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ABSTRACT: Accurate cloud classification plays a crucial role in aviation safety, climate monitoring, and localized
weather forecasting. Current research has been focusing on machine learning techniques, particularly deep learning
based model, for the types identification. However, traditional approaches such as convolutional neural networks
(CNNs) encounter difficulties in capturing global contextual information. In addition, they are computationally
expensive, which restricts their usability in resource-limited environments. To tackle these issues, we present the Cloud
Vision Transformer (CloudViT), a lightweight model that integrates CNNs with Transformers. The integration enables
an effective balance between local and global feature extraction. To be specific, CloudViT comprises two innovative
modules: Feature Extraction (E_Module) and Downsampling (D_Module). These modules are able to significantly
reduce the number of model parameters and computational complexity while maintaining translation invariance and
enhancing contextual comprehension. Overall, the CloudViT includes 0.93 × 106 parameters, which decreases more
than ten times compared to the SOTA (State-of-the-Art) model CloudNet. Comprehensive evaluations conducted on
the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT. It achieves classification
accuracies of 98.45% and 100%, respectively. Moreover, the efficiency and scalability of CloudViT make it an ideal can-
didate for deployment in mobile cloud observation systems, enabling real-time cloud image classification. The proposed
hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.
It holds significant potential for both optimizing performance and facilitating practical deployment scenarios.

KEYWORDS: Image classification; ground-based cloud images; lightweight neural networks; attention mechanism;
deep learning; vision transformer

1 Introduction
Clouds, which are visible aggregates of minute water droplets or ice particles in the atmosphere, play a

vital role in the hydrological cycle, climate change, aviation meteorology, and radiation budgets by modifying
shortwave and longwave radiation [1]. Different cloud types are closely associated with specific weather
patterns, and their distribution and frequency offer critical insights into diverse climatic conditions [2,3].
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In the aviation industry, clouds are a significant cause of turbulence, often surpassing clear-air turbulence
in severity. Air passengers often encounter bumpy flights when flying into cumulus clouds (Cu). Moreover,
when the cloud’s temperature drops below that of its surrounding environment, a density contrast is created,
forming a sort of “pothole” in the sky that endangers the smoothness of flights. Particularly, cumulonimbus
clouds (Cb) are linked to severe weather conditions such as heavy rain, lightning, hail, strong winds, and
occasionally tornadoes, presenting serious challenges for pilots and air traffic controllers. Therefore, the
accurate classification of clouds is essential for understanding cloud dynamics and enhancing aviation
safety [4].

According to ground observation standards stipulated by the World Meteorological Organization
(WMO) [5], clouds are classified into three primary categories: high, middle, and low clouds. This cate-
gorization is based on features such as cloud base height, shape, structure, and other relevant properties.
The high cloud group is further divided into cirrus (Ci), cirrostratus (Cs), and cirrocumulus (Cc). The
middle cloud group is composed of altostratus (As) and altocumulus (Ac). The low cloud group includes
cumulus (Cu), cumulonimbus (Cb), stratocumulus (Sc), stratus (St), and nimbostratus (Ns). Additionally,
the ten aforementioned types can be further subdivided, resulting in a total of 29 cloud categories. These
29 classifications provide a detailed framework for cloud identification, which is essential for precise
meteorological studies. In this work, we primarily utilize the 11 cloud classes provided by the Huayun BJUT-
MIP cloud dataset (HBMCD), which include the 10 primary cloud genera recommended by the WMO and
an additional “No Cloud” category. This selection ensures a comprehensive and balanced dataset for our
model training and evaluation.

Despite advancements in cloud observation technology, several challenges persist in achieving accurate
cloud classification, especially using ground-based cloud imagery. While effective, traditional manual clas-
sification methods are time-consuming and heavily reliant on expert knowledge, making them impractical
for real-time applications. Automated methods based on satellite and ground-based cloud imagery have
gained prominence; however, satellite imagery, while offering large-scale observations, often lacks the
resolution necessary for capturing localized weather phenomena [6]. Ground-based cloud imagery, by
contrast, provides higher resolution and localized details, but its practical application is constrained by
limited computational resources, slow inference speeds, and suboptimal accuracy in existing methods.

