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ABSTRACT: In recent years, advancements in autonomous vehicle technology have accelerated, promising safer and
more efficient transportation systems. However, achieving fully autonomous driving in challenging weather condi-
tions, particularly in snowy environments, remains a challenge. Snow-covered roads introduce unpredictable surface
conditions, occlusions, and reduced visibility, that require robust and adaptive path detection algorithms. This paper
presents an enhanced road detection framework for snowy environments, leveraging Simple Framework for Contrastive
Learning of Visual Representations (SimCLR) for Self-Supervised pretraining, hyperparameter optimization, and
uncertainty-aware object detection to improve the performance of You Only Look Once version 8 (YOLOv8). The model
is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø, Norway, which covers a range
of snow textures, illumination conditions, and road geometries. The proposed framework achieves scores in terms of
mAP@50 equal to 99% and mAP@50–95 equal to 97%, demonstrating the effectiveness of YOLOv8 for real-time road
detection in extreme winter conditions. The findings contribute to the safe and reliable deployment of autonomous
vehicles in Arctic environments, enabling robust decision-making in hazardous weather conditions. This research lays
the groundwork for more resilient perception models in self-driving systems, paving the way for the future development
of intelligent and adaptive transportation networks.

KEYWORDS: Autonomous vehicles; self-driving vehicles; road detection; snow-covered roads; YOLOv8; road detec-
tion using segmentation

1 Introduction
Adverse weather conditions, such as smoke, fog, rain, or snow, can reduce driver’s visibility and increase

the likelihood of an accident. In the United States (US), 1.5 million people are killed, and 800,000 are injured
in automobile accidents each year [1]. Snow-covered environments present unique challenges that differ from
those observed in clear-weather environments. The concept of self-driving vehicles was first proposed in
the 1920s and has continued to evolve [2]. Self-driving vehicles play a crucial role in our daily lives, with
applications ranging from exploration to transportation and logistics. Many research and vehicle manu-
facturing companies, such as Google, Audi, Bayerische Motoren Werke (BMW), Ford, Honda, Mercedes,
Toyota, and Tesla, have invested heavily in developing self-driving automobiles [3]. Recently, several advances
in self-driving vehicles have marked significant milestones, enabling complete autonomy, particularly in
challenging urban environments. These achievements have been made possible by advancements in sensor
technology, including Light Detection and Ranging (LiDAR), Radio Detection and Ranging (RADAR), high-
speed cameras, and accurate positioning systems [2]. Snow’s reflective and absorptive properties can impact
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sensors like LiDAR, RADAR, and cameras, which are crucial for autonomous vehicle perception. Light
scattering, reduced visibility, and variations in surface texture due to snow accumulation hinder accurate
object detection and tracking, making it difficult for vehicles to discern obstacles, road boundaries, and other
critical elements [4].

The effectiveness of lane identification and tracking depends on the state of adequately maintained
roads and their distinct lane markings. Due to this, smart cities are essential in the current autonomous car
research area. A smart city is often associated with ecologically conscious or sustainable urban environments,
aiming to improve public services while reducing costs [5]. The core goal of smart cities is to balance
technological innovation and the economic, social, and environmental challenges that cities will face in
the future. Smart cities that adopt the tenets of the circular economy are striking this balance, requiring
a deeper collaboration between the public and the government [6]. The movement of commodities and
resources in response to people’s changing needs will vary significantly in the context of smart cities, altering
the fundamental layout of metropolitan regions. Specifically, top automakers such as Audi and Tesla have
already released autonomous cars for private use, indicating a potential social impact when integrated into
city transportation networks [3]. This progression can significantly alter cities and impact long-term urban
planning, particularly when combined with the growth of smart cities and the integration of connected and
autonomous vehicles.

The key components of self-driving car technology include environment perception, path planning, and
intelligent control systems [5]. Object detection plays a vital role in developing smart cities and autonomous
ecosystems. It provides valuable and precise traffic information for various applications, including traffic
image analysis and flow control. This data includes vehicle counts, trajectory, tracking, flow, classification,
density, velocity, lane changes, and license plate recognition [6]. It is also helpful in detecting other road
assets, including traffic lights, vehicle types, persons, and natural elements. The perception module is crucial
for accurately understanding the surroundings and ensuring the driver’s safety. This is achieved by fusing
multiple sensors, including cameras, LiDAR, RADAR, Global Positioning System (GPS), Inertial Measure-
ment Unit (IMU), and sonar, to determine the vehicle’s position in real time. In a typical environment, just
a few sensors are sufficient for accurate object recognition and navigation. However, during challenging
environments such as fog, rain, or snow, the accuracy and performance of the sensors become compromised,
which can lead to the failure of some sensors [7]. Perception methods help autonomous cars and drivers in
such challenging situations.

Additionally, the interaction between snowy ground and autonomous vehicles requires path planning
and control algorithms. Vehicle dynamics, unpredictable road contact, and changes in tire grip can all
necessitate an effective decision-making process [8]. Some complex methods eliminate the need to maintain
the specific trajectory while ensuring passenger safety and effective navigation.

