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ABSTRACT: With the integration of informatization and intelligence into the Communication-Based Train Control
(CBTC) systems, the system is facing an increasing number of information security threats. As an important method
of characterizing the system security status, the security situation assessment is used to analyze the system security
situation. However, existing situation assessment methods fail to integrate the coupling relationship between the
physical layer and the information layer of the CBTC systems, and cannot dynamically characterize the real-time
security situation changes under cyber attacks. In this paper, a hierarchical security situation assessment approach is
proposed to address the security challenges of CBTC systems, which can perceive cyber attacks, quantify the security
situation, and characterize the security situation changes under cyber attacks. Specifically, for the physical layer of CBTC
systems, the impact of cyber attacks is evaluated with the train punctuality rate and train departure interval indicators.
For the information layer of CBTC systems, the system vulnerabilities and system threats are selected as static level
indicators, and the critical network characteristics are selected as dynamic level indicators to quantify the real-time
security situation. Finally, the comprehensive security situation assessment value of the CBTC systems is obtained by
integrating the physical and information layer indicators. Simulation results illustrate that the proposed approach can
dynamically characterize the real-time security situation of CBTC systems, enhancing the ability to perceive and assess
information security risks.
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1 Introduction
Nowadays, more and more attention has been paid to the research on information security of train

control system [1,2]. With the deep integration of urban rail transit informatization and intelligence, the
threats faced by the train control system are gradually increasing, heightening the risk of information
security. The train control system adopts the universal TCP/IP protocol stack, rendering them vulnerable to
cyber attacks such as data spoofing and flood attacks. Moreover, it is difficult to achieve complete enclosed
interconnection between the train control system and other information service systems, thus increasing the
information security risks associated with train control system [3]. The occurrence of information security
incidents could significantly impact critical infrastructure, including urban rail transit [4].

Situation awareness technology is a proactive information security technology that can identify
potential information security threats and protect the CBTC systems from serious damage. Different from
intrusion detection technology [5,6], situation awareness technology includes not only the detection of cyber
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attack, but also the assessment of system security status and the prediction of system security evolution
trends [7]. Assessing the security situation of the system is the key to the application of situation awareness
technology [8]. However, traditional situation assessment methods suffer from two main drawbacks. First,
current situation awareness methods mainly establish static models to assess the system situation (e.g., assess
the current security situation), but cannot dynamically characterize real-time situation variations under
cyber attacks. Second, the network situation assessment methods do not take advantage of the coupling
relationship between the physical layer and the information layer of the CBTC systems, and some inherent
characteristics of the CBTC systems are not considered, such as redundant network structures and fail-
safe mechanisms [9]. For instance, the system operates with a fixed line cycle, resulting in stable data
characteristics. And the system operates 24/7 without interruption, leaving no extra time to update the
situation assessment model. Besides, the fail-safe mechanisms will cover up the equipment failures caused
by the cyber attacks, making it impossible to assess the real security situation.

Therefore, this paper proposes the hierarchical security situation assessment approach to address the
situation assessment challenges within CBTC systems. The proposed assessment approach can dynamically
characterize the information security situation from both the information and physical layers of CBTC
systems, and utilize the inherent coupling relationship between the two layers to achieve a comprehensive
security situation assessment. To the best of our knowledge, this is the first work discussing the application
of a hierarchical security situation assessment approach for CBTC systems. The contributions of the paper
are as follows:

• In view of the challenges faced by current situation assessment methods, a hierarchical security
situation assessment approach is proposed. The hierarchical security situation assessment approach
can perceive cyber attacks in real-time and characterize the security situation changes under cyber
attacks. Specifically, by analyzing the impact of cyber attacks on the physical layer of the train control
system, quantifying the changes in the situation indicators of the information layer under cyber
attacks, integrating the situation assessment indicators of the physical layer and information layer of
the CBTC systems, the coupling relationship between the assessment indicators is established, and the
comprehensive security situation assessment value is obtained.

• In order to dynamically perceive the cyber attacks and reflect the real-time situation variations of CBTC
systems, an improved generative adversarial network based artificial immune system (GAN-AIS) is
exploited by our approach. Specifically, the changes in antibody concentration of GAN-AIS are used to
characterize the dynamic security situation variations of the CBTC systems. The network characteristics
are used for immune learning and self-updating, and the GAN neural network is used to balance the
antibody population and rapidly clone effective antibodies.

The rest of this paper is organized as follows. Section 2 provides the research background and related
studies of the situation assessment approach. Section 3 describes the comprehensive architecture and
the detailed mechanism design. The performance of the proposed approach is simulated and verified
in Section 4. The results and discussion are introduced in Section 5. And the conclusion is described
in Section 6.

2 Background and Literature Review
This section provides background knowledge on artificial immune system and GAN neural network.

Moreover, the related works for situation assessment are also discussed.



Comput Mater Contin. 2025;83(3) 4283

2.1 Artificial Immune System
Artificial immunity is an advanced technology inspired by the theory of natural immunity and follows

the principle of natural immunity. It has made remarkable achievements in the field of information security
and cyber attack recognition [10]. Artificial immune system can achieve the system security situation
awareness without prior knowledge, and continuously enhance its perception performance by the designed
evolutionary mutation mechanisms, to perceive the security situation dynamically and accurately, and ensure
the safe operation of the system.

The artificial immune system possesses the characteristics of self-learning, self-organization, self-
adaptation, highly distributed and long-term memory [11]. Generally, the immune mechanism can be divided
into three main stages. The first is the process of immune cells from immaturity to maturity, known as self-
tolerance. The second is the process of immune response, in which immune cells match with antigens and
form immune memory. The third is the immune feedback process, the specific antibodies are generated and
the immune process can be regulated.

2.2 GAN
GAN is a deep neural network that has been widely used in the field of data learning and data

generation [12]. The standard GAN is composed of generator G and discriminator D, the instance samples
are generated by the generator and mixed with the real samples, and then randomly sent to the discriminator
to distinguish whether the data is real or comes from G. Similar to the adversarial mechanism, optimization
objectives, and the dynamic learning process of reinforcement learning [13,14], the core of the GAN network
is the adversarial process between the generator G and the discriminator D. For the training process of GAN,
the purpose of the generator is to fit the distribution of real samples, so that the discriminator cannot discern
real samples or fake data. Through iterative training and optimization, the Nash balance is achieved. During
the training process, the parameters of the generator G and the discriminator D are continuously adjusted to
achieve better generation effects through dynamic learning. The objective function of GAN can be expressed
as

min
G

max
D

V (D, G) = Ex∼P(x) [log D (x)] + Ez∼P(z) [log (1 − D (G (z)))] (1)

where D and G are discriminator and generator, respectively. x is the sample data, z is the random noise.
p (x) is the real data distribution, and p (z) is the latent space distribution.

By learning the distribution of real data, GAN can be used to solve the problem of imbalanced
data distribution and data generation. In an artificial immune system, the clone selection of specific
antibodies is critical for the evolution and variation of antibody populations. Based on the GAN model, the
mature antibody vectors are selected and learned, then the generated antibodies are added to the antibody
population, enabling the artificial immune system to benefit from a richer population.

2.3 Literature Review
For the IT network, Yu [15] propose a multi-objective decision method for network security situation

grade assessment. The method first defines membership functions of attribute eigenvalue grades, trust
transmission methods, multi-path trust integration, and further establishes a multi-objective decision grade
assessment optimization model to obtain the network security situation grades. Wang et al. [16] propose a
network security information analysis and network security situation (NSS) model based on data mining,
the model cannot only detect network security threats but also evaluate the network security situation with
system security indicators. Specifically, the threat data are classified and the risk measurement is conducted.
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Then the security of each type of threat is measured according to the information characteristics of network
attacks. Finally, according to different attack motivations, different evaluation methods are used to obtain
comprehensive situation assessment results. Du et al. [17] propose a network security situation assessment
model in the SDN environment. The situation elements are mapped to the layers of back propagation (BP)
neural network, and the weights and thresholds of the BP neural network are optimized by the cuckoo
search algorithm. Specifically, the situation indicators are used as the input data for the BP neural network,
and the value of the output layer is the result of the evaluation. Guo et al. [18] propose a defensive random
game model, which first analyzes the threat propagation process, establishes the threat propagation-access
relationship network, and then designs a random game model of the threat action and protection strategy
game. The random game model is used to quantify the network security situation. Yang et al. [19] propose a
situation assessment model based on unsupervised learning. The paper applies the variational autoencoder
(VAE) and GAN for data feature information extracting and error threshold calculation. Then the situation
value is calculated based on the threat probability and threat impact. Specifically, the threat probability is
obtained from the test results of each test, and the threat impact is defined by the Common Vulnerability
Scoring System (CVSS). Wang et al. [20] propose a network security situation assessment framework based
on analytic hierarchy process (AHP). The indicators of basic operation, threat, vulnerability, and asset
breakage are considered to establish the assessment model. Three indexes of risk situation, the system
operation, and the damage degree are discussed, and the weight factors of the evaluation index are assigned by
the AHP process. In the aforementioned research, mathematical models are established to assess the network
security situation. However, most of these models adopt subjective evaluation methods or neural network
models. Such models are heavily weighted towards subjective factors and lack interpretability. Furthermore,
these models analyze the impact of cyber attacks from the network perspective, such as assessing the security
risks of the system and obtaining the network security situation value. However, these models do not
consider the impact of attacks on the industrial systems operation and cannot be directly applied to train
control systems.

