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ABSTRACT: Software defect prediction (SDP) aims to find a reliable method to predict defects in specific software
projects and help software engineers allocate limited resources to release high-quality software products. Software
defect prediction can be effectively performed using traditional features, but there are some redundant or irrelevant
features in them (the presence or absence of this feature has little effect on the prediction results). These problems can
be solved using feature selection. However, existing feature selection methods have shortcomings such as insignificant
dimensionality reduction effect and low classification accuracy of the selected optimal feature subset. In order to reduce
the impact of these shortcomings, this paper proposes a new feature selection method Cubic Traverse Ma Beluga whale
optimization algorithm (CTMBWO) based on the improved Beluga whale optimization algorithm (BWO). The goal
of this study is to determine how well the CTMBWO can extract the features that are most important for correctly
predicting software defects, improve the accuracy of fault prediction, reduce the number of the selected feature and
mitigate the risk of overfitting, thereby achieving more efficient resource utilization and better distribution of test
workload. The CTMBWO comprises three main stages: preprocessing the dataset, selecting relevant features, and
evaluating the classification performance of the model. The novel feature selection method can effectively improve the
performance of SDP. This study performs experiments on two software defect datasets (PROMISE, NASA) and shows
the method’s classification performance using four detailed evaluation metrics, Accuracy, F1-score, MCC, AUC and
Recall. The results indicate that the approach presented in this paper achieves outstanding classification performance
on both datasets and has significant improvement over the baseline models.

KEYWORDS: Software defect prediction; feature selection; beluga optimization algorithm; triangular wandering
strategy; cauchy mutation; reverse learning

1 Introduction
Software quality assurance has become a critical challenge in software engineering as the size and

complexity of software systems continue to grow. Software defects can not only compromise reliability but
also lead to high maintenance costs or even severe system failures. Therefore, SDP has received widespread
attention as an effective means of prevention and detection. By analyzing historical code and project data
to build a SDP model, potential defect-prone modules can be identified early in the software development
process, thereby reducing development risks and improving development efficiency [1]. Previous experi-
ments [2] have predicted the defect tendency of software modules by analyzing various metrics in software
source code. These metrics reflect the complexity of the code and related information in the development
process, but too many metrics may lead to poor quality of the prediction model. This is because there
will be redundant metrics that are irrelevant to defect prediction. Using feature selection can avoid this
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problem. Feature selection is crucial in SDP. It aims to eliminate irrelevant or redundant features, thereby
enhancing model performance, improving training efficiency, and avoiding overfitting [3,4]. In SDP, we
may use multiple features such as Coupling Between Objects (CBO), Depth of Inheritance Tree (DIT),
Lack of Cohesion in Methods (LCOM), Number of Children (NOC), Response For a Class (RFC), and
Weighted Methods per Class (WMC). These features reflect different complexities and design characteristics
of classes, but some of them may be redundant or irrelevant. For example, CBO and RFC are often highly
correlated because class coupling and response set size are closely related. In contrast, DIT may show a
weaker correlation with defect occurrence, making it an irrelevant feature. Feature selection helps boost
the prediction accuracy of SDP and speeds up training by eliminating unnecessary or irrelevant features.
Therefore, feature selection helps the model focus on truly useful features, enhancing its generalization ability.

Goyal et al. [5] proposed to use lion optimization algorithm for feature selection to enhance the
performance of SDP. Malhotra et al. [6] introduced a SDP model that uses a two-phase grey wolf optimization
for feature selection, and Chantar et al. [7] proposed using an enhanced binary grey wolf optimizer for text
classification. The performance of the population-based metaheuristic algorithm is impacted by initialization
and parameter control. In particular, if the population position is not initialized with sufficient randomness
and the search space may not be fully explored, which means not all features will be traversed and redundant
or irrelevant features will not be effectively removed. Goyal [8] proposed a genetic evolution algorithm for
feature selection. Genetic algorithms involve several parameters, including population size, crossover rate,
and mutation rate, etc. The choice of these parameters significantly affects the final performance of the
algorithm. If these parameters are set unreasonably, the algorithm may converge too slow, thus affecting
the final performance of defect prediction. To solve these problems, this study introduces a novel feature
selection method CTMBWO based on BWO. As far as we know, BWO has not been used for feature selection
in the SDP field. This method generates the initial individual population through Cubic chaotic mapping,
which is more random and uniform and can effectively avoid falling into the local optimal solution. And an
update mechanism based on the combination of Cauchy mutation and reverse learning is used to effectively
boost the diversity and the speed of global convergence of the population. When the current population is
not optimal, the triangle wandering strategy is used to update the selected population. At the same time, the
algorithm uses a small number of parameters.

The contributions of this paper are as follows:

(1) In the initialization stage of CTMBWO, the Cubic chaotic map is introduced to generate a more evenly
distributed initial population and strengthen the algorithm’s global search ability.

(2) In the exploration phase of CTMBWO, the triangle walk strategy is used to further expand the search
range of the algorithm and improve the search accuracy.