1.1 Motivation
Nowadays, fully automated vehicles are in the prototype phase for some commercial businesses,

particularly logistics and courier companies. A notable example is Amazon delivery. This is not only an
optimal opportunity for a company in terms of automation, but it also allow cost savings, increased safety,
and reduced human intervention, ultimately providing high customer value. In the future, companies will
entirely rely on such technologies. To achieve this, the structure and architecture of the technology should be
fully robust, reliable, agile, and foolproof, enabling it to cope with any hazardous or harsh conditions without
loss or with minimal loss.
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1.2 Problem Statement
The snow-covered highways and severe weather conditions make it difficult to distinguish between

drivable areas and obstructions such as sidewalks, curbs, and traffic signs. Ensuring the safe operation
of autonomous vehicles in adverse environments, particularly in Arctic or snowy conditions, remains a
significant challenge. Snow introduces complex issues that can impair an autonomous vehicle’s percep-
tion and decision-making processes, demanding more accurate path detection and navigation systems.
Recent advancements in artificial intelligence, particularly deep learning-based computer vision methods,
have revolutionized perception systems through techniques like semantic segmentation. However, the
performance of these models heavily depends on the quality and diversity of the training datasets. While
several public datasets exist for semantic segmentation, most of which are captured under clear weather
conditions with visible roads, traffic signs and obstacles [9]. This research aims to improve segmentation
performance in heavy snow driving scenarios by applying semantic segmentation techniques tailored to
challenging environments.

1.3 Our Contribution
This study introduces a novel framework that integrates SimCLR, which reduces reliance on annotated

data, and Uncertainty Estimation (Monte Carlo Dropout and Bayesian YOLO) to quantify prediction
confidence in extreme snowy environments. An extensive hyperparameter tuning exercise is also performed
on YOLOv8 to optimize batch sizes and training epochs for the challenging Arctic Road conditions. The
following are our main contributions.

• A custom dataset is build comprising 20,000 images from Tromsø, Norway, covers a range of snow
textures, lighting conditions, and road geometries. This dataset enhances the generalization ability of
road detection models in Arctic environments.

• A SimCLR-based contrastive learning approach is proposed to pre-train YOLOv8’s backbone on unla-
beled road images. This approach would reduce reliance on manually annotated data while significantly
improving feature extraction in snowy conditions.

• An Integration of Monte Carlo Dropout and Bayesian YOLO to quantify prediction confidence, which
ensure a more reliable real-time detection under challenging visibility conditions.

• Extensive hyperparameter tuning, which includes the adjustments of batch size and epochs, enhances
the efficiency of YOLOv8. An mAP@50 score of 0.99 and an mAP@50–95 score of 0.97 are achieved
using the proposed model on this custom-built dataset, and they outperform the state-of-the-art model.

These contributions address critical limitations in existing YOLO-based models, enhancing detection
accuracy while improving generalization across diverse snow textures and illumination conditions.

2 Related Work
Advances in driver assistance systems often precede the growth of autonomous driving systems.

Different algorithms, such as fusion algorithms, neural networks, and particle filters, have been employed
to enhance the navigation systems of autonomous vehicles [10]. Tesla Motors has integrated autopilot
technology into its electric cars, which uses cameras and sensors to predict crashes with up to 76% accuracy.
This results in a collision avoidance rate of over 90%. Over the next 15 to 20 years, several automakers,
including Tesla, Waymo, Uber, and others, predict a future dominated by autonomous vehicles [11]. They have
discussed the different levels of vehicle automation, as defined by the Society of Automotive Engineers (SAE),
and highlighted the contrast between level 5 (fully automated) and level 3 (partially automated) vehicles [12].
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2.1 Artificial Intelligence-Based Method for Autonomous Vehicle Navigation
During the transition from partially to fully autonomous driving, an Artificial Intelligence (AI) system

manages almost all functions, with minimal human intervention when necessary [13]. Big data plays a vital
role in enhancing self-driving technologies, as it is impossible to create exhaustive rules for every scenario
a vehicle might encounter. Machine learning (ML) and deep learning (DL) techniques allow vehicles to
learn from real-world driving [14], detect patterns, and develop inference models [15]. The cloud-based
real-time transmission of data required for autonomous vehicles has increased interest in multi-agent deep
reinforcement learning (DRL) algorithms for managing various automotive systems. Traditional planning
algorithms are impractical for path-planning tasks in self-driving cars in complex scenarios. Deep learning
holds great promise for overcoming the limitations of traditional planning algorithms and learning to plan
effective pathways under various scenarios for self-driving automobiles [16]. Deep learning techniques can
help analyze the spatial-visual dynamics to understand the surrounding environment better, while cameras
face challenges in adverse weather conditions, such as snow and fog.

