such as Action and Horror. Text-based methods miss key details
like visuals, sounds, and music, which multimodal models use for better accuracy. Additionally, GAM’s
independence in handling each genre label might miss co-occurrences and interdependencies between
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genres, as shown by the co-occurrence matrices Tables 8–10, where misclassifications are often in closely
related genres. Addressing these aspects through multimodal data integration or inter-genre dependency
modeling could further refine GAM’s classification accuracy and broaden its applicability across various
content types.

6 Conclusions
This paper presented the Genre Attention Model (GAM), a novel architecture designed to enhance

multi label movie genre classification by integrating hierarchical attention mechanisms with the DeBERTa
language model. GAM addresses the challenge of accurately classifying movies into multiple genres using
only plot descriptions, focusing on capturing detailed relationships within textual data that differentiate
genres. By selectively assigning importance to words and sentences, GAM effectively extracts narrative
elements most indicative of specific genres, overcoming limitations in previous methods that often rely on
multimodal data and underutilize the semantic richness of textual content. Empirical evaluations on three
benchmark datasets Trailers12K, LMTD9, and MovieLens37K demonstrated GAM’s superior performance,
achieving micro average precision scores of 83.63%, 83.32%, and 83.34%, respectively, surpassing state of the
art models. These results highlight GAM’s capability to deliver precise genre classification from text alone,
streamlining processes by reducing reliance on resource-intensive multimodal data. Its success in narrative-
driven genres such as Drama and Romance further underscores its effectiveness in extracting contextually
rich information from plot summaries, making it a practical tool for streaming recommendations and movie
tagging, especially when audiovisual data is unavailable or not yet released.

Detailed analysis revealed GAM robustness across diverse genres, achieving high F1 scores in narrative-
driven categories but showing limitations in audio visually oriented genres like Action and Horror. This
suggests that while GAM hierarchical attention mechanism excels at text-based genre nuances, some genres
may benefit from multimodal inputs that capture non-textual cues, such as visual or auditory elements.
Future research could explore integrating additional text-based modalities, such as movie scripts or viewer
reviews, to enhance the model’s understanding of genre-defining details. Furthermore, incorporating visual
and audio features from trailers and posters could improve classification in genres that rely on non-narrative
cues. While GAM was designed for movie genre classification, its architecture is adaptable to other domains,
such as book genres, news articles, and streaming media recommendations. Refining and expanding the
GAM framework could lead to more versatile, domain-adaptable genre classification solutions, leveraging
the strengths of hierarchical attention and advanced language modelling.
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