(3) During the whale fall phase of CTMBWO, an update mechanism based on the combination of Cauchy
mutation and reverse learning is used to effectively enhance the distribution and the speed of global
convergence of the population. In addition, a sparrow alert mechanism is also integrated to further
ensure that the beluga can avoid getting stuck in the local optimal solution.

2 Related Work
Feature selection is crucial in SDP that aims to select the feature subset that has the greatest impact

on the prediction results from a lot of features. The dataset may contain a large number of irrelevant and
redundant features in SDP, and the excessive number of features may increase the time cost of training the
classifier and may reduce the performance of the classifier. When dealing with high-dimensional features,
feature selection methods are currently widely used. Feature selection methods are divided into filtering
method, wrapping method, and ensemble learning method.
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(1) Filtering method

The filtering method is an unsupervised feature selection method that scores features by evaluating the
correlation or divergence of each feature with the target variable individually, without relying on a specific
model. This method does not require model training, so it is computationally efficient and suitable for
processing large-scale data sets. Based on the scoring results, the filtering method selects features based on a
set threshold or the top N highest-scoring features. Some commonly used filtering methods are Chi-Square
(CS), Information Gain (IG), Relief method, etc.

(2) Wrappering method

The wrappering method closely combines feature selection with the model training process and
systematically assessing the performance of various feature subsets to identify the most effective ones. The
core idea of the wrappering method is to use a specific machine learning algorithmto train the model and
evaluate the pros and cons of each feature subset based on the model’s predictive performance. This method
can obtain a better feature set, especially when the feature dimension is high. Commonly used methods
include forward selection and exhaustive search.

(3) Ensemble learning method

The ensemble learning method is a combination of filtering and wrapping methods. Features are
selected by comprehensively selecting the results of multiple filtering or wrapping methods, or the output
of the filtering method is used as the input of the wrapping method to screen features. The ensemble
method combines the advantages of filtering and wrapping methods, and often produces better prediction
performance than models based on single filtering or wrapping methods.

Population-based metaheuristic algorithms are often used for feature selection, especially in high-
dimensional data or complex problems. They can explore the feature space by simulating the natural
evolution process and select the most advantageous feature subset.

Das et al. [9] introduced a cutting-edge feature selection method known as the Golden Jackal Opti-
mization (GJO) algorithm, a metaheuristic inspired by the hunting strategies of the golden jackal. The
method can be further applied to multi-objective optimization problems by using feature selection. The
researchers integrated this algorithm with four classification models to extract significant feature subsets
from SDP datasets.

Arasteh et al. [10] proposed an innovative feature selection method by changing the Binary Chaos-based
Olympiad Optimization Algorithm. Using this method to get the features that have the greatest impact on
the prediction results. Integrating the method with classification models can greatly improve the precision
and accuracy of software module classification.

Kukkar et al. [11] proposed a feature extraction technique by improving the ant colony optimization
(ACO) to find out more relevant features for SDP. At the same time, the algorithm was integrated with
machine learning to boost prediction performance. The results demonstrated a significant improvement in
accuracy compared to the baseline methods.

Anbu et al. [12] used the firefly algorithm for feature selection. Fireflies tend to fly towards brighter areas,
and their flight direction and distance are influenced by two important factors: brightness and attractiveness.
These factors are used to guide the selection of solutions, with fireflies attracted to one another based
on brightness differences, ultimately searching for the global optimal solution. Through this process, a
representative feature subset is selected.

Wang et al. [13] proposed a binary adaptation of the Gray Wolf Optimizer algorithm aiming at
identifying the most impactful features within the dataset to solve the problems of excessive feature volume
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in the training dataset. Through feature selection, the features that have the greatest impact on the SDP
are selected. These features include the number of lines of code and complexity, etc. At the same time,
experiments show that accuracy, Recall, and F1 have been significantly improved.

Sekaran et al. [14] proposed a new feature selection method that combines mutation-enhanced Salp
Swarm Optimizer (MBSSO) with rough set theory. Rough set theory offers a structured approach to
examining the relationships and dependencies among features. It refines the search space by assessing fitness
scores and incorporates a mutation enhancement strategy to evade getting stuck at local optima. SDP is
performed after feature selection using kernel extreme learning machine.

Alsghaier et al. [15] proposed combining genetic algorithm (GA) with support vector machine (SVM)
classifier and particle swarm algorithm (PSO) to obtain better SDP performance. The experimental results
show that when applied to limited scale datasets, integrating GA with SVM and PSO can obtain good SDP
results and overcome the limitations of previous studies.

Inspired by the above techniques, this paper also uses a population-based metaheuristic algorithm
CTMBWO for feature selection. The algorithm uses chaotic mapping [16] to change the initialization method
of the population, making the distribution of the population more uniform and random. At the same time,
mutation operations are performed during each iteration to find the optimal population and optimal feature
subset faster, thereby improving the SDP performance.