A deep encoder-decoder network can be used to detect boundaries and find regions that are sensitive
to obstacles [17]. Convolutional neural networks (CNN) are proven effective in object detection in self-
driving cars due to their capacity to detect small patterns. Deep learning models can handle real-time data
and communicate with surrounding vehicles and cloud servers using Graphics Processing Units (GPU)
and cloud computing-based analysis. Transfer learning can also enhance accuracy, precision, and recall in
object detection. Recent advances in computer vision algorithms have improved scene classification, obstacle
detection, and lane recognition, primarily through the use of Artificial Neural Networks (ANNs) for self-
driving cars. These systems keep track of an object in an ever-changing environment. Lei et al. [2] used a
snowy driving dataset for object detection in adverse weather conditions. The dataset was later utilized for
pixel-wise semantic labeling, achieving 92.7% accuracy and a mean Intersection over Union (IoU) score of
66.3% using the ICNet model. Convolutional autoencoders (CAEs), a recent architectural advancement, have
enhanced feature representation while preserving spatial information [18]. In a convolutional autoencoder
(CAE), the spatial information of a two-dimensional signal is preserved. It also replaces the connection layer
in traditional autoencoders with a convolutional and pooling layer. In the decoding stage of the convolutional
autoencoder, an operation opposite to convolution, also known as deconvolution, is carried out. A low-
resolution feature representation is transferred to the input resolution by creating a deconvolution network,
and the network achieves precise border localization with pixel-wise supervision [19]. Recurrent neural
networks, particularly those with long and short-term memory capabilities, have proven extremely useful
for maintaining model dependencies between current and prior input values [18]. There are many practical
approaches available for controlling the hidden layer, such as introducing deviations from the input. Artificial
intelligence-based systems can raise safety concerns when human intervention is required, significantly when
the driver is impaired or incapable of operating the vehicle safely. An over-reliance on technology can make
drivers passive, affecting their ability to take control when required [20], for example, in level 2 vehicles on
autopilot, such as when a driver falls asleep.

Two key metrics assessed in deep learning models, especially in convolutional neural networks (CNNs),
are generalization and robustness, as they are essential for real-world computer vision tasks. Generalization
ensures that a model performs well on training and unseen data by minimizing the effects of overfitting. The
model must be robust enough to withstand changes in illumination, weather, sensor noise, and other domain-
specific variations to ensure reliability across various scenarios. The model must also perform reliably in
dynamic situations. Since flexibility defines the model’s effectiveness in real-world scenarios, it enhances the
model’s usefulness and dependability beyond the limited training conditions [21].
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2.2 Traditional Image Processing for Autonomous Vehicles
Traditional image processing techniques, including image filtering, feature extraction, and edge detec-

tion, are essential for enhancing data used in object detection and scene understanding tasks. These methods
can also detect snowcat tracks in snowy terrain.

Vachmanus et al. [22] combined noise-filtering techniques and morphological operations to classify
image components. They collected a dataset in Tomakomai City, Hokkaido, Japan. In this study, the authors
have highlighted the challenges faced while driving on snow and ice-covered roads. Their work emphasized
the importance of object detection and identifying drivable areas in such extreme conditions. However, the
complexity of autonomous driving systems under snowy weather conditions becomes challenging due to
the unpredictable nature of ice and snow. A computer vision-based method was used for detecting tracks in
the snow, which was further improved by applying a Hough transform—a method for feature extraction in
image processing [23]. Their proposed method achieved better detection accuracy in challenging environ-
ments. On the other hand, edge detection methods were also used to explore snow-covered environments.
Broggi et al. [23] tried several edge detectors but found that the canny edge detector provided more accurate
results in terms of edge detection. Ushma et al. [24] employed an object detection approach utilizing a
cascade object detector based on the Viola-Jones detection algorithm. They have collected images of cars
from freeways in Southern California. For object detection and classification, Florinabel [25] proposed a
real-time image-processing-based method on a real-time image dataset. They have achieved a high precision
score of 97.88% and recall of 97.47%, demonstrating that their method is effective for real-time applications.
Balaji et al. [26] compared object detection and tracking methods, such as frame difference, background
subtraction, and optical flow methods. The experimental results found that the background subtraction
method is the most efficient for object detection as it captures object features in detail. Vachmanus et al. [5]
approached the semantic segmentation of roads in a snowy environment by using a multi-modal fusion
of Red, Green, and Blue (RGB) images and thermal (T) maps. This RGB-T segmentation method takes
color images and thermal data as input to the neural network, thereby improving the detection of human
subjects in snowy conditions. They used a snowy dataset and evaluated their proposed model based
on mean accuracy (mAcc), mean intersection over Union (mIoU), and the mean Dice coefficient score
(mF1). The experimental results demonstrated that the proposed model, which utilizes RGB-T fused input,
outperformed the RGB-only input.

2.3 Deep Learning Models Utilizing Feature Visualization
CNN and other deep learning models can be interpreted using gradient-weighted class activation

mapping (Grad-CAM). It calculates the gradient of the target class score with respect to the feature maps of
the final convolutional layer. It takes this into account when visualizing the regions of the image that may
impact the model’s ability to make decisions. The GRAD-CAM pipeline includes several steps, including the
forward pass, gradient computation, global average pooling, heatmap generation, and image overlay. Initially,
the model receives the input image, and the convolutional layer generates the feature maps. The gradient
of the predicted class scores is computed using the generated feature maps. These gradients are averaged
using the global average pooling layer to assign an appropriate weight to each feature map. The most relevant
region of the image is highlighted by generating a heat map, which is calculated using the weighted sum of
the feature maps. The generated activation map (or heatmap) is projected on the original image to identify
the most relevant regions of the image that affect the model’s prediction. The Grad-CAM helps understand
model explainability, debugging, error analysis, trust, dependability, and bias detection.