For the industrial control systems, Zhang et al. [21] propose a new security situation awareness method
for the power grid. First, the power grid security situation evaluation indicators are selected, and then the
power grid security situation risks are quantified and divided into different security risk levels. Finally,
the power grid security situation prediction model based on deep learning is constructed and the security
situation awareness prediction results are verified. Zhang et al. [22] propose a combination active-passive risk
source identification method for the terminal area control system, which includes 19 secondary indicators
and 3 primary indicators. Then the sparrow search algorithm (ISSA)-extreme learning machine (ELM)
framework is used for risk probability prediction. Finally, the overall risk probability obtained by the Bayesian
theory and evaluation weight are used to obtain the overall situation assessment value. Zhao et al. [23]
propose a wavelet neural network analysis method to obtain the security situation value. The network and
control characteristics such as security monitoring, security alarms, security analysis, security audits, and
security verification information are selected as indicators. Then the indicators are selected as the sampled
dataset to train the wavelet neural network model, and the security situation value of the power control
system is set as the output. Li et al. [24] propose a network security situation assessment method for industrial
control networks. The information in the sparse data is extracted by the stack autoencoder and the data
dimensionality is reduced. The nonlinear mapping relationship of the network status is fitted through the RBF
network, and the security situation assessment value of the industrial control network is calculated. However,
the above methods do not consider how the security situation of the industrial control system changes when
cyber attacks are introduced. Lei et al. [25] propose a smart grid security situation awareness algorithm
based on deep reinforcement learning. The situation elements such as network port traffic information, alarm
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events in the system logs, node vulnerabilities, and known attacks are acquired for situation assessment. The
integrated edge computing and deep reinforcement learning method can minimize processing costs on the
premise of minimizing attack detection error rates. However, the proposed algorithm evaluates the system
security situation solely based on detection metrics, such as detection rate and false alarm rate. Real-time
dynamic security situation assessment methods still require further optimization and research.

For the cyber-physical transportation systems (CTS), Yu et al. [26] conducted a comprehensive analysis
of the security threats, attack mechanisms, and defense measures of cyber-physical systems from three
dimensions: physical domain, cyber domain, and cyber-physical domain. Cyber-physical systems is an
important part of Industry 4.0 and faces many security threats, the article discusses the challenges and
future directions of current research. Alsulami et al. [27] propose a transfer learning based intelligent
intrusion detection system for autonomous vehicle-cyber physical systems. The actual position and actual
speed of the autonomous vehicle, the actual position and actual speed of the preceding vehicle, these one-
dimensional data are converted into two-dimensional images for input into the pre-trained convolutional
neural network (CNN) model. Then the intelligent intrusion detection system using the CNN model to
detect the cyberattacks targeting the physical components of an autonomous vehicle through controller
area network (CAN). Abdo et al. [28] propose a comprehensive connected and automated transportation
system (CATS) cybersecurity research framework that covers multiple levels from individual vehicles to
transportation networks, and emphasizes the importance of threat analysis and risk assessment (TARA)
tools in cybersecurity research. Specifically, TARA assesses the likelihood and impact of cyber attacks and
combines them to derive the CATS risks. The TARA method includes both qualitative and quantitative
methods, the qualitative method relies on expert experience to assess network risk, while the quantitative
method is based on probability theory and statistical models to assess the likelihood of threats and risks.
The above studies introduced the security issues and security assessment methods faced by different
transportation modes. However, some security assessment methods are highly subjective and lack a dynamic
security assessment process to deal with cyber threats.

In recent years, there have been few studies on situation assessment for CBTC systems. Lu et al. [29]
propose a resilience-based security assessment method based on structural information entropy to measure
the security level of CBTC systems. The two-dimensional structure entropy is used to evaluate the perfor-
mance of the cyber domain, and the impact of cyber attacks on the physical domain of the CBTC systems is
calculated according to the timetable and running states. The resilience metrics considering both the cyber
domain and physical domain are used to analyze the security level of CBTC systems. Kang et al. [30] propose
a multi-dimensional Gaussian hidden Markov model approach to quantify the situation awareness value of
CBTC systems. The information features, including CPU usage, RAM usage, disk access rate, and network
rate, are considered, and an integrated situation awareness value for CBTC systems is derived using entropy
weights. However, the research does not closely integrate with the characteristics of the CBTC systems, and
it fails to explore the changes in the information security situation when the system suffered cyber attacks.
In this paper, we propose a hierarchical security situation assessment approach that combines physical layer
and information layer indicators to quantify the security situation under cyber attacks, and the real-time
comprehensive security situation assessment value is calculated through the evaluation indicators from both
dynamic and static aspects.

3 Hierarchical Security Situation Assessment Approach
In this section, we first provide the general structure of our hierarchical security situation assessment

approach. Then, we describe the situation assessment approach in detail.
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3.1 Overall Architecture
As a typical cyber-physical system, CBTC systems integrate physical processes with computing systems,

incorporating controllers, actuators, and sensors. Train operations in the physical environment are governed
by a computing and communication network, which relies on multi-source sensors for data acquisition.
The CBTC architecture is generally divided into two primary layers: the physical layer and the information
layer [31]. As depicted in Fig. 1, the physical layer encompasses the state and actions of trains, components,
devices, and sensors. The information layer achieves communication and control signal exchange between
critical devices such as the zone controller (ZC), computer interlocking (CI), automatic train supervision
(ATS), database storage unit (DSU), access point (AP), and vehicle onboard controller (VOBC). This
hierarchical structure ensures efficient interaction between the physical and information layers of the system.
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Figure 1: The general structure of CBTC systems

The purpose of CBTC systems is to ensure the safe and efficient operation of trains. The physical layer
primarily focuses on the acceleration, speed, and location of the train, as well as the observation of the
physical characteristics such as train speed and train location. The information layer is mainly concerned
with communication and information exchange between the train and the ground. For example, the ZC
calculates the correct movement authorization (MA) and sends it to the VOBC of the train through the train-
ground network. Cyber attacks do not directly damage the physical characteristics of trains but can indirectly
disrupt normal operations through the communication network. For instance, a DoS attack can obstruct the
normal communication between trains and the ground, while a data tampering attack can manipulate MA
information transmitted between trains and the ground. The results of cyber attacks may lead to anomalies
in the physical layer of the system. Therefore, when conducting situation assessment, it is not only necessary
to quantify security situation of the information layer under cyber attacks but also consider its impact on the
physical layer of the system.
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The general structure of the hierarchical security situation assessment approach is shown in Fig. 2. For
the physical layer, the impact of cyber attacks on the system is discussed. Specifically, the train punctuality
rate and train departure interval are used to evaluate the impact of cyber attacks on the physical layer. For the
information layer, the system vulnerabilities, system threats and network characteristics are the main aspects
that need to be assessed and quantified. The specific indicators for each aspect are listed and discussed later.
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Figure 2: The general structure of hierarchical security situation assessment approach

3.2 Situation Assessment for the Physical Layer of CBTC Systems
In this section, the train control model is established and the Kalman filter method is used to obtain train

state observations. The classical Kalman filter method has uncertain observation errors under cyber attacks.
Therefore, we first establish the attack model and then introduce the unscented Kalman filter to estimate the
train state under cyber attacks. Then, we calculate the changes in the train punctuality rate and departure
interval based on the train state observations. Finally, the quantitative impact of cyber attacks on the physical
layer of the train control system can be calculated.