3 Proposed Methodology

3.1 Beluga Whale Optimization Algorithm
Beluga whale optimization algorithm (BWO) was proposed by Zhong et al. in 2022 [17], which

is a heuristic algorithm based on the beluga’s lifestyle, as shown in Fig. 1. The algorithm simulates the
beluga’s swimming behavior (a), praying behavior (b), and death behavior (c) and they are modeled as the
exploration, exploitation, and whale-fall phases.

Figure 1: The lifestyle of Beluga, (a) Swimming behavior; (b) Pray behavior; (c) Whale fall behavior
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In the feature selection task, BWO searches for the optimal feature subset by representing each feature
as a binary vector and simulating the strategy of beluga whales swimming around their prey. The fitness of
each beluga whale is calculated and evaluate their performance. The algorithm updates the position of the
beluga whale based on the fitness value and gradually selects the most useful features for SDP.

By comparing the balance factor B f , the BWO decides whether to enter the exploration or exploitation
phase. When B f > 0.5 the algorithm is in the exploration phase, and when B f ≤ 0.5, it shifts to the
exploitation phase. The probability Wf and B f together determine whether the whale fall phase occurs and
it happens when B f <Wf . The mathematical model of B f and Wf are:

B f = B0(1 − T/2Tmax) (1)
Wf = 0.1 − 0.05T/Tmax (2)

where T is the iteration number currently being executed, Tmax is the maximum iterative number, B0 is a
random number between (0, 1).

3.1.1 Initialization Phase
In the initialization stage, BWO randomly generates a population of beluga whales and calculates the

fitness value corresponding to each population. It determines whether the current population is optimal by
comparing the fitness value. Using the matrix X to represent the obtained population.

3.1.2 Exploration Phase
When B f > 0.5, the algorithm enters the exploration phase. In this phase, the beluga whales swim

randomly in all directions to locate the global optimal solution and avoid getting trapped in local optima.
The updated position of the beluga whale is expressed as:

⎧⎪⎪⎨⎪⎪⎩

XT+1
i , j = XT

i , p j
+ (XT

r , p1
− XT

i , p j
)(1 + r1) sin(2πr2) j = even

XT+1
i , j = XT

i , p j
+ (XT

r , p1
− XT

i , p j
)(1 + r1) cos(2πr2) j = odd

(3)

where T is the current iteration, XT+1
i , j is the new position of the ith beluga whale on the jth dimension,

p j( j = 1, 2, ⋅ ⋅ ⋅ , d) is a randomly chosen dimension from the d-dimension, XT
i , p j

is the position of the ith
beluga whale on p j dimension, XT

r , p1
is the current positions of the rth beluga whale (r is the beluga whale

chosen at random), r1 and r2 are random number between (0,1), sin(2πr2) and cos(2πr2) denote the fin
orientation of the mirrored beluga, with odd and even choices.

3.1.3 Exploitation Phase
The exploitation phase happens when B f ≤ 0.5. In this stage beluga whale uses the Levy flight

strategy [18] to enhance convergence to approach the target solution more accurately by hunting prey.

3.1.4 Whale Fall
The whale fall happens when B f <Wf . In this stage the beluga whale abandons inferior prey or focuses

on catching high-quality prey and further converging to the optimal solution. This stage ensures that the
algorithm focuses on optimizing the current best solution, thereby improving the accuracy and reliability of
the final result.
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3.2 Boosted Beluga Whale Optimization Algorithm CTMBWO
As the feature dimension increases, the feature selection method based on BWO will easily fall into

local optimal solutions and uneven population distribution that makes it difficult to choose a feature subset
that is both highly accurate in classification and has a limited number of features. In BWO, the distribution
of its population is shown in Fig. 2a. Most of the populations are distributed in the lower left corner and
the distribution is not uniform. Therefore, when selecting features, processing these densely distributed
populations in the lower left corner increases the possibility of obtaining a local optimal solution. The
population distribution of CTMBWO is shown in Fig. 2b, which shows that it is evenly distributed. This
ensures that all populations will be calculated, and the solution obtained is also the global optimal solution
rather than the local optimal solution.

Figure 2: Comparison of population distribution between BWO and CTMBWO, (a) The population distribution of
BWO, (b) The population distribution of CTMBWO

3.2.1 Cubic Chaos Mapping
A diverse population will have a significant impact on the predicted results. However, the way BWO

generates populations often leads to an uneven distribution, which in turn reduces diversity. To improve the
global search capability, it is essential for the beluga whale population to be evenly distributed across the
entire search space. Chaotic mapping [16] is known for its randomness, regularity and ergodicity, which can
help achieve even distribution and increase population diversity. Therefore, this paper introduces a chaotic
iterative mapping based on the Cubic, the formula is as follows:

xn+1 = ρxn(1 − x2
n) (4)

where xn denotes the position of the nth population, ρ denotes the mixing factor and the Cubic mapping
has better chaotic traversal when x0 = 0.3, β = 0.259. By using Eq. (4), the new population initialization is
obtained as:
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X′ =
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and calculate the fitness value:
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(6)

where n is the size of the beluga whale population, d is the number of dimensions associated with the
design variable.