Previous approaches for object detection in adverse conditions have primarily relied on supervised
learning, which heavily depends on labeled datasets. However, in Arctic environments, road boundaries are
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often indistinct, annotations are scarce, and existing datasets fail to generalize across varied snow textures and
lighting conditions. Moreover, prior works have largely neglected the role of uncertainty-aware detection,
leading to high false positive rates due to snow glare. This study directly addresses these limitations.

3 Methodology
The methodology for this study is shown in Fig. 1. The data was collected from snow-covered roads in

Tromsø, Norway, covering diverse locations such as city centers, residential areas, main streets, and university
surroundings to ensure a comprehensive dataset for training. The collected dataset was partitioned into
training, validation, and testing subsets to allow for a more effective model learning and evaluation. To
enhance the YOLOv8 model’s feature extraction capabilities, a Simple Framework for Contrastive Learning of
Visual Representations (SimCLR) on unlabeled images of snowy roads was employed, before the fine-tuning
on the labeled dataset. The dataset was partitioned into three subsets: 70% for training, 20% for validation,
and 10% for testing. The training dataset optimized YOLOv8’s feature representations, while the validation
dataset monitored performance to prevent the model from overfitting. The testing dataset was reserved for
evaluating the final model on unseen snow conditions.

Figure 1: Flow diagram for proposed solution

Additionally, we incorporated uncertainty-aware detection techniques, integrating Monte Carlo
Dropout and Bayesian YOLO during inference to estimate model confidence and reduce false positives
caused by snow glare and occlusions. Hyperparameter tuning, including adjustments to batch size and
epochs, was performed to maximize the model’s performance and real-time efficiency. The performance
of the proposed Self-Supervised pretraining and uncertainty-aware YOLOv8 model was evaluated using
precision, recall, F1-score, mAP@50, and mAP@50–95. The following subsections provide a step-by-step
breakdown of the methodology.
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3.1 Data Collection
The data used in this research was collected in Tromsø, Norway, which is known as the capital of

the Arctic Circle. Data was collected from November to April, when temperatures were consistently below
freezing, marking a frigid winter season. During the creation of this data, adverse weather conditions,
including snow, ice, fog, and slush, were encountered. This data was collected at multiple locations, including
university areas, the city center, and residential neighborhoods. The data was collected for various road types,
including straight and zig-zag roads, through images and videos. In total, 50 videos were recorded, with a
maximum video duration of 5 min. A 108-megapixel camera with the specifications outlined in Table 1 was
used to capture these images and videos. A data sample of a regular road, a residential area, a city center, and
a university region is shown in Fig. 2.

Table 1: Camera specifications

Feature Feature value
Resolution 1440 × 3088 pixels

Aperture size F1.8
Focal length 23 mm
Sensor size 1/1.33′′
Pixel size 0.8 m

Video recording

7680 × 4320 (8K UHD) (24 fps)
3840 × 2160 (4K UHD) (60 fps)
1920 × 1080 (Full HD) (240 fps)

1280 × 720 (HD) (960 fps)
Video capture 3840 × 2160 (4K UHD) (60 fps)

Figure 2: An example of (a) Regular road (b) Residential area (c) City centre (d) University area

The dataset comprises 20,000 labeled images, comprehensively representing various road conditions
that may be encountered during the training of a road detection model. Out of the 20,000 images, approxi-
mately 12,000 feature straight road segments, while the remaining 8000 images capture zig-zag road patterns
to ensure the model is exposed to different road geometries. This balanced dataset comprises 8000 images
of snowy roads and 5000 images of dry roads with some snow on the sidewalks, providing a wide range
of environmental variability. Additionally, 3000 images were acquired at night time to achieve a reasonable
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variation in lighting and visibility. With its comprehensive coverage of road types and environmental
conditions, this dataset is well-suited for training models that can handle a wide range of real-world road
scenarios, thereby improving the generalization and robustness of models across diverse conditions.

3.2 Experimental Environment
The experiments were conducted on a powerful computer with a 12th Generation Intel Core i9-12900H

processor at 2.50 GHz. The 32 GB of RAM provided significant processing capability. An NVIDIA GeForce
RTX 3080 Ti laptop GPU was used to facilitate more effective experimentation. All experiments were
conducted within an Anaconda environment. In the Jupyter Notebook, Python version 3.10.9 and Conda
version 23.3.1 were used. The electricity required for training the model is a measure of energy consumption,
which depends on the hardware, training duration, and workload. From a hardware perspective, the model
can be trained on a Central Processing Unit (CPU) or a GPU and deployed on edge devices. The GPU
consumes more electrical energy than the CPU. The hardware, dataset size, batch size, and number of
epochs influence the training time of the YOLOv8 model. We utilized the GPU to train the YOLOv8 model,
significantly reducing the training time.