Traditional deep learning approaches, such as convolutional neural networks (CNNs), are limited by
their fixed receptive fields, which hinder the extraction of global contextual information crucial for cloud
classification. Furthermore, the high computational complexity and large number of parameters in these
models pose challenges for deployment in resource-constrained environments, such as mobile cloud gauges.
These limitations highlight the need for a more efficient and accurate model that can balance local feature
extraction and global contextual understanding. To address these challenges, this paper introduces the Cloud
Vision Transformer (CloudViT) model, a hybrid architecture that integrates CNNs and Transformers to
overcome the shortcomings of existing methods. The CloudViT model combines the local feature extraction
capabilities of CNNs with the global attention mechanisms of Transformers, ensuring efficient and accurate
cloud classification. Additionally, the model incorporates two innovative lightweight modules: the Feature
Extraction Module (E_Module) and the Downsampling Module (D_Module). These modules reduce model
parameters and computational requirements while preserving translation invariance, local correlation, and
global contextual information. This enables the model to extract refined features from diverse cloud imagery
and achieve high classification performance. The overall algorithmic flow of CloudViT is illustrated in Fig. 1.
The modular design ensures that each component contributes to the balance of computational efficiency
and feature extraction capability. The main contributions of this paper are as follows: (1) Introducing a
Transformer framework for ground-based cloud image classification to address the limited receptive field
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of CNNs while ensuring computational efficiency and global contextual awareness; (2) Proposing novel
lightweight modules, E_Module and D_Module, which effectively balance computational cost and feature
extraction capabilities, enabling the model to process diverse cloud types efficiently.

Figure 1: Overall framework diagram of the proposed method

This paper is structured as follows: Section 1 provides the introduction, describing the background
and significance of the study. Section 2 reviews the current research status of ground-based cloud image
classification. Section 3 presents the methodology, detailing the CloudViT model and its constituent mod-
ules. Section 4 describes the experimental setup and analyzes the results. Section 5 summarizes the findings
and outlines future research directions.

2 Literature Review

2.1 Existing Methods and Limitations
In the past few decades, research on the classification of ground-based cloud images can be broadly cate-

gorized into two domains on the basis of the ways features are extracted: manual classification and automatic
classification. Two approaches in manual classification have been explored: one involves experienced experts
utilizing their knowledge to determine cloud types, characteristics, and boundaries, manually labeling
distinct regions of clouds; the other approach employs machine learning methods based on traditional
features for classifying clouds, using manually extracted features. Automatic classification employs multi-
layer neural networks to learn intricate features from complex cloud images and then classify them based on
these learned features.

In recent years, manual classification methods have primarily focused on machine learning approaches
based on traditional features. For instance, Heinle et al. [7] used predefined statistical features to describe
cloud spectral and simple texture information and employed a k-nearest neighbor classifier to classify seven
types of clouds on the basis of ground-based observations. Liu et al. [8] also extracted multi-structural
features of clouds, such as mean cloud gray value and edge sharpness, from segmented and edge images
of infrared sky images, and then used a matrix-based supervised classifier for classification. Liu et al. [8]
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introduced an illumination invariant completed local ternary pattern descriptor to handle lighting variations
for cloud classification. Dev et al. [9] proposed an improved text-based approach that integrates color and
texture information. Wang et al. [10] developed a robust feature extraction method using stable local binary
patterns. These traditional feature-based classification methods achieved partial automation in cloud image
classification compared to manual expert-based classification. However, these methods require adjusting the
feature extractors based on specific scenarios. Many of these methods consist of multiple preprocessing stages
and utilize various predefined fixed thresholds during feature extraction. They heavily rely on meticulous
feature selection and empirical parameters during classification, thus normally lacking comprehensive
automation in cloud feature extraction. Moreover, the general applicability and accuracy of these methods
are limited, making them hard to apply in practical scenarios.