3.2.2 Triangle Wandering Strategy
(1) The distance dis between the beluga whale and its conspecifics is expressed as:

dis = XT
best − XT

i (7)

where XT
i is the current position for the beluga whale, XT

best is the best position for the beluga whale at
iteration T.

(2) The range of the beluga whale’s walking step length range, is expressed as:

range = α ⋅ dis1 (8)

where α is a normally distributed random number.

(3) Define the direction β of the beluga whale’s movement and express it as:

β = 2πα (9)

where α is a normally distributed random number.

(4) Calculate the final distance Dist between the wandering position and the same type by using Eqs. (7)
and (9):

Dist = dis2 + range2 − 2 ⋅ dis ⋅ range ⋅ cos(β) (10)

(5) The updated position is expressed as:

{
XT+1

i , j = XT
i , p j
+ (XT

r , p1
− XT

i , p j
)(1 + r1) sin(2πr2) + Dist ⋅ rand(0, 1) j = even

XT+1
i , j = XT

i , p j
+ (XT

r , p1
− XT

i , p j
)(1 + r1) cos(2πr2) + Dist ⋅ rand(0, 1) j = odd (11)

where T is the current iteration, XT+1
i , j is the new position for the ith beluga whale on the jth dimension,

p j( j = 1, 2, ⋅ ⋅ ⋅ , d) is a randomly chosen dimension from d-dimension, XT
i , p j

is the position of the ith beluga
whale on p j dimension, XT

r , p1
is the current positions of the rth beluga whale (r is the beluga whale chosen at

random), r1 and r2 are random number between (0, 1), sin(2πr2) and cos(2πr2) denote the fin orientation
of the mirrored beluga, with odd and even choices.
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3.2.3 Cauchy Mutation Combined with Reverse Learning
During the whale fall phase, Cauchy mutation and reverse learning strategies are used to update the

beluga whale’s position to avoid getting stuck into local optima.
In BWO, the target position is updated based on the position change after each iteration and the fitness

value is recalculated so the new position replaces the target position. However, the target position remains
unaffected which may lead to the algorithm trapped by local optimal solution. Therefore, a strategy of
combining Cauchy mutation and reverse learning is proposed to randomly update the target position based
on a random probability P to prevent the algorithm from converging to the local optimal solution. The
mathematical model of the whale fall stage is:

XT+1
i = r5 XT

i − r6 XT
r + r7 Xste p + XT+1

new (12)

Ps = − exp(1 − T
Tmax
)

10
+ ω (13)

XT∗
best = ub + r(lb − XT

best) (14)
⎧⎪⎪⎨⎪⎪⎩

XT+1
new = b3(XT

new − XT∗
best)

XT+1
new = Cauchy(0, 1)XT

best

(15)

where r5, r6, r7, r are random numbers from 0 to 1, Xste p is the movement size during the whale fall stage,
Xste p = (ub − lb) exp(−C2T/Tmax) where C2 is the scaling factor for the movement size, C2 = 2Wf × n,
ub and lb are the maximum and minimum limits, ω is the adjustment factor, and the optimal result of
the function is obtained when ω is equal to 0.05, XT∗

best is the reverse solution of the generation T target
solution XT

best , XT+1
new is the generation T + 1 target solution, Cauchy(0, 1) is the standard Cauchy distribution

function, b3 is the pseudo-information exchange coefficient, b3 = αe(−βT)/Tmax , α is the random initial value,
β is the decay rate, T is the iteration number currently being executed, Tmax is the maximum iterative number.

3.2.4 Sparrow Alert Mechanism
In the whale fall phase, the failed individuals can share useful information with other individuals

by simulating the behavior of alert individuals in the sparrow alert mechanism, thereby transmitting
environmental risks. This information may include the search space situation around the failed individuals
and help other individuals avoid being confined to the same solution or further optimize their own solutions.
The formula is:

XT+1
i = XT

i + α(XT+1
new − XT

i ) + βR (16)

where XT+1
i is the position of the current individual i in generation T + 1, XT+1

new is the target solution of
generation T + 1, α is a scaling factor to control the direction of the individual’s movement, β is a scaling
factor to control the scope of the randomized search and R is a random vector, which is used to guide the
individual to perform the randomized search and increase the stochasticity and diversity of the exploration.

3.2.5 Summary of CTMBWO Algorithm
Fig. 3 is the algorithm flow chart of CTMBWO.
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Figure 3: The algorithm flow chart of CTMBWO

The specific algorithm of CTMBWO is as shown in Algorithm 1.