3.3 Data Pre-Processing
A Python script was used to extract individual frames from the videos in the preprocessing step. The

logic of extracting one frame per second from the video was implemented, resulting in a more diverse set
of images with varying viewing angles. This approach was beneficial because it helped to avoid redundancy
in consecutive frames and captured gradual environmental changes with varying lighting and textures. It
also ensured a balanced dataset representing different road conditions. In total, 50 videos were processed,
resulting in 20,000 high-quality images that improved the efficiency and precision of the dataset during
training. Image annotation and labeling were performed after extracting individual frames from the videos.
The dataset was created for semantic segmentation, utilizing polygon annotations. Unlike bounding boxes,
polygon masks provide precise delineation of roads under snow. It also offers better edge detection for
differentiating drivable paths from non-drivable areas. This requires the mapping of polygon points to all
20,000 images. In downstream operations, achieving reliable performance based on accuracy and detail
is time-consuming. Several annotation platforms are available to create annotations according to project
specifications. The Roboflow Universe platform created annotations on JSON files, making them compatible
with the training model. Each image was labeled into drivable road areas.

In addition to data labeling, data augmentation was applied to improve generalization to unseen con-
ditions. Each input image is transformed to generate two augmented versions, including random cropping,
rotation, color jittering, and Gaussian blurring. Random cropping simulates partial obstructions due to snow.
Rotation helps to recognize tilted perspectives of the road. Color jittering accounts for variations in lighting
conditions, such as overcast or nighttime settings. Finally, Gaussian blurring simulates noise in conditions
with foggy and snowy weather. These augmentations enable the model to better understand variations in
road conditions without overfitting specific patterns. By integrating these preprocessing techniques, the
proposed model can help improve generalization and enhance robust feature representations in adverse
weather conditions.

3.4 YOLOv8
This study integrates the SimCLR pre-trained backbone with YOLOv8 for detecting snowy road

conditions. Unlike standard YOLOv8 training, which requires extensive labeled data, this approach leverages
SimCLR to pretrain YOLOv8’s backbone on unlabeled road images, learning robust feature representations
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even without ground-truth labels. This is particularly beneficial in low-contrast snowy conditions, where
conventional models struggle to differentiate drivable paths from surrounding snow. The process begins with
pre-training the YOLOv8 backbone using SimCLR, a self-supervised contrastive learning approach. Since
collecting labeled data for snowy roads is resource-intensive, contrastive learning allows for leveraging large
volumes of unlabeled road images. A contrastive loss function was applied to encourage representations of
the same image under different augmentations, as discussed in the preprocessing stage. It is done to bring
similar views closer in the feature space while pushing dissimilar views apart. The contrastive loss function
is calculated using Eq. (1). During this phase, the backbone of YOLOv8, CSPDarknet, is trained without
any labeled data using these contrastive learning techniques. This self-supervised learning approach enabled
YOLOv8 to learn essential road textures, edges, and snow patterns before fine-tuning for the labeled dataset.
Once pre-training is complete, the projection head used in SimCLR is removed, and the YOLOv8 detection
head is attached.

L = −∑ log
exp (sim(zi , z j)/τ)

∑N
k=1 exp (sim(zi , zk)/τ)

(1)

After pretraining, the detection head was added to the model, and the entire network was fine-tuned
with 20,000 labeled images using polygon-based segmentation masks to identify drivable paths on the road.
Initially, the backbone layers are frozen to preserve the valuable features learned during pretraining, and
only the detection head is trained. This allowed the model to adapt to detecting snowy road conditions
while retaining the general features learned from SimCLR pretraining. After a few training epochs, the
backbone layers are gradually unfrozen and fine-tuned with a lower learning rate to prevent overwriting
the pre-trained features. To minimize false positives, hyperparameters were optimized using a grid search
approach for Non-Maximum Suppression (NMS). Bayesian YOLO was incorporated to estimate uncertainty
and enhance reliability in challenging Arctic conditions. In the traditional YOLO model, the dropout layers
are only active during training. Bayesian YOLO enables dropout layers during inference, allowing the model
to generate multiple predictions for the same input image. This provides a distribution of predictions, from
which we compute variance to estimate uncertainty caused by snow glare and occlusions. The MC-Dropout
process involves running T forward passes of YOLOv8 on the same input image. Then, we generate T
different predictions due to the stochastic nature of the dropout. Finally, we compute the variance to quantify
uncertainty using Eq. (2).

σ 2 =
1
T

T
∑
t=1
(yt − y)2 (2)

where yt represents the prediction at iteration t, y is the mean prediction over T iterations, and σ 2 quantifies
the uncertainty in the model’s output. Traditional YOLO models use a fixed confidence threshold; however,
Bayesian YOLO introduces adaptive confidence thresholds, where the model dynamically adjusts detection
acceptance criteria based on uncertainty estimates. Instead of a hard threshold, we define a probabilistic
threshold as given in Eq. (3), where c is the mean confidence score of the model, σ is the estimated uncertainty
(standard deviation of predictions), and k is a tunable parameter that determines the confidence level
required to accept a detection. This ensures that predictions with low confidence and high uncertainty are
automatically discarded, improving detection robustness.

θ = c − k ⋅ σ (3)



4420 Comput Mater Contin. 2025;83(3)

The mean confidence is computed by running the model T times on the same input image and averaging
the confidence scores of the predicted bounding boxes. It can be calculated using Eq. (4), where ct represents
the confidence score of the detection at the t-th forward pass, and T is the total number of forward passes.

c = 1
T

T
∑
t=1

ct (4)

4 Results and Discussion
In this section, results obtained using the most recent object detection and semantic segmentation

algorithm, YOLOv8 with SimCLR-based self-supervised pretraining, are discussed and presented.