3.2.1 Train Control Model
We assume that the train control system is discrete and linear time-invariant, and the control model can

be expressed as

Xk+1 = AXk + BUk + Wk (2)
Uk = −CXk (3)

where Xk is the train state vector, Uk is the system input vector, Yk is the system observation vector.
Wk ∼ (0, Q) is zero-mean Gaussian random process noise. A and B are the system parameter matrix, C
is the feedback gain matrix. The parameter matrix A, B, and C can be calculated according to the train
dynamics equation.
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The train dynamics equation can be expressed as

s(i)
k+1 = s(i)

k + T ⋅ v(i)
k + 1

2
T2 ⋅ u(i)

k (4)

v(i)
k+1 = v(i)

k + T ⋅ u(i)
k (5)

where si
k , vi

k , and ui
k represent the location, velocity, and acceleration of the ith train at the time k, respectively,

T is the data transmission cycle of VBOC and ZC.
The train state vector Xk and system input vector Uk can be expressed as

Xk = [δx(1)k , δx(2)k , . . . , δx(n)k ]
T

(6)

Uk = [δu(1)k , δu(2)k , . . . , δu(n)k ]
T

(7)

where δx(i)
k = [δs(i)

k , δv(i)
k ] is the state vector of train i, δs(i)

k = s(i−1)
k − s(i)

k − S(i) and δv(i)
k = v(i)

k − V (i) are
the deviation of tracking interval and train speed, respectively. S(i) and V (i) represent the optimal tracking
interval and train speed. δu(i)

k is the acceleration generated by train traction and braking of train i. n is the
number of trains.

Then the train dynamics equation can be rewritten as

δs(i)
k+1 = δs(i)

k + T ⋅ (δv(i−1)
k − δv(i)

k ) + 1
2

T2 ⋅ (u(i−1)
k − u(i)

k ) (8)

δv(i)
k+1 = δv(i)

k + T ⋅ u(i)
k (9)

According the Eqs. (4)–(9), the parameter matrix A = (ai j)n×n , ai j ∈ R2×2, B = (bi j)n×n , bi j ∈ R2×1, and
C = (ci j)n×n , ci j ∈ R1×2 can be calculated as

ai j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

1 −T
0 1

⎤⎥⎥⎥⎥⎦
, i = j

⎡⎢⎢⎢⎢⎣

1 T
0 1

⎤⎥⎥⎥⎥⎦
, i = j − 1

02×2, others

(10a)

bi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

−T2/2
1

⎤⎥⎥⎥⎥⎦
, i = j

⎡⎢⎢⎢⎢⎣

T2/2
0

⎤⎥⎥⎥⎥⎦
, i = j − 1

02×1 , others

(10b)

ci j =
⎧⎪⎪⎨⎪⎪⎩

c(i), i = j
01×2, i ≠ j

(10c)

where c(i) is the control output generated based on the distance to train i − 1 and the speed of train i.
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According to the principle of train dynamics, the observation equation can be expressed as

Yk = HXk + Vk (11)

where Yk = [y(1)k , y(2)k , . . . , y(n)k ]
T

is the system observation vector, and y(i)
k = [s(i)

k , v(i)
k ] is the observed

position and speed information of the train. The measurement matrix H = (hi j)n×n , hi j ∈ R2×2 is a block
diagonal matrix and hi j = diag [1, 1]. Vk ∼ (0, σ 2) is zero-mean Gaussian random observation noise.

3.2.2 The Train State Observation
The CBTC systems can be regarded as a discrete-time linear dynamic system and its noise term conforms

to the Gaussian distribution. Under the premise that the system is observable, the Kalman filter is the optimal
linear estimator that can minimize the mean square state error. The Kalman filter is an online estimator, and
each iteration consists of a prediction step and a measurement value update step.

The first stage of the Kalman filter is the prediction stage, which estimates the current state based on the
state estimate and input at the previous moment. This stage mainly calculates the state prediction and error
covariance prediction, where the state prediction can be expressed as

X̂k∣k−1 = AX̂k−1∣k−1 + BUk−1 (12)

where X̂k∣k−1 is the state at time k predicted based on the estimated state value X̂k−1∣k−1 at time k − 1 and the
input Uk−1.

The error covariance prediction Pk∣k−1 can be expressed as

Pk∣k−1 = APk−1∣k−1AT + Q (13)

where Pk∣k−1 is the predicted state estimation error covariance, represents the uncertainty of the predicted
state X̂k∣k−1, and Q represents the process noise covariance.

The second stage is the update stage. After obtaining the observation value Yk , the predicted state and
the actual observation are combined in the update stage to obtain a more accurate posterior state estimate.
The Kalman gain can be expressed as

Kk = Pk∣k−1HT(HPk∣k−1HT + R)−1
(14)

where Kk determines the weight between the predicted state and the observation. The larger Kk is, the greater
the importance of the observation. The smaller Kk is, the greater the importance of the prediction. H is the
observation matrix, and R is the observation noise covariance.

The state update X̂k∣k can be expressed as

X̂k∣k = X̂k∣k−1 + Kk (Yk − HX̂k∣k−1) (15)

where Yk − HX̂k∣k−1 represents the error between the observed value and the predicted value, and X̂k∣k is the
updated state estimate.

The error covariance update can be expressed as

Pk∣k = (I − Kk H) Pk∣k−1 (16)

where I is the unit matrix. Pk∣k reflects the uncertainty of the updated state. After the update, the error
covariance decreases because the introduction of the observed value reduces the uncertainty of the state.
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3.2.3 The Unscented Kalman Filter
When the train control system is suffered by a cyber attack, the system observation equation may

deviate. For example, a deviation in the observed position of the train may lead to inaccurate calculation
of the movement authorization, resulting in emergency braking or stopping of the train. In that case, the
classical Kalman filter will overestimate or underestimate the covariance matrix of the system, causing the
state estimate to deviate from the actual value, and making it difficult for the classical Kalman filter to provide
accurate state estimation. Therefore, the unscented Kalman filter (UKF) is introduced to estimate the train
state under cyber attack.

The unscented Kalman filter is a nonlinear filtering method that nonlinearly maps the distribution of
the state (approximately represented by the Sigma point) to the observation space through the observation
equation to obtain the approximate statistical characteristics of the observation distribution. The calculation
steps can be expressed as

1. Initialization We initialize the state vector X̂0 and state error covariance matrix P0, which can be denoted
as

X̂0 = E [X0] (17)

P0 = E [(X0 − X̂0) (X0 − X̂0)
T] (18)

2. Sigma point generation At time t, 2N + 1 Sigma points are generated for the state vector X̂k−1∣k−1 and
covariance Pk−1∣k−1. It can be denoted as

χ(i)
k−1∣k−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X̂k−1∣k−1 s = 0
X̂k−1∣k−1 + [

√
(n + λ) Pk−1∣k−1]s s = 1, 2, . . . , N

X̂k−1∣k−1 − [
√

(n + λ) Pk−1∣k−1]s s = N + 1, N + 2, . . . , 2N
(19)

And the weights of each Sigma point can be expressed as

ω(i)
m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ
N + λ

, i = 0
1

2 (N + λ) , i = 1, 2, . . . , 2N
(20)

where n is the state dimension and λ is the scaling parameter.
3. State prediction For each Sigma point, the Sigma point at the next moment is predicted by the state

equation, that is

χ(i)
k∣k−1 = Aχ(i)

k−1∣k−1 + BUk (21)

Then the state prediction value and covariance are

X̂k∣k−1 =
2n
∑
i=0

ω(i)
m χ(i)

k∣k−1 (22)

Pk∣k−1 =
2n
∑
i=0

ω(i)
m [χ(i)

k∣k−1 − X̂k∣k−1][[χ(i)
k∣k−1 − X̂k∣k−1]]

T
+ Qk (23)
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4. Observation prediction The observation value of the Sigma point is predicted by the observation
equation, that is

Ŷk∣k−1 =
2n
∑
i=0

ω(i)
m Y(i)

k∣k−1 (24)

PYk Yk =
2n
∑
i=0

ω(i)
m [Y(i)

k∣k−1 − Ŷk∣k−1][Y(i)
k∣k−1 − Ŷk∣k−1]

T
+ Rk (25)

PXk Yk =
2n
∑
i=0

ω(i)
m [χ(i)

k∣k−1 − X̂k∣k−1][Y(i)
k∣k−1 − Ŷk∣k−1]

T
(26)

5. State estimate update The state estimate can beupdated using Kalman gain, which can be expressed as

Kk = PXk Yk P−1
Yk Yk

(27)
X̂k∣k = X̂k∣k−1 + Kk (Yk − Ŷk∣k−1) (28)
Pk∣k = Pk∣k−1 − Kk PYk Yk KT

k (29)

3.2.4 The Train State Observation under Cyber Attacks
If a data tampering attack is launched at time τ, the system observation equation can be modeled as

Yk = HXk + Vk + bkI{k≥τ} (30)

where bk represents the bias term caused by the data tampering attack, and I{k≥τ} is the indicator function,
indicating that the tampering attack is triggered at time τ.