Algorithm 1: CTMBWO
Input: Objective function f (x), Beluga whale population sizeN, Maximum number of iterations Tmax .
1: Initialize the beluga population and calculate individual fitness value using Eqs. (5) and (6)
2: while(T < Tmax )
3: Calculate B f
4: if(B f > 0.5)
5: Enter the exploration phase and update the position using Eq. (11)
6: else
7: Enter the exploitation phase and update the position
8: if(B f <Wf )
9: CalculateP, Ps , C2, Xste p and updata the position using Eq. (12)
10: if(Ps > P)
11: Calculate XT+1

new using the strategy of Cauchy mutation
(Continued)
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Algorithm 1 (continued)
12: else
13: Calculate XT+1

new using the strategy of reversing learning
14: Using Eq. (16) to help other individuals optimize their own solutions.
15: T = T + 1
16: else
17: T = T + 1
18: end while
Output: the global optimal solution

4 Experimental Design

4.1 Experimental Condition
The experiments in this paper are conducted using Python 3.9 on 64-bit Windows 10 operating system,

with Pycharm and an i7-10700F CPU.

4.2 Datasets
The datasets used in this paper are 19 projects from NASA and PROMISE. The datasets details are shown

in Table 1.

Table 1: Detail of the datasets

Dataset Version #File Features #Defective file %Defective file
ant 1.4, 1.5, 1.6, 1.7 1567 20 330 21.1

camel 1.2, 1.4, 1.6 2445 20 549 22.5
jedit 3.2, 4.0, 4.1, 4.2 1257 20 292 23.2
log4j 1.0, 1.1, 1.2 449 20 256 57

lucene 2.0, 2.2, 2.4 782 20 438 56
poi 1.5, 2.0, 2.5, 3.0 1378 20 707 51.3

synapse 1.0 157 20 16 10.2
velocity 1.4, 1.5, 1.6 639 20 367 57.4

xalan 2.4, 2.5, 2.6 2416 20 908 37.6
xerces 1.3 453 20 69 15.2
CM1 – 505 38 48 9.5
KC1 – 2107 22 325 15.4
KC3 – 458 444 43 9.3
MC1 – 9466 39 68 0.7
MW1 – 403 38 31 7.7
PC1 – 1107 38 76 6.9
PC2 – 5589 37 23 0.4
PC3 – 1563 38 160 10.2
PC4 – 1458 38 178 12.2
PC5 – 17186 39 516 3
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By further observing the specific feature values of each project in Table 1, it can be found that the feature
value distribution in the data set has a large range of differences. For example, in project ant-1.5, the value
of WMC is 9, the value of DIT is 6, the value of LCOM3 is 0.8125, and the value of AMC is 17.2222. This
difference in numerical range will affect the model’s processing of features. To address this problem we use
Min-Max normalization [19] that scales the data and ensures that all numbers have the same range, thereby
eliminating the numerical differences between different features. The formula is:

X′ = X − Xmin

Xmax − Xmin
(17)

where Xmax and Xmin are the maximum and minimum values of the features. According to the Pareto
principle, about 80% of software defects occur in about 20% of software modules [20]. And the sample size for
particular categories in the dataset that we use is far less than that in other categories. To effectively address
this problem, we adopted the Synthetic Minority Over-sampling Technique (SMOTE) [21], which generates
synthetic samples by oversampling the minority class to balance the class distribution.

To assess the stability and generalization capability of the proposed method, we employ 5-fold cross-
validation. The dataset is split evenly into 5 subsets, with 4 subsets used for training in each iteration and
the remaining one used for testing. This process is repeated 5 times, and the final result is the average of all 5
runs. By doing so, each subset is used as a test set at least once, enhancing the model’s overall reliability and
robustness. At the same time, we employ a strategy combining cross-validation and early stopping to further
prevent overfitting.

4.3 Baseline Model
The benchmark models used are four well-known models GAPSO [15], Fed-OLF [22], MFWFS [23],

and SLSTM [24].

4.4 Evaluate Metrics
We evaluate the prediction model’s performance using widely recognized metrics, accuracy, precision,

recall, F1, and the area under the curve (AUC). In addition, we use the Matthews Correlation Coefficient
(MCC) that is a more comprehensive performance indicator. The formulas are:

Accurac y = TN + TP
TN + TP + FN + FP

(18)

Precision = TP
TP + FP

(19)

Recal l = TP
TP + FN

(20)

F −measure = 2 × Precision × Recal l
Precision + Recal l

(21)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(22)

where TP is True Positive that refers to the cases where the sample is positive, and the model also predicts it as
positive, TN is True Negative that refers to the cases where the sample is negative, and the model predicts it as
negative as well, FN is False Negative that refers to the cases where the actual class is positive, but the model
predicts it as negative, FP is False Positive that refers to the cases where the actual class is negative, but the
model predicts it as positive. AUC is the area under the receiver operating characteristic curve (ROC). ROC
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curve is an effective tool for evaluating the performance of binary classification models. By plotting the false
positive rate and recall at different classification thresholds, it helps us gain a comprehensive understanding
of the model’s performance under various conditions. The AUC measures the discriminatory ability of the
classification model, with values closer to 1 indicating better classification performance.

5 Result
To evaluate the performance of CTMBWO, we use 5-fold cross-validation on four classifiers, namely

SVM [25,26], RF [27], DT [28], and KNN [29], to conduct experiments and obtain the experimental results
of Accuracy, AUC, MCC, F1, and Recall. Table 2 is the experimental results of the same version (training and
testing are completed in the same project and the same version). Table 3 is the experimental results of the
cross-version (Training is done with the lower version, and testing is conducted with the higher version).