4.1 Evaluating the Impact of SimCLR Pretraining
The effectiveness of SimCLR-based self-supervised pretraining was validated through an ablation study,

comparing YOLOv8 trained without pre-training and YOLOv8 pre-trained with SimCLR before fine-tuning
on the labeled dataset. Table 2 presents the evaluation metrics for both settings. The results demonstrate that
SimCLR pre-training significantly improves the feature extraction, which leads to a higher precision and
mAP scores. The improvements are particularly evident in low-contrast areas, where the model struggled to
differentiate road boundaries from surrounding snow without pertaining. Fig. 3 validates that self-supervised
pretraining enables the model to learn meaningful snow textures and road structures even without manual
labels, and improves generalization.

Table 2: Performance of YOLOv8 model with and without pre-training

Metric YOLOv8 (No pre-training) YOLOv8 (Pre-training)
Precision 0.91 0.97

Recall 0.89 1
F1-Score 0.90 0.98
mAP@50 0.89 0.99

mAP@50–95 0.80 0.92

Figure 3: Detected path using YOLO pre-trained model

4.2 Analysis of False Positives and False Negatives
The result of uncertainty-aware detection was assessed by analyzing the impact of Bayesian YOLO and

Monte Carlo Dropout (MC-Dropout) on false positives and false negatives. Traditional YOLO-based models
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uses fixed confidence thresholds, which fail in dynamic snow conditions, resulting in the misclassification of
high-glare snow as drivable road surfaces. In contrast, the proposed Bayesian YOLO approach dynamically
adjusts detection confidence based on uncertainty estimation, thereby filtering out low-confidence detections
that are often caused by snow glare and occlusions. Fig. 4 illustrates the improvements in false positive and
false negative rates after integrating Bayesian YOLO and Monte Carlo Dropout. The false positive rate was
reduced by 55.3%, and the false negative rate dropped by 50.7%. Additionally, mAP@50–95 saw a 9.0%
increase, confirming improved robustness in extreme snowy conditions. These the results demonstrated the
importance of uncertainty-aware detection in Arctic environments, leading to a more reliable segmentation
of drivable paths.

Figure 4: Impact of Bayesian YOLO and Monte Carlo Dropout (MC-Dropout)

4.3 Epochs
The model was trained using different numbers of epochs to analyze how training duration impacts the

performance. Initially, it was trained for 50 epochs. Then, the number of epochs was gradually reduced to
assess whether similar performance could be achieved with fewer epochs. The results on the training data
across different epochs are shown in Fig. 5. As demonstrated in Fig. 5, increasing the number of epochs
from 10 to 20 significantly improves the model’s performance in terms of recall, F1 score, mAP@50, and
mAP@50–95. A further increase of epoch to 30, 40, and 50 show a continuous improvement in results, but
with minor improvements, particularly for mAP@50, which begins to stabilize. This indicates that with each
additional epoch, the model gains a better understanding of the data and updates its weights more effectively.
However, the improvements become marginal after a certain point, showing that the model has reached a
stable learning phase. It is important to note that evaluating model performance solely on training data is
insufficient. A model that performs well on training data might overfit—that is, because it memorizes the
training examples but fails to generalize to new and unseen data. To address this, the model was evaluated
on a validation set comprising 20% of the dataset, as described in the data description section. The results
are presented in Fig. 6. As shown in Fig. 6, increasing the number of epochs from 10 to 20 also enhances
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the model’s performance on the validation data, as indicated by metrics such as precision, recall, F1 score,
mAP@50, and mAP@50–95. This demonstrates that the model is learning relevant data patterns and does
not require additional training beyond this point. To ensure the model’s generalization capability, it was also
evaluated on a separate test set, comprising 10% of the entire dataset. The results are illustrated in Fig. 7.
As shown in Fig. 7, the model achieves 100% precision on the test data, along with strong performance in
recall, F1 score, and mAP metrics. However, as the number of epochs increases beyond a certain point, the
performance metrics such as precision, mAP@50–95, and F1 score start to decline, indicating overfitting.
This can be mitigated using techniques such as early stopping, regularization, or reducing model complexity.
Based on these observations, stopping training at 10 epochs appears to be an optimal point to balance
performance and generalization.

Figure 5: Performance metrics of the model across training data with varying epoch

Figure 6: Performance metrics of the model across validation data with varying epoch
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Figure 7: Performance metrics of the model across testing data with varying epochs

4.4 Batch Size
To evaluate the effectiveness of the proposed model, various batch sizes were also tested, including batch

size of 8, 16, 32, 64, and 128. Table 3 presents the results for different batch sizes. These results indicate that the
model performs best with a smaller batch size, particularly with a batch size of 8, achieving a mAP@50–95
of 97%. This can be attributed to the behavior of the gradient descent algorithm during training. When the
batch size is small, fewer samples are used in each forward pass, resulting in more frequent weight updates
based on a smaller subset of data. This enables the model to respond quickly to changes in the error signal,
thereby reducing the risk of overfitting and enhancing generalization. Conversely, with larger batch sizes,
more samples are processed before each update, and the model’s weight adjustments are influenced by the
average error over a broader dataset. While this can stabilize training, it may also increase the likelihood of
the model being misguided if the combined signal from a large batch does not reflect the actual gradient
direction. As a result, the optimization process may converge more slowly or settle into suboptimal solutions.