If a denial of service (DoS) attack occurs at time τ, the system observation equation can be modeled as

Yk = Dk (HXk + Vk) (31)

where Dk = diag(d1 , d2, . . .) represents a diagonal matrix of 0 and 1. If an attack occurs, di = 0, indicating
that the corresponding observation is invalid, and the associated communication channel is interrupted.
Otherwise, di = 1. Note that at time k < τ, Dk = Ik .

In the case of data tampering attack, the Sigma points in the state space of the system are projected into
the observation space through the observation equation, generating a set of Sigma points corresponding to
the observation space. This can be expressed as

γ(i)
k = H χ(i)

k + bkI{k≥τ} (32)

Thus, the observation equation can be expressed as

Ŷk =
2n
∑
i=0

ω(i)
m γ(i)

k (33)

The observation error covariance and state-observation covariance are

PYk Yk =
2n
∑
i=0

ω(i)
m (γ(i)

k − Ŷk)(γ(i)
k − Ŷk)

T
+ Rk (34)

PXk Yk =
2n
∑
i=0

ω(i)
m (χ(i)

k∣k−1 − X̂k)(γ(i)
k − Ŷk)

T
(35)
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The state estimation can be updated using the Kalman gain, that is

Kk = PXk Yk P−1
Yk Yk

(36)
X̂k∣k = X̂k∣k−1 + Kk (Yk − Ŷk) (37)
Pk∣k = Pk∣k−1 − Kk PYk Yk KT

k (38)

In the case of denial-of-service (DoS) attack, the Sigma points of the system state, that is, the sample
points in the state space, can be projected into the observation space through the observation equation,
generating a set of Sigma points corresponding to the observation space. That is

γ(i)
k = Dk (H χ(i)

k ) (39)

Thus, the observation equation can be expressed as

Ŷk =
2n
∑
i=0

ω(i)
m χ(i)

k (40)

The observation error covariance and state-observation covariance are denoted as

PYk Yk =
2n
∑
i=0

ω(i)
m (γ(i)

k − Ŷk)(γ(i)
k − Ŷk)

T
+ Dk Rk DT

k (41)

PXk Yk =
2n
∑
i=0

ω(i)
m (χ(i)

k∣k−1 − X̂k∣k−1)(γ(i)
k − Ŷk)

T
(42)

Similarly, the state estimate X̂k∣k can be updated using the Kalman gain Kk .

3.2.5 The Impact of Cyber Attacks on the Physical Layer
The state estimate X̂k∣k obtained using the unscented Kalman filter can be used to calculate the actual

running time of the train. The train state deviation under cyber attack is defined as the difference between
the estimated state and the true state, that is

ΔXk = X̂k∣k − Xk = [ ŝk − sk
v̂k − vk

] = [ Δsk
Δvk

] (43)

The components of the state deviation ΔXk are the position deviation Δsk and the velocity deviation
Δvk , which can be expressed as

Δsk = ŝk − sk (44)
Δvk = v̂k − vk (45)

The train delay time caused by the attack can be expressed as

ΔTd =
Nk

∑
k=1

Δsk

vk
(46)

where k represents the time steps and Nk represents the sum of the time steps of the train operation. That is,
the time required for a train to travel from one station to the next is divided into Nk discrete time steps.
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Based on the train delay time, the train punctuality rate and the train departure interval can be
calculated, which are key indicators for analyzing the system’s availability. The train control system relies on
a large amount of real-time data (such as train location, speed, signal status, etc.) to dispatch and control
train operations. Once the train control system suffers from a cyber attack, train data may be tampered with
or lost, causing train delays and reducing train punctuality. The train punctuality rate can be defined as

R = (1 − Nd

Nz
) × 100% (47)

Nd = ⌊ ΔTd

Tthreshol d
⌋ (48)

where ⌊⋅⌋ represents the floor function (rounding down). Tthreshol d is the threshold for determining delays,
usually set to 3 min. Nd represents the number of delays exceeding the threshold, determined as the number
of delayed trains. Nz represents the total number of trains operated.

The train departure interval is an important indicator to measure the efficiency of train services. Once
a train suffers from a cyber attack, the train will be delayed and the train departure interval will increase,
thus affecting the overall information security of the train control system. The train departure interval can
be defined as

I = 1
Nt − 1

Nt−1
∑
i=1

∣Fi+1 + ΔTd , i − Fi ∣ (49)

where Fk+1 indicates the departure time of train k + 1 in the train timetable, Fi represents the departure time
of train i in the train timetable, ΔTd , i represents the delay time of the current train i. Nt represents the total
number of trains observed within the statistical period.

In summary, from the perspective of the physical layer, the total impact of cyber attack Cp, which
consists of R and I, can be expressed as

Cp = ωp1 ⋅ R + ωp2 ⋅ I (50)

where ωp1 and ωp2 represent the weights of train punctuality rate and train departure interval, respectively.

3.3 Situation Assessment for the Information Layer of CBTC Systems
In our hierarchical security situation assessment approach, system vulnerabilities, system threats, and

network characteristics are used to quantify the security situation of the information layer. The specific
indicators are discussed in detail.

3.3.1 System Vulnerability Analysis
The vulnerability analysis is to assess the changes in the security situation caused by the exposure of

system vulnerabilities. Vulnerabilities exist in both the host nodes and system services, and attackers can
exploit these vulnerabilities to launch attacks. Specifically, known and unknown vulnerabilities are discussed
separately, and an integrated vulnerability evaluation method is proposed.

The probability of successfully implementing an attack is considered to be the probability that the
vulnerability is exploited [32]. And the probability of successful exploitation of a vulnerability can be
described from the aspects of attack vector (S_AV ), attack complexity (S_AC), privileges required (S_PR),
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user interaction (S_UI), and fv (x). It can be denoted as

pvi = S_AV × S_AC × S_PR × S_UI × fvi (xvi ) (51)

fvi (xvi ) = α ⋅ kα

xα+1
vi

(52)

where S_AV , S_AC, S_PR, and S_UI are the exploitability subscores obtained from CVSS, respectively.
fv (xv) is the statistical distribution of vulnerability exploit probability, characterized by the Pareto distribu-
tion [33]. x denotes the age of vulnerability vi , and both k = 0.00161 and α = 0.26 are constants.

The severity of system host and service vulnerabilities depends on when the vulnerabilities are
discovered. Generally, the longer the vulnerability exists, the smaller the impact weights, because these vul-
nerabilities can be analyzed and patched over time. For the known vulnerabilities, the Common Vulnerability
Scoring System (CVSS) is introduced to quantify the vulnerability impact, and the natural logarithm is used
to control the magnitude of variables. The vulnerability impact degree of known vulnerabilities is expressed
as

Iv1 = 10 ln(1 +
NV

∑
i=1

pvi ⋅ e−βv ⋅Age(vi) ⋅ Cvi ) (53)

where NV is the total number of known vulnerabilities, βv is the parameter that controls how fast the factor
decays, Age (⋅) is the time (days) of vulnerabilities existence, Cvi is the CVSS scores of vulnerability vi .

The unknown vulnerabilities are those that already exist but have not been exposed. For the unknown
vulnerabilities, the probability of vulnerability exposure can be estimated [34]. Generally, the more vulner-
abilities there are in a period, the greater the probability of vulnerabilities in the later period. The Bayesian
theorem is used to calculate the probability of unknown vulnerability exposure according to the statistical
probability of vulnerability exposure over a certain period of time [35]. The calculation is expressed as

p (A∣B) = p (A) ⋅ p (B∣A)
P (B) (54)

where p (A) is the statistical average probability of industry vulnerability exposure, p (B) is the probability of
vulnerability exposure statistics in the past period, p (B∣A) is the statistical probability of new vulnerabilities
caused by previous vulnerabilities [36].

The threat impact degree of unknown vulnerabilities can be calculated with

Iv2 = p (A∣B) ⋅ Iv1 (55)

where p (A∣B) is the unknown vulnerability exposure probability obtained on the premise that the
vulnerability exposure probability is known over a period of time Te .