To further compare the performance of the four classifiers, we calculated their fitness values on several
datasets, with the results shown in Fig. 4. And Table 4 presents the running time (in seconds) of the four
classifiers after 100 iterations on each dataset, with the average value bolded.

Table 2 illustrates that the experimental results obtained when using RF as a classifier are better than the
other three classifiers. It can be concluded that the overall experimental results of projects Lucene and Log4j
are worse than those of other projects; the overall experimental results of MC1 and PC2 are better than those
of other projects. By specifically analyzing the detail of datasets in Table 1, projects MC1 and PC2 have 9466
and 5589 instances, respectively, while projects Lucene and Log4j have only 782 and 449 instances. From
this, it is evident that the results of SD are closely linked to the number of instances in the project.
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Table 3: Time comparison of four classifiers

Dataset DT KNN RF SVM
ant-1.7 15.20 53.14 503.96 290.65

camel-1.4 18.42 65.96 575.85 524.16
camel-1.6 17.11 72.37 636.51 699.95

ivy-1.2 12.65 29.20 388.53 83.12
jedit-3.2 5.83 19.56 311.17 35.21
jedit-4.0 7.73 25.49 345.98 55.03
jedit-4.2 9.23 30.96 391.86 76.00
log4j-1.0 4.56 13.65 299.46 15.53
log4j-1.2 5.28 20.43 322.41 35.66

lucene-2.2 5.33 16.54 320.66 32.99
lucene-2.4 6.05 21.78 343.54 49.43

poi-2.0 8.28 26.51 378.99 74.19
synapse-1.0 5.98 16.17 301.97 21.78
velocity-1.6 5.53 17.64 319.97 34.05
xalan-2.4 16.34 77.20 553.82 377.59
xalan-2.6 9.87 42.38 429.37 287.85
xerces-1.3 8.89 40.10 402.53 322.51

CM1 23.01 161.27 530.61 200.33
KC1 34.90 165.18 992.06 2759.81
KC3 16.95 156.01 473.69 158.80
MC1 421.40 1010.33 4032.26 30725.03
MW1 16.67 148.18 440.24 135.56
PC1 40.35 213.42 823.34 1004.19
PC2 329.60 636.35 3664.39 17699.06
PC3 74.42 271.01 1178.41 1997.21
PC4 52.75 251.03 1098.35 1177.78
PC5 1278.34 1837.32 11940.09 118255.98

Average 90.77 201.45 1185.19 6560.35

Table 4 shows that when using CTMBWO for cross-version defect prediction, the average accuracy is
above 60%, the F1 value varies greatly for different projects, and the average MCC value is low, with the
highest being 0.2963. It can be concluded that the prediction performance of using CTMBWO for cross-
version prediction is weak. The main reason is that we only consider traditional features and do not further
explore the semantic features and other dependencies between codes.
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Figure 4: The fitness values of four classifiers on some datasets, (a) The fitness value of ant-1.7; (b) The fitness value of
camel-1.4; (c) The fitness value of jedit-3.2; (d) The fitness value of jedit-4.3; (e) The fitness value of log4j-1.0; (f) The
fitness value of poi-2.0; (g) The fitness value of synapse-1.0; (h) The fitness value of xalan-2.4; (i) The fitness value of
MW1; (j) The fitness value of MC1; (k) The fitness value of PC1; (l) The fitness value of PC5
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Table 4: Accuracy, AUC, MCC, F1 results of CTMBWO on DT, KNN, RF and SVM

DT KNN RF SVM

Source Target ACC AUC MCC F1 ACC AUC MCC F1 ACC AUC MCC F1 ACC AUC MCC F1

ant-1.4 ant-1.6 0.659 0.543 0.11 0.339 0.622 0.621 0.177 0.432 0.684 0.603 0.133 0.335 0.641 0.579 0.151 0.399
ant-1.6 ant-1.7 0.671 0.664 0.318 0.479 0.688 0.695 0.379 0.535 0.598 0.608 0.242 0.573 0.719 0.726 0.38 0.535

camel-1.2 camel-1.4 0.686 0.668 0.276 0.415 0.668 0.693 0.237 0.388 0.642 0.569 0.239 0.461 0.633 0.676 0.172 0.345
camel-1.4 camel-1.6 0.591 0.618 0.256 0.387 0.686 0.654 0.205 0.389 0.658 0.628 0.224 0.431 0.682 0.65 0.19 0.378
jedit-3.2 jedit-4.0 0.569 0.547 0.452 0.599 0.63 0.647 0.426 0.582 0.629 0.614 0.365 0.643 0.628 0.815 0.373 0.538
jedit-4.0 jedit-4.1 0.693 0.691 0.441 0.576 0.713 0.73 0.436 0.595 0.77 0.8 0.459 0.595 0.75 0.793 0.411 0.575