Table 3: Performance metrics of the model across training data with varying batch sizes

Batch size Epochs Precision Recall F1-Score mAP@50 mAP@50–95
8 10 0.97 0.93 0.95 0.95 0.86

20 0.93 0.98 0.96 0.98 0.95
30 0.98 0.93 0.95 0.98 0.91
40 1 0.99 0.99 0.99 0.97
50 1 0.93 0.96 0.99 0.96

16 10 1 0.9 0.99 0.99 0.94
20 1 0.99 0.99 0.99 0.91
30 0.99 0.93 0.96 0.99 0.95
40 1 0.99 0.99 0.99 0.95
50 0.97 1 0.98 0.99 0.94

32 10 1 0.39 0.56 0.92 0.81
20 0.99 0.93 0.96 0.97 0.95
30 0.97 0.93 0.95 0.96 0.91

(Continued)
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Table 3 (continued)

Batch size Epochs Precision Recall F1-Score mAP@50 mAP@50–95
40 0.93 1 0.96 0.99 0.96
50 0.99 0.93 0.96 0.99 0.95

64 10 0.003 1 0.006 0.73 0.65
20 0.94 0.73 0.82 0.94 0.85
30 0.87 1 0.93 0.98 0.96
40 0.99 1 0.99 0.99 0.96
50 0.99 1 0.99 0.99 0.97

128

10 0.003 1 0.006 0.63 0.47
20 0.003 1 0.006 0.90 0.83
30 0.003 1 0.006 0.94 0.91
40 1 0.93 0.96 0.99 0.95
50 0.003 1 0.006 0.96 0.91

4.5 Comparison with Other State-of-the-Art Models
The performance of the proposed framework for road detection in a snowy environment was compared

with various other innovative methods. Karaa et al. [27] annotated a dataset of snow-covered road images
using unsupervised methods. Because researchers had previously focused on images from rural areas,
they also considered annotating images from urban areas. They addressed the class imbalance problem by
using a customized convolutional neural network model. While their model performed reasonably well,
with a precision of 0.79 and mAP@50–95 of 0.71, it struggled with the fine-grained segmentation of road
boundaries, especially in low-contrast, snow-covered areas. Jiang et al. [28] combined the Whale Optimizer
Algorithm and Back Propagation models to create a new model known as WOA-BP. They used inputs such
as temperature, voltage variation, and water film thickness to predict road conditions. This method aimed
to improve feature selection and classification accuracy. However, it demonstrated limitations in real-time
inference and generalization across varied snow textures, yielding an F1-score of 0.70 and mAP@50–95 of
0.80. A PVDM-YOLOv8l model was proposed by Tahir et al. [29] for detecting vehicles and pedestrians
in adverse conditions. They have included methods such as the convolutional block attention module
(CBAM) for feature refinement and the swim transformer for global feature extraction. While their model
improved pedestrian and vehicle detection in adverse conditions, its mAP@50 was 0.78, which is lower than
the proposed approach, indicating potential limitations in handling extreme lighting variations caused by
snow glare. Feng et al. [30] proposed the ADWNet model, which improves upon the YOLOv8 model for
object detection in autonomous driving. Their model incorporated SLOU loss and multi-scale attention
mechanisms, resulting in improved precision (0.89) and recall (0.88). However, it had a lower mAP@50–
95 (0.80) than the proposed model, indicating reduced performance in the fine-grained segmentation of
drivable areas. The results of these state-of-the-art models, compared with those of the proposed model, are
summarized in Table 4.

4.6 Comparison with Other YOLO Variants
The performance of the proposed framework for path detection on snowy roads was compared with

that of YOLOv5, YOLOv6, and YOLOv7 on the same dataset. It was observed that YOLOv5 did not yield a
satisfactory result in the case of a road with small snow patches, as it has limitations in detecting small objects.
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It also struggled to differentiate the small contrast changes on the road due to poor exposure adoption. In the
case of YOLOv6, it yielded improved results for a road with small snow patches; however, the localization
error remained. It also improved in differentiating small contrast changes on the road, but it still lacked
fine granularity. In the case of YOLOv7, the model was significantly improved in terms of edge detection,
but it generated a large number of false positives. It also classified the high-glare snow, making the results
unreliable. However, in the case of the proposed YOLOv8 model, it yielded promising results in low-contrast
areas, and feature extraction was significantly improved compared to other YOLO variants. It performs well
in feature extraction due to the use of SimCLR, the Bidirectional Feature Pyramid Network (BiFPN), and
an improved Non-Maximum Suppression (NMS) algorithm. Due to Uncertainty Estimation (Monte Carlo
Dropout and Bayesian YOLO), the misclassification rate was also very low, making it a reliable solution for
detecting snowy paths on the road. Table 5 presents a comparison of the results from other YOLO variants
with those of the proposed YOLOv8 framework.