Although some unknown vulnerabilities may have no relationship with the previously exposed vul-
nerabilities. Without losing generality, the probability of new vulnerabilities can still be estimated using
vulnerability probability statistics to describe the overall impact of system vulnerabilities on security status.
The impact of the system vulnerabilities can be expressed as

Iv = α1 ⋅ Iv1 + α2 ⋅ Iv2 (56)

where α1 and α2 are the vulnerability evaluation weights of known and unknown vulnerabilities, respectively.
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3.3.2 System Threat Analysis
Threat situation refers to the real-time quantification of the number of alerts and their severity in train

control systems. Generally, threats are defined as potential attack behaviors that may harm the train control
system. The train control systems face security threats that may compromise the availability, integrity, and
confidentiality of devices, networks, and data. These threats, which can originate internally or externally,
primarily include malware, resource attacks, content attacks, insider threats, identity and access control
threats, and data breaches.

• Malware Malicious software such as viruses and worms can spread through train control networks,
infecting computers and network devices in the system. This can lead to system paralysis, data loss, or
theft, directly endangering train operation safety.

• Resource Attacks Resource attacks target the computational or network resources of the train control
system. Examples include consuming excessive system computing power or occupying communica-
tion bandwidth. Denial-of-Service (DoS) attacks or Distributed Denial-of-Service (DDoS) attacks, for
instance, exhaust system resources by sending massive amounts of fake requests, rendering the system
unable to operate normally.

• Content Attacks The target of the content attack is the content of information exchange in the train
control system, and the sensitive data of the train control system is obtained or tampered with by means
of monitoring, deletion, tampering and deception. For example, communication data is intercepted and
tampered with a man-in-the-middle attack (MITM), impersonating a legitimate communication object,
resulting in incorrect train control instructions or data tampering.

• Insider Threats Malicious actions from insider personnel exploit their privileges to perform malicious
operations, such as modifying control commands or leaking sensitive information. Unauthorized access
by insiders can lead to system damage or data theft, causing train operation interruptions or severe
accidents such as collisions.

• Ientity and Access Control Threats Administrator credentials are stolen, allowing attackers to access
the system without authorization and conduct privilege escalation attacks. Additionally, lax internal
access control can lead to permission misuse or unauthorized access, allowing illegal operations or data
tampering within the system.

• Data Breaches There is a large amount of business data and operation data in the train control system,
including sensitive information such as train location and running speed. Once this data is leaked, it
will lead to privacy exposure or security risks, or even be used for malicious purposes, which may cause
serious train safety accidents.

The impact of attacks with varying levels of severity on the system differs; attacks with higher severity
indices pose greater threats than those with lower indices. By referencing the SNORT manual, the attack
severity is introduced to quantify the cyber attacks. Alert priorities are categorized into High, Medium, Low,
and Very Low, corresponding to severity quantification values 4, 3, 2, 1, respectively. High-priority alerts
indicate the most severe attacks, while low-priority ones represent the least severe. Additionally, undetected
anomalies in system sessions are considered potential risks with very low attack severity and are included
in the threat landscape quantification. Typical network attacks faced by train control systems and their
corresponding severity indices are listed in Table 1.
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Table 1: The severity value of attacks

The typical cyber attacks Attack severity gs

Content attacks, malware,
privilege escalation attacks

High 4

DoS attacks, leakage attacks Medium 3
Probe, Scan Low 2

Sessions Very low 1

Note that the high-severity attacks have greater threat impact than low-severity attacks, the exponent
calculation is introduced to represent the impact of attacks with different severities. The impact of system
threats can be described as

Tc =
Nc

∑
j=1

c j (t) × 10g j(t) × e−α(t−t0) (57)

where Nc represents the number of alert categories, c j (t) represents the alert numbers of the jth category
generated at time t, g j (t) represents the severity of different types of attacks, e−α(t−t0) is the time decay
factor, α is the adjustment parameter, and t0 is the initial time of the alert.

The purpose of adding the time decay factor is to make the threat situation quantification meet the
real-time requirements of the train control system. The time decay factor can dynamically update the threat
situation to ensure that the threat situation value can reflect the current threat situation without accumulating
a large amount of outdated alarm information, thus avoiding the excessive impact of past alarms on the
current train control status.

3.4 Network Characteristics Analysis Using the GAN-AIS
The characteristic of CBTC systems operation is that it operates on a specific line in a fixed direction

according to the train operating diagram, and its information interaction and data flow are stable. The
artificial immune system can take advantage of the stable data flow to self-learn the data characteristics of
the CBTC systems under normal operation, train the immune system model without prior knowledge or
data labels, and realize cyber attack perception and security situation assessment.

In AIS, the antigen is the feature vector of network characteristics data. Let the antigen set be
Ag = {ag∣ag ∈ Sl}, where Sl is the shape space, l represents the dimension of feature strings, including
source/destination IP address, source/destination port, protocol type, time, features, traffic, sessions, and so
on. The antibody is the detector that recognizes specific antigens. The detector simulates the main functions
of immune cells and realizes the main functions such as self-tolerance, cell cloning, and mutation evolution.
Let the detector set be

D = {< d , cnt, age , ρ > ∣ d ∈ D, cnt ∈ N, age ∈ N, ρ ∈ R} (58)

where d represents the detector, cnt represents the sum of antigens matched by the detector, age represents
the age of detectors, ρ represents the concentration of detectors, N and R represent the natural number and
real number set.
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3.4.1 The Mature Process of Detectors
Generally, the purpose of the immune mechanism is to identify unknown foreign antigens and protect

the body, and the process of identifying antigens is the process of calculating the affinity between antigens and
antibodies. The affinity for the new antigen is the measure of the matching degree between the antibody and
the antigen. For the detector with l-dimensional feature vectors, the Minkowski distance is used to calculate
the affinity, which can be denoted as

D f (d , ag) = (
l

∑
i=1

∣di − agi ∣λ)
1
λ

(59)

where λ is the parameter of Minkowski distance. When λ = 1, it is the Manhattan distance and when λ = 2,
it is the Euclidean distance.

The affinity can be calculated as

fa (d , ag) = 1
D f (d , ag) + ε

(60)

where ε is a small constant. The closer the Minkowski distance between the antigen and the detector, the
greater the affinity. When the affinity is greater than the threshold, the antigen is matched to the detector.

The maturation process of the detector needs to experience self-tolerance. The self-tolerance is an
immune response in which the detector does not react to the autoantigens. Let Sel f ⊂ Ag represents the set
of normal network characteristics, Non_sel f ⊂ Ag represents the set of abnormal network characteristics,
and Sel f ∪ Non_sel f = Ag, Sel f ∩ Non_sel f = ∅. The self-tolerance process can be described as

ft (d , s) = { 0, ∃s ∈ Sel f ∧ fm (d , s) = 1
1, otherwise (61)

fm (d , s) = { 1, fa (d , s) > γa
0, otherwise (62)

where s ∈ Sel f , γa is the threshold of affinity.
When the detector d cannot match each self s of the self-set Sel f , that is ft (d , s) = 1, the process can

be denoted as the self-tolerance process. When ft (d , s) = 0, it means that the self-tolerance process of the
detector has failed, and the detector will be removed. Then the other detectors turn into the mature detectors
Dma . It can be denoted as

Dma = Dma ∪ {d∣d ∈ D, ∀s ∈ Sel f ∧ ft (d , s) = 1} (63)

3.4.2 The Immune Response of Detectors
In AIS, the immune response is the process of identifying and detecting cyber attacks. Similar to the

self-tolerance process, the detection of attack is judged by calculating the affinity of the mature detectors to
the antigen. If the affinity between the mature detector and antigen is greater than the preset threshold γd ,
an attack can be detected. If a mature detector can continuously detect cyber attacks, and the cumulative
number of matches reaches the threshold Nc , the mature detector turns into the memory detector Dme . It
can be denoted as

Dme = Dme ∪ {d∣d ∈ Dma , d .cnt ≥ Nc ∧ d .age ≤ L} (64)
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where cnt is the sum of antigens matched by the detector, age is the life generations of detectors, L is the
life cycle of memory detectors. The memory detectors have higher detection priority and do not need to go
through the maturation process again. However, the memory detector is limited by the life cycle L. When
the memory detector reaches the life cycle L, it will be removed from the detector set.