lucene-2.0 lucene-2.2 0.602 0.616 0.242 0.598 0.622 0.637 0.264 0.637 0.627 0.657 0.285 0.632 0.622 0.634 0.256 0.644
lucene-2.2 lucene-2.4 0.558 0.55 0.098 0.616 0.644 0.668 0.307 0.667 0.612 0.643 0.201 0.7 0.602 0.681 0.224 0.624

poi-1.5 poi-2.5 0.584 0.605 0.366 0.731 0.708 0.72 0.389 0.759 0.687 0.7 0.482 0.795 0.785 0.853 0.551 0.825
poi-2.5 poi-3.0 0.584 0.591 0.177 0.628 0.666 0.707 0.328 0.715 0.637 0.653 0.275 0.685 0.679 0.762 0.393 0.7

velocity-1.4 velocity-1.5 0.611 0.498 0.106 0.743 0.624 0.498 0.056 0.746 0.645 0.41 0.056 0.775 0.624 0.535 0.052 0.746
velocity-1.5 velocity-1.6 0.589 0.639 0.272 0.569 0.624 0.685 0.317 0.59 0.615 0.653 0.347 0.66 0.654 0.689 0.327 0.589
xalan-2.4 xalna-2.5 0.562 0.548 0.138 0.306 0.579 0.604 0.156 0.461 0.573 0.623 0.171 0.321 0.608 0.633 0.223 0.486
xalna-2.5 xalan-2.6 0.583 0.579 0.266 0.571 0.601 0.633 0.362 0.645 0.592 0.581 0.304 0.619 0.624 0.683 0.446 0.597
Average 0.615 0.606 0.259 0.542 0.648 0.659 0.291 0.589 0.645 0.628 0.272 0.584 0.663 0.695 0.297 0.571

5.1 Comparison with Baseline Models
It can be concluded from Fig. 4 that the fitness values of the four classifiers are ranked as RF, DT,

KNN, and SVM on most datasets. From Table 3, we observe that DT and KNN have the shortest running
times among the classifiers. To further test the effectiveness of CTMBWO in feature selection, we compared
CTMBWO with 4 prominent methods, namely GAPSO, Fed-OLF, MFWFS, and SLSTM. Table 5 shows a
comparison between our method and the baseline methods(with the maximum value is bolded). Our results
are the average of the outcomes obtained using KNN and RF as classifiers. And the comparison between
CTMBWO and the baseline models’ average values is shown in Fig. 5. The ‘–’ in Table 5 indicates missing
values, meaning there is no relevant data available in the original paper. We also attempted to reach out to
the authors, but they did not share their code with us.

Table 5: The results of F1 and AUC

F1 AUC

Dataset GAPSO Fed-OLF MFWFS SLSTM Ours GAPSO Fed-OLF MFWFS SLSTM Ours
ant 0.879 0.611 0.809 0.913 0.891 0.842 0.747 0.837 0.966 0.926

camel 0.866 0.411 0.761 0.891 0.895 0.846 0.635 0.850 0.952 0.932
jedit 0.869 0.607 0.722 0.981 0.954 0.820 0.840 0.982 0.995 0.981

lucene 0.394 – 0.831 0.764 0.807 0.500 – 0.900 0.838 0.838
poi 0.702 0.589 0.613 0.796 0.952 0.696 0.753 0.912 0.843 0.966

xalan 0.681 0.588 0.901 0.813 0.899 0.646 0.747 0.948 0.874 0.911
xerces 0.920 0.656 0.901 0.952 0.970 0.872 0.787 0.891 0.982 0.992
CM1 0.950 0.427 – 0.981 0.939 0.907 0.723 – 0.996 0.979
KC1 0.875 0.404 0.753 0.885 0.890 0.850 0.637 0.868 0.949 0.955
MC1 0.988 0.256 0.712 0.999 0.999 0.995 0.786 0.933 0.999 0.999
PC1 0.968 0.326 – 0.993 0.964 0.940 0.720 – 0.993 0.986
PC3 0.949 0.428 0.803 0.976 0.933 0.904 0.676 0.924 0.976 0.979
PC4 0.935 0.557 0.854 0.988 0.961 0.878 0.720 0.938 0.987 0.992

Average 0.845 0.488 0.787 0.917 0.928 0.823 0.731 0.908 0.949 0.957

Based on the results in Table 5, it can be observed that the F1 and AUC values of CTMBWO show
significant improvements compared to the four baseline methods. The F1 score increased by 0.3%–74%, and
AUC improved by 4.9%–33.8%. Additionally, the average F1 and AUC values of CTMBWO are higher than
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those of the baseline methods. These improvements indicate that CTMBWO is more effective at capturing
the underlying patterns in the data, leading to higher accuracy and better performance in classification tasks.
The increase in the F1 score suggests that the model performs better in handling class imbalance, achieving
a better balance between recall and precision. The rise in AUC indicates that the model is more capable
of distinguishing between different classes, especially when faced with complex and incomplete input data,
making more accurate predictions. These results highlight the advantages of CTMBWO in defect prediction
tasks and validate its effective improvement over baseline methods.