Table 4: Comparison with other state-of-the-art methods

Ref. Model Precision Recall F1 Score mAP@50 mAP@50–95
[27] CNN 0.79 0.72 0.74 0.80 0.71
[28] WOA-BP 0.69 0.74 0.70 0.82 0.80
[29] PVDM-OLOv8 0.86 0.81 0.79 0.78 0.71
[30] ADWNet 0.89 0.88 0.90 0.85 0.80

Our Model 0.99 1 0.99 0.99 0.97

Table 5: Comparison with YOLO variants

Model Precision Recall F1 Score mAP@50 mAP@50–95
YOLOv5 0.76 0.86 0.80 0.83 0.80
YOLOv6 0.83 0.80 0.82 0.81 0.74
YOLOv7 0.92 0.87 0.90 0.85 0.80

Our model 0.99 1 0.99 0.99 0.97

4.7 Discussion
The model’s performance significantly improved due to the use of a hyperparameter optimization

approach. The most important key parameters that were optimized include batch size and epochs. The
learning rate was adjusted to strike a balance between speed and stability in achieving convergence, thereby
avoiding overfitting during training. The batch size was set to optimize GPU memory usage, promoting
generalization. Additionally, the NMS IoU threshold was adjusted to reduce the number of false positives.
These modifications were evaluated using mean Average Precision (mAP) across intervals of IoU’s mAP@50
and mAP@50–95. There was a significant increase in precision and recall compared to the model’s baseline.
These adjustments enhanced the model’s accuracy in handling specific variations of road conditions covered
with snow, thereby increasing the model’s reliability.

The proposed model can be integrated into an autonomous driving system by connecting it with the
vehicle control system, sensor fusion modules, and decision-making frameworks. Initially, the trained model
can be stored in lightweight formats, such as pickle or TensorRT, and deployed on edge devices like NVIDIA
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Jetson. Multiple cameras can be integrated into autonomous vehicles to enable real-time road detection,
collecting data, and achieving high accuracy. The data from these cameras can be merged using sensor
fusion techniques. The data obtained can be forwarded to the trained model for road segmentation and route
planning, and the outputs can be sent through a real-time data pipeline for trajectory planning. In a real-
world scenario, the roads detected by the proposed model’s output serve as input for the vehicle’s trajectory
planning and control systems. The model generates bounding boxes or segmentation masks that designate
the drivable area. These are subsequently fused through a sensor fusion module that utilizes LiDAR, Radar,
GPS, and IMU to enhance accuracy and robustness. Incorporating machine-detected road features with real-
time localization and mapping enables the system to intelligently adapt its navigation strategy in constantly
changing conditions. In addition, smoothing techniques such as Kalman or particle filters can mitigate snow
blockage, generated occlusions, or other transient errors in predictions. The interaction with control systems
involves the vehicle’s steering, acceleration, and braking, which can be commanded and must comply with
the detected road boundaries for safety.

5 Conclusion and Future Work
This study collected data from snow-covered roads in Tromsø, Norway, by recording videos in diverse

environments, including the city center, residential areas, and highways. A custom Python script was used to
extract frames from these videos at one frame per second, generating a dataset of snowy road conditions with
varying textures, lighting, and occlusions. The dataset was preprocessed using SimCLR to enhance detection
capabilities. This allowed the model to learn robust feature representations from unlabeled arctic road
images before fine-tuning them with labeled data. Image annotations were created for semantic segmentation
to detect drivable paths in snow-covered regions. During training, the YOLOv8 model was optimized
with uncertainty-aware detection techniques, incorporating Monte Carlo Dropout and Bayesian YOLO to
estimate prediction confidence and reduce false positives caused by snow glare and occlusions. Performance
evaluation was conducted using precision, recall, F1-score, mAP@50, and mAP@50–95, as well as analysis
of false positive reduction and uncertainty quantification.

Additionally, the impact of hyperparameter tuning (batch size and epochs) was assessed to maximize
detection efficiency. The proposed Self-Supervised and Uncertainty-Aware YOLOv8 model achieved state-
of-the-art performance, with a precision of 0.99, recall of 1.0, F1-score of 0.99, mAP@50 of 0.99, and
mAP@50–95 of 0.97. These results revealed that self-supervised pretraining improved the generalization.
At the same time, uncertainty estimation improves robustness against adverse weather conditions by
significantly reducing reliance on labeled datasets and improving real-world detection accuracy. This
study advances autonomous road detection in Arctic environments, contributing to safer navigation for
self-driving vehicles in extreme weather conditions.

In the future, the plan is to collect more data in snowy environments across multiple regions. The
data collection for this study was limited to Norway. Future efforts aim to collect data in other countries,
including Finland, Sweden, and Denmark, to create a more comprehensive dataset. Efforts will also focus on
the improvement of computational power of the proposed model by using techniques such as minimizing the
number of layers and weights. Lower computational costs for the models will allow the deployment on edge
devices. Techniques such as knowledge distillation, quantization, and pruning will be explored to improve
model performance for embedded devices. This will allow recording road video in real-time, sending it to
a computer for path detection, and displaying the results live on a car’s screen. Such advancements aim to
enhance vehicle autonomy in poor weather conditions.
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