3.4.3 The Mutation Evolution of Detectors
The evolutionary mutation process of detectors is an important way to maintain the diversity of detectors

and improve the quality of detectors. The clone selection algorithm (CSA) [37] is used to realize the cloning
and mutation process of the detector. In the CSA, the memory detectors with high affinity are selected for the
cloning process. The selected detectors are stimulated to mutate according to the mutation mechanism, and
the mutated detectors are classified into the immature detector set to start a new life cycle. When applying the
traditional mutation algorithm to attack detection, certain challenges may arise. For instance, in the event of
a singular type of attack, the diversity within the detector population might be insufficient, leading to limited
effectiveness in the cloning and mutation processes. Additionally, the random mutation pattern may fail to
maintain the dominant gene generation, resulting in an extended maturation process for mutated detectors.

The GAN simulates the cloning process of mature detectors by learning the characteristics of mature
detectors and generating detectors with a small number of detector samples. The GAN can also simulate
the mutation process of the detector by generating a large amount of synthetic data [38]. In the mutation
process, a certain number of dominant features can be preserved by training the GAN model, and new
feature communities can be generated to enrich the diversity of detector features. Specifically, the generator G
and discriminator D are used for detector generation and detector discrimination, respectively. The mutated
mature detectors Dmu can be denoted as

Dmu = Dmu ∪ {d∣d ∈ G (z) , ∀s ∈ Sel f ∧ ft (s, d) = 1} (65)

where z is the random noise, G (z) is the mature detector generator of the GAN that achieves Nash
equilibrium.

The goal of the generator G is to generate detector profiles that closely resemble the real detector profiles,
while the purpose of the discriminator D is to accurately detect the real detector profiles from the generated
ones. With a period of training, the generator has a stronger ability to generate realistic detector profiles.
The discriminator is more sensitive to the difference between the real and the generated detector profiles.
The competitive relationship between the generator G and discriminator D promotes mutual evolution.
With the GAN-based artificial immune system, the diversity of the detector population is enriched, and the
convergence process after population mutation is accelerated. The cloned and mutated detectors re-enter the
collection of immature detectors and start a new life cycle.

3.4.4 The Concentration Representation of Detectors
In the human immune system, the human body will trigger an immune response to the invasion of

viruses. The body immune system cannot only detect the virus but also reflect the severity of the virus
infection, for example, by the number of white blood cells. Due to the different severity of virus infection, the
human body will trigger different degrees of immune response, and the intensity of immune response will
change with the degree of infection. This process can be characterized by the concentration of antibodies.

Similar to body immunity, our proposed GAN-AIS method cannot only perceive cyber attacks, but also
characterize the current security situation of the system. Because of the redundant structure of the train
control system, isolated attacks may not affect the operation of the system, but the detector concentration
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can still be used to reflect the security situation of the system, thus characterizing potential cyber-attacks.
The ratio of the number of detectors satisfying the threshold of affinity between detectors to the number of
all detectors is defined as the detector concentration. The calculation process can be described as

ρi =
∑

j∈S , j≠i
ds ji

Nd
, i ∈ S (66)

ds ji = { 1, ∣ f ( j, i)∣ ≤ γε
0, others (67)

S = Dma + Dme + Dmu − Dd (68)

where γε is the affinity threshold between detectors, Nd is the total number of the detectors, S is the set of
useful detectors, Dd = {d∣d ∈ Dme ∧ d .age > L} is the detectors that reach the end of life.

3.4.5 The Analysis of Network Characteristics
The data interaction and information communication are the basis for supporting the business functions

of CBTC systems. The analysis of network characteristics can quickly and accurately perceive various attacks
and characterize the current network security situation of the system. The mathematical description of the
network security situation can be expressed as

Fc = 1 − 1

1 + ln(1 + c ⋅
N j

∑
j=1

Ni

∑
i=1

ρi , j)
(69)

where c ∈ Z+ is the adjustment factor, Ni is the number of detectors in the set S that are judged by the affinity
between detectors, and the detector concentration is not equal to zero (the concentration of some isolated
detectors is 0), N j is the classification of cyber attacks.

3.4.6 Computational Complexity Analysis of GAN-AIS
In this section, we will analyze the computational complexity of the GAN-AIS approach. For the

mature process of detectors, assuming that there are Nd detectors and Nag antigens, and the number of
detectors undergoing self-tolerance is M, then the computational complexity of the detector maturation stage
can be expressed as O (Nd ⋅ (Nag + M) ⋅ l). For the immune process of detectors, assuming the number
of mature detectors is Nma , then the computational complexity of the immune response stage can be
expressed as O (Nma ⋅ Nag ⋅ l). For the mutation evaluation process of detectors, the mutation detectors
are generated by a generative adversarial network (GAN). In the generator training phase, assuming the
number of iterations is k, the computational complexity of each iteration is O (Nma ⋅ l). In the discriminator
training phase, assuming the number of iterations is k, the computational complexity of each iteration is
O (Nma ⋅ l). Then the complexity of generating the mutation detector is O (k ⋅ Nma ⋅ l). The computational
complexity of the mutation stage is O (k ⋅ Nma ⋅ l). For the concentration calculation process of detectors,
assuming that the number of useful detectors is Nu , then the computational complexity of the detector
concentration calculation stage is O (Nd ⋅ Nu). The computational complexity of the network characteristics
analysis stage is O (N j ⋅ Ni). Therefore, the total computational complexity of the GAN-AIS approach is
O (max (Nd ⋅ (Nag + M) ⋅ l , Nma ⋅ Nag ⋅ l , k ⋅ Nma ⋅ l , Nd ⋅ Nu , N j ⋅ Ni)).
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3.5 The Information Security Situation of the Information Layer
The system vulnerabilities, security threats, and network characteristics indicators are used to quantify

the information security situation of the information layer. Specifically, the information security situation is
composed of Iv , Tc and Fc . It can be expressed as

Hc = ωc1 ⋅ Iv + ωc2 ⋅ Tc + ωc3 ⋅ Fc (70)

where ωc1, ωc2 and ωc3 are the weights of three indicators, respectively. The detailed algorithm is formulated
in Algorithm 1.

Algorithm 1: The algorithm of the information security situation
Input: The system vulnerability, system alerts, network characteristic data of CBTC systems
Output: The information security situation value Hc
1 Initialize: γa , γd , γε , Te .
2 for each vulnerability Vi of the system do
3 Calculate the probability of successful exploitation of a vulnerability pv .
4 Calculate the impact degree of known vulnerabilities Iv1.
5 end
6 for each period of time Te do
7 Estimate the impact degree of unknown vulnerabilities Iv2.
8 Calculate the impact degree of system vulnerabilities Iv .
9 end
10 for each period of time Te do
11 Count and classify system alert information c (t).
12 Retrieve the severity of the cyber attack g (t).
13 Calculate the impact of system threats Tc .
14 end
15 while the iterative stop criterion not reached do
16 for each antigen Ag at preset time intervals do
17 Steps 1: the mature process of detectors.
18 Calculate the affinity of antigen Ag and randomly initial detector D.
19 Complete the self-tolerance process of the detector D.
20 Generate the mature detectors set Dma .
21 Steps 2: the immune response of detectors.
22 Perceive and detect the cyber attacks.
23 Generate the memory detectors set Dme .
24 end
25 Steps 3: the mutation evolution process of detectors.
26 Generate the mutated detectors set Dmu and update the memory detectors set Dme .
27 Steps 4: the concentration representation of detectors.
28 Calculate the concentration of detector ρ.
29 Steps 5: the analysis of system network characteristics.
30 Obtain the network security situation value Fc .
31 end
32 Calculate the information security situation Hc .
33 return Hc .
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3.6 The Situation Assessment for CBTC Systems
Both physical layer and information layer indicators are used for the hierarchical security situation

assessment approach. For the physical layer, the main focus is on the impact of cyber attacks on the operation
of the CBTC systems, and the total cost is measured from the perspective of time delay and economic loss.
For the information layer, changes in system situation are analyzed and characterized from aspects of static
and dynamic indicators. The comprehensive situation assessment value SA can be expressed as

SA = ω1 ⋅ Cp + ω2 ⋅ Hc (71)

where ω1 and ω2 are the weights of two indicators, respectively.

4 Experiments and Evaluation
In this section, we present our simulation experiments from the perspective of experimental design,

attack description, as well as data preprocessing and performance metrics.

4.1 Experimental Design and Attack Description
The simulation experiments are conducted on the security simulation platform of the National Key

Laboratory. As shown in Fig. 3, the simulation platform is built with simulation software and real signal
equipment, and supports both wired and wireless train-ground communication modes. The real line data of
Beijing Metro Line 7 are used to simulate the tracking operation of multiple trains. In addition, the platform
can simulate cyber attacks such as DoS attacks and data spoofing attacks, and restore the operating scenarios
and operating status of the system under cyber attacks.