Figure 5: The comparison of the average values of F1 and AUC

5.2 Ablation Experiment
To further verifying the feasibility of our method, we conducted ablation experiments to compare

the effects of using CTMBWO and other methods. Table 6 presents the results of ablation experiments.
The methods tested include a baseline (Method1) without using feature selection, and two methods that
incorporate Cubic chaotic mapping and an update mechanism combining Cauchy mutation and reverse
learning. Method2 initializes the population using Cubic chaotic mapping, resulting in a 5.71% improvement
in accuracy compared to Method1. Method3 builds on Method2 by adding a position update mechanism and
achieves a further 3.46% improvement in accuracy. In Table 6, Cubic is the initialization of the population
using Cubic chaotic mapping, C_M&O_L are the Cauchy variation and reverse learning, and T_W is the
triangular wandering strategy.

In addition, we discussed the influence of parameters on the experimental results. The hyperparameter
Tmax has minimal impact on the experimental results because we use the strategy of early stopping and cross
validation to avoid overfitting. Therefore, we focus primarily on analyzing how the population size N affects
the results. We set the population size to 10, 20, and 30 and the experimental results are shown in Table 7.
From Table 7, we can see that as the population size increases, both the Accuracy and AUC values of the
model generally improve. This suggests that a larger population size enhances the model’s performance.
However, the population size cannot be increased indefinitely, as each individual in the population needs
to be processed as the population grows, which significantly increases both computational time and space
complexity, and may slow down the speed of convergence. In other words, the algorithm will take longer to
reach the optimal solution. For this reason, we chose a population size of 30, which strikes a balance between
resource usage and model performance.
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Table 6: The results of ablation experiment

Cubic C_M&O_L T_W Accuracy AUC F1 Recall
Method1 0.772 0.845 0.772 0.789
Method2 ✓ 0.829 0.873 0.825 0.843
Method3 ✓ ✓ 0.863 0.894 0.862 0.877

CTMBWO ✓ ✓ ✓ 0.878 0.907 0.884 0.9

Table 7: The results of Accuracy and AUC for different population size

Accuracy AUC

Dataset N = 10 N = 20 N = 30 N = 10 N = 20 N = 30
ant 0.88 0.882 0.889 0.926 0.927 0.929

camel 0.778 0.788 0.79 0.833 0.826 0.829
jedit 0.858 0.875 0.885 0.907 0.907 0.924
log4j 0.89 0.904 0.903 0.926 0.93 0.921

lucene 0.747 0.765 0.781 0.761 0.793 0.809
poi 0.837 0.846 0.857 0.865 0.88 0.884

synapse 0.926 0.919 0.919 0.959 0.939 0.945
velocity 0.873 0.892 0.904 0.913 0.923 0.929

xalan 0.795 0.798 0.806 0.848 0.841 0.846
xerces 0.882 0.885 0.893 0.937 0.938 0.939

Average 0.847 0.855 0.863 0.888 0.89 0.896

5.3 The results of Paired t-Tests
Table 8 summarizes the results obtained from the paired t-test at a significance level of 5%. The results

show that CTMBWO significantly outperforms the three baseline models: GAPSO, Fed-OLF and MFWFS.
Although the significance of CTMBWO compared to SLSTM is not as pronounced, we can conclude from
the comparison of the average values in Table 5 and Fig. 5 that CTMBWO’s classification performance is
clearly superior to that of SLSTM.

Table 8: The results of paired t-tests

CTMBWO vs. GAPSO CTMBWO
vs. Fed-OLF

CTMBWO
vs. MFWFS

CTMBWO
vs. SLSTM

F1 p-value 0.0473 0.0001 0.0287 0.0949
AUC p-value 0.0351 0.0003 0.0339 0.1031

6 Conclusion and Future Work
This study proposes a new feature selection method CTMBWO to effectively select the optimal feature

subset. CTMBWO aims to exclude redundant and irrelevant features and thus select the most important
features. We evaluated the performance of CTMBWO on 19 project using four classifiers and compared the
performance with existing models. The results demonstrate that applying CTMBWO in feature selection
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significantly enhances the performance of SDP. Specifically, the average F1 value increases by 74%, the average
AUC value increases by 33.8%. These improvements show that the algorithm effectively removes redundant
and irrelevant features and selects the most valuable features for defect prediction, thereby enhancing
the accuracy of the model. Furthermore, the CTMBWO improves population diversity and global search
capabilities, effectively avoids local optimal solutions, and thus improves the prediction effect.

The application scenarios of CTMBWO in feature selection problems in machine learning include med-
ical diagnosis, image processing, financial analysis, and text classification. Feature selection helps identify key
indicators that are most relevant to the task, improving disease prediction accuracy, enhancing classification
precision, optimizing risk assessment and investment decisions, and boosting text classification effectiveness.

However, CTMBWO has some limitations. It mainly performs feature selection based on traditional
features and cannot consider the semantic information between codes, which leads to poor performance
when predicting cross-version defect prediction. Therefore, future research will focus on exploring methods
that combine semantic information and traditional features for SDP.
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