Figure 3: The security simulation platform

The experimental parameters of the hierarchical security situation assessment approach are listed
in Table 2. According to the parameters, the overall impact of cyber attacks on the physical layer Cp, the
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security situation of information layer Hc , and the comprehensive situation assessment value SA can be
calculated by Eqs. (50), (70) and (71), respectively.

Table 2: The experimental parameters of hierarchical security situation assessment approach

Symbol Values Description
Nt 5 The number of trains
Ns 15 The number of stations
Nv 10 Number of known vulnerabilities
βv 0.1 The decay factor
Te 90 Observation period (days) for unknown vulnerabilities
ωp1 0.5 Weight indicators of train punctuality rate
ωp2 0.5 Weight indicators of train departure interval
ωv1 0.8 Weight indicators of known vulnerabilities
ωv2 0.2 Weight indicators of unknown vulnerabilities
ωc1 0.3 Weight indicators of Vc
ωc2 0.3 Weight indicators of Tc
ωc3 0.4 Weight indicators of Fc
ω1 0.5 Weight indicators of Cp
ω2 0.5 Weight indicators of Hc

Cyber attacks are introduced to verify the effectiveness of our approach. The CBTC systems mainly
suffer two types of attacks: DoS attack and data spoofing attack [39]. The DoS attack may infiltrate the CBTC
network, and occupy excessive service resources with seemingly legitimate service requests, thus obstructing
the system normal operation. The primary objective of the data spoofing attack is to manipulate the payload
content within data packets, aiming to disrupt the functionality of CBTC physical equipment.

In the case of a DoS attack, the primary targets are the communication link between the ground wireless
AP and VOBC. The authentication attack on the wireless network, known as an authentication DoS, is
launched by using the Mdk3 wireless attack tool. This tool depletes AP authentication request resources
by simulating randomly generated MAC addresses and sending a large number of authentication requests
to the target AP. Consequently, the AP becomes unable to respond to legitimate communication requests.
Meanwhile, the TCP DoS attack on wired backbone networks, specifically a TCP SYN Flood, is launched
using the LOIC DoS attack tool. The attack floods the service connection queue with TCP data packets,
causing network congestion. As a result, devices are unable to respond properly, disrupting the normal
operation of trains.

In the case of a data spoofing attack, the payload contents of data packets are modified with the intent
of disrupting train operations. The communication link between the ground wireless access point (AP)
and VOBC in CBTC systems is used to transmit control commands and train status information. If this
communication data is tampered with, it can compromise the safe operation of the train. A typical example
is a Man-in-the-Middle (MitM) attack, where an attacker intercepts and modifies data packets between
the targeted parties by setting up forwarding on a middleman device. In this paper, the Bettercap attack
tool is employed to intercept and tamper with the communication data. By deploying lightweight Bettercap
modules, the attacker manipulates MAC address tables and redirects communication, allowing them to act
as middlemen to monitor or modify data between the target host and the gateway.
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4.2 Data Preprocessing and Performance Metrics
The method in [40] is used to extract the features from the security feature data set. Since each situation

indicator had a different value range, the Min-Max Normalization method is used for normalization, which
can be expressed as

x∗ = x − xmin

xmax − xmin
(72)

where x∗ is the normalized value of the situation indicator, x is the original value, xmax and xmin are the
maximum and minimum values of the situation indicator, respectively.

The detection rate (DR), false alarm rate (FR) and F1_score are introduced to evaluate the effectiveness
of perceiving cyber attacks, which can be described as

DR = Recal l = TP
TP + FN

, Precision = TP
TP + FP

(73)

FR = FP
FP + TN

(74)

F1_score = 2 × Precision × Recal l
Precision + Recal l

= 2 × TP
2 × TP + FP + FN

(75)

where TP represents the number of cyber attacks that are sensed and actually launched, FP represents the
number of cyber attacks that are sensed but no actually launched, TN represents the number of cyber
attacks that are neither sensed nor actually launched, FN represents the number of cyber attacks that actually
launched but not sensed.

5 Results and Discussion
In this section, comparative experiments are conducted to evaluate the proposed approach. When the

system suffers from different types of attacks, both the physical layer and information layer indicators are
used to reflect the changes in the system security situation.

5.1 Experiments for Perceiving DoS Attack
First, we present the performance evaluation of the approach for perceiving DoS attacks. The batch

size, epochs and noise dimension of the GAN model are 256, 100 and 100, respectively. The loss function
and optimizer of the GAN model are binary_crossentropy and Adam, respectively. The activation functions
of the GAN model generator G and discriminator D are tanh and sigmoid, respectively. The experimental
parameters are listed in Table 3.

Table 3: The experimental parameters for perceiving DoS attacks

Symbol Values Description
λ 2 Parameter of Minkowski

distance
ε 0.001 Constant of affinity calculation

γa 0.75 Affinity threshold of
self-tolerance process

γd 0.25 Affinity threshold of immune
response process

(Continued)
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Table 3 (continued)

Symbol Values Description
γε 0.5 Affinity threshold between

detectors
Nc 5 Matching number of detectors
c 2 Adjustment factor

The detection rate and false alarm rate for perceiving the authentication DoS attacks are shown in Fig. 4.
With the increase of the detector life cycle, the detection rate increases gradually, the false positive rate
increases at first and then decreases. When the life cycle of the detector is set to 5 generations, the detection
rate is 64.84%, and the false alarm rate is 0.08%. When the life cycle of the detector is set to 25 generations, the
detection rate is increased to 96.83%, and the false alarm rate is 0.16%. When the life cycle of the detector is
set to 50 generations, the detection rate is increased to 97.09%, and the false alarm rate is 0.06%. The detection
rate of the detector with a life cycle of 25 generations is similar to that of 50 generations, and the false alarm
rate is maintained at a low level. It can be noted that the time required for the maturity and evolution of the
detectors with a life cycle of 25 generations is significantly lower than that of 50 generations. Therefore, it is
considered that the detector with a life cycle of 25 generations is the optimal detector, and the performance
of the detector is the best.

Figure 4: The detection rate and false alarm rate for perceiving the authentication DoS attacks

The detection rate and false alarm rate for perceiving the TCP SYN Flood attacks are shown in Fig. 5.
It can be seen that when the life cycle of the detector is short, the false alarm rate is low. With the increase
of the detector life cycle, the detection rate increases gradually, and the false positive rate increases at first
and then decreases. The overall change trend is similar to the result of perceiving authentication DoS attack.
When the life cycle of the detector is set to 25 generations, the detection rate is 98.59%, and the false alarm
rate is 1.08%. It has a high detection rate and a low false alarm rate. It can be considered that the detector
with a life cycle of 25 generations is the optimal detector.
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Figure 5: The detection rate and false alarm rate for perceiving the TCP SYN Flood attacks

As shown in Table 4, the different methods are introduced to compare the ability to perceive the TCP
SYN Flood attack. The GAN-AIS method is compared with unsupervised learning methods such as AIS [41],
convolutional autoencoder and one-class SVM (CAE-OCSVM) [42], synthetic minority oversampling
technique and Random Forest (SMOTE-RF) [43], principal component analysis and K-means clustering
(PCA-K-Means) [44] and variational autoencoder (VAE) [45] in terms of the detection rate, false alarm rate,
F1_score and computation time indicators.

Table 4: Performance comparison of DR, FR, F1_score and computation time

Method Detection rate (%) False alarm rate (%) F1_score Computation time (s)
GAN-AIS 98.59 1.08 0.9921 490

AIS 97.09 1.90 0.9841 428
CAE-OCSVM 84.89 4.36 0.8969 821

SMOTE-RF 90.90 0.48 0.9499 796
PCA-K-means 92.45 1.94 0.9585 413

VAE 95.09 1.10 0.9575 923

It can be seen from Table 4, the detection rate of GAN-AIS is 98.59%, the false alarm rate is 1.08%,
and the F1_score is 0.9921. It has the highest detection rate, a relatively low false alarm rate, and a high
F1_score. The reason is that the GAN-AIS approach cannot only learn the network characteristics of the
train control system but also further optimize and enrich the detector population through the GAN model.
A higher detection rate usually increases the probability of false alarms. However, the proposed GAN-AIS
approach can keep the false alarm rate within a relatively low range and maintain a high F1_score value. In
addition, compared with other methods, the GAN-AIS approach has a relatively short computation time.
Especially when compared with the variational autoencoder (VAE) method, which has a relatively close
detection rate, the computation time of GAN-AIS can be reduced by nearly half. Moreover, compared with
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methods that have a similar computation time, GAN-AIS has a higher detection accuracy. To sum up, the
GAN-AIS approach has outstanding comprehensive perception performance.

5.2 The Experiments of Situation Assessment under DoS Attack
We assume that due to the redundancy and security mechanism of the system, the DoS attacks will

not impact the normal operation of the train, the comprehensive situation assessment value SA can be
calculated without considering the impact of cyber attacks on the physical layer. Limited by the relatively
closed environment, the CBTC systems are rarely updated and upgraded. Therefore, most of the existing
vulnerabilities are outdated, but these vulnerabilities can still reflect the security situation of the system. In
our experiments, the system vulnerabilities are scanned through Nessus software, and the reference date for
vulnerability age calculation is 31 December 2019. The CVSS information of 10 typical vulnerabilities and the
corresponding attack severity are listed in Table 5.

Table 5: The CVSS information of vulnerabilities and the corresponding attack severity

No. Vulnerabilities CVSS score S_AV S_AC S_PR S_UI gs Release date
1 CVE-2019-2518 7.5 0.85 0.44 0.62 0.85 4 23/04/2019
2 CVE-2019-0708 9.8 0.85 0.77 0.85 0.85 4 06/05/2019
3 CVE-2018-17190 7.5 0.85 0.44 0.62 0.85 4 19/12/2018
4 CVE-2016-8735 9.8 0.85 0.77 0.85 0.85 4 06/04/2017
5 CVE-2016-0714 8.8 0.85 0.77 0.62 0.85 4 25/02/2016
6 CVE-2019-2753 4.6 0.85 0.77 0.62 0.62 3 23/07/2019
7 CVE-2019-0199 7.5 0.85 0.77 0.85 0.85 3 10/04/2019
8 CVE-2018-3299 8.2 0.85 0.77 0.85 0.62 3 16/10/2018
9 CVE-2019-17052 3.3 0.55 0.77 0.62 0.85 2 01/10/2019
10 CVE-2018-8207 4.7 0.55 0.44 0.62 0.85 2 14/06/2018

The change in authentication DoS attack during the 90-s observation period is simulated, and the
intensity of the authentication DoS attack and the corresponding security situation are shown in Fig. 6. With
the intensity of the attack changes, the security situation of the CBTC systems information layer changes,
affecting the comprehensive security situation of the CBTC systems. The attack intensity is set from 0.6 M/s
to 2.0 M/s, and the security situation value varies from 0.1 to 0.78. The trend of the security situation value
curve is similar to that of the attack intensity curve. The greater the intensity of the DoS attack, the higher
the security situation value, and vice versa. Moreover, due to the existence of memory detectors, when the
same attack persists, the change in situation assessment values is more drastic than that of attack intensity.
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(a) The intensity of authentication DoS attack (b) The change of security situation with different attack

intensity

Figure 6: The changes in the intensity of authentication DoS attack and the corresponding security situation

As shown in Fig. 7, the TCP DoS attack intensity ranges from 2.9 to 3.8 M/s, and the security situation
value varies from 0.1 to 0.92. The trend of the security situation value curve is similar to that of the attack
intensity curve. It can be concluded that the security situation curve can characterize the dynamic changes
in the security situation in real-time.

(a) The intensity of TCP SYN Flood attack (b) The change of security situation with different attack

intensity

Figure 7: The changes in the intensity of TCP DoS attack and the corresponding security situation

5.3 The Experiments of Situation Assessment under Data Tampering Attack
In the simulation experiment, the MitM data tampering attack disrupts the train operation by tampering

with the data of the normal operation of the train. Due to the fail-safe mechanism of the CBTC systems, if
the data received by the train fails to pass verification, the train will initiate an emergency braking procedure.
A total of 15 stations and 5 trains are used to simulate the train operation process. The train tracking interval
is set to 3 min to simulate train operation during the morning rush period, and the station stop time is set
to 30 s. To simplify the experiment, only the upward trains are considered. The data tampering attack is
executed during the train operation, and the train operation diagram is affected. The train operation diagram
under the cyber attack and the change of situation assessment value are shown in Figs. 8 and 9, respectively.



4308 Comput Mater Contin. 2025;83(3)

Figure 8: The train operation diagram during morning rush period under a cyber attack

Figure 9: The change of situation assessment value with multiple trains affected by a cyber attack

It can be seen from Fig. 8, the first two trains ran normally according to the train schedule, while the
third train suffered a cyber attack when it was running on the track between Station 7 and Station 8. Due
to the necessary remedial measures (e.g., equipment restarts and patch upgrades), the third train resumed
normal operation 3 min later. But it still affects the normal operation of subsequent trains. The impact of
cyber attacks on the physical layer of the train control system can be characterized through the quantitative
value of situation assessment. As shown in Fig. 9, the situation assessment value is kept at a low value at first.
At the 40th second of the observation period, the train control system suffered a cyber attack, and the system
situation value increased significantly. The reason is that the attack had an impact on the physical layer of
the train control system, resulting in the time delay and economic losses of several successive trains, which
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led to the increases of situation assessment value. With the subsequent mitigation or elimination measures
taken, the situation becomes stable. However, as the departure interval of the trains is very short, subsequent
trains continue to be affected, and the security situation remains at a high level.

For comparison, another experiment is conducted. The train tracking interval is set to 8 min to simulate
the train operation in the off-peak period, and the other experiment settings are the same. The train
operation diagram under cyber attack and the change of situation assessment value is shown in Figs. 10
and 11, respectively.

Figure 10: The train operation diagram during flat peak period under a cyber attack

Figure 11: The change of situation assessment value with a single train affected by a cyber attack
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It can be seen from Fig. 10, the first two trains run according to the train schedule, while the third train
suffered a cyber attack when running on the track between Station 7 and Station 8. Due to the large train
operation interval, the subsequent trains are not affected by the third train, and the third train also resumes
normal operation 3 min later. As shown in Fig. 11, the situation assessment value initially remains at a low
value. At the 40th second of the observation period, the physical layer of the train control system suffered a
cyber attack, and the system situation value increased significantly. With the mitigation of the cyber attack,
the train operation returned to normal. The security situation value of the train control system decreased to
the normal level.

By comparison, it can be concluded that attacks on the train system during the morning peak and
off-peak periods have different impacts on the system security situation. During the morning peak, an
attack affects a larger number of subsequent trains, resulting in a sustained high security situation value. In
contrast, during off-peak periods, the attack causes delays to a single train without affecting the operation of
subsequent trains. This is reflected in the security situation, where the situation value initially rises but then
returns to normal.

6 Conclusion
This paper proposed a hierarchical security situation assessment approach for CBTC systems, enabling

the detection of cyber attacks and evaluating of security situations from the information and physical layers.
Specifically, the security situation of the physical layer was assessed from the perspective of the impact of
cyber attacks, with train punctuality rate and train departure interval serving as key indicators to quantify
the security situation under cyber attacks. Meanwhile, the security situation of the information layer was
evaluated at both static and dynamic levels, with system vulnerabilities and system threats acting as static
indicators, and network characteristics of CBTC systems serving as dynamic indicators. By integrating
the evaluation results from both the information and physical layers, a comprehensive security situation
assessment value was obtained.

Experimental results demonstrate that for DoS attacks, the proposed approach achieved the highest
detection rate, a low false alarm rate, and a high F1_score, with a detection rate of 98.59%, a false alarm
rate of 1.08%, and an F1_score of 0.9921. Additionally, the antibody concentration of the GAN-AIS model
was used to dynamically characterize the security situation of CBTC systems in real-time. The higher the
attack intensity, the greater the antibody concentration and the higher the security situation value. For the
data tampering attack, when the trains were running during the morning rush period, the data tampering
attack would affect the state of multiple trains, causing the system security situation value to change from
low to high and remain at a high level. In contrast, when the trains were running during the off-peak period,
the data tampering attack primarily affected the operation state of a single train, the security situation value
initially increased and then gradually decreased with the mitigation of the cyber attack. There are still some
limitations in our study. The evaluation was conducted using a limited number of cyber attack scenarios,
with relatively simple train operation modes and simulated attack conditions. Future research could explore
more sophisticated adversarial attacks or combined cyber-physical attack strategies to further enhance the
robustness of the proposed approach.
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