The emergence of automated ground-based cloud image classification methods originated from the
advancement of deep learning, particularly, the remarkable performance of CNN in image classifica-
tion [11,12]. The capability of CNN models to extract features directly from image data, without the need
for additional traditional feature extraction, has led to their widespread application in ground-based cloud
image classification. For example, Zhang et al. [13] introduced a CNN model evolved from AlexNet, which
can effectively classify ten cloud genus and one contrail class from ground-based cloud images using CNNs.
Phung et al. [14] designed suitable CNN models for small datasets and employed regularization techniques
to enhance model universality as well as avoid overfitting. Manzo et al. [15] utilized transfer learning and
a voting mechanism for cloud image classification. Zhang et al. [16] proposed LCCNet, a lightweight CNN
model with a lower parameter count and computational complexity compared to existing network models.
Mesut et al. [17] used super-resolution and semantic segmentation to preprocess image data, employed
the lightweight classification network ShuffleNet to create ground-based cloud image feature sets, and
utilized binary fish optimization for effective feature selection, followed by linear discriminant analysis
for classification.

The aforementioned deep learning-based methods for ground-based cloud image classification will
verify the capacity to automatically extract image features. Compared to expert-based manual classification
and handcrafted feature extractor methods, these approaches offer greater universality, faster inference
speeds, and higher accuracy. However, current deep learning methods still face problems such as large model
parameter counts, poor global feature extraction capability, non-end-to-end classification methodologies
that lead to slower overall processing speeds, and difficulties integrating classification models on mobile
devices in real-world applications.

2.2 Improvement Strategies
Cloud classification methods using deep learning are more accurate than manual classification and

feature extraction techniques. However, these methods have two major limitations. Firstly, they do not
consider the effectiveness of classification and model weight simultaneously. Secondly, they ignore ground-
based cloud map samples with significant intra-class variations and minor inter-class differences. In addition,
most classification methods are composed of pure CNNs, but the limited receptive field of CNNs makes it
difficult to capture global features [18]. To solve this problem, several solutions have been proposed [19], such
as Atrous convolution [20], enlarged kernel sizes [21], pyramid pooling [22], and non-local operations [23].
Though these methods can alleviate the problem to a certain extent, they do not fully solve it.

In contrast to CNNs, the self-attention mechanism used by Transformers can extract global and long-
range dependencies perfectly [24]. However, it cannot ensure local correlations and translation invariance
when capturing features. Therefore, adopting a hybrid network that combines both approaches can effectively
overcome the limitations of existing deep learning-based ground-based cloud map classification models.
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3 Methodology
Inspired by the MobileVitv1 [25] and MobileVitv2 [26] models, the CloudViT model comprises of

four blocks: Initial Feature Extraction Block (I_Block), Local Feature Extraction Block (L_Block), Global
Feature Extraction Block (G_Block), and Classifier Block (C_Block). The main components of this model
are shown in Fig. 2. The initial feature extraction block consists of traditional convolution, Sigmoid-weighted
linear units (SiLU) [27], and batch normalization (BN), while L_Block and G_Block consist of D_Module,
E_Module, and global feature extraction module (G_Module). C_Block mainly includes global average
pooling and fully connected layers. The general algorithm flow of the CloudViT model is as follows
(Algorithm 1):

Figure 2: The overall structure of CloudViT model. It mainly includes the Initial Feature Extraction Block (I_Block),
the Local Feature Extraction Block (L_Block), the Global Feature Extraction Block (G_Block), and the Classifier Block
(C_Block)

Algorithm 1: CloudViT architecture
Input: Input image I, number of local blocks n, number of global blocks m, number of classes C.
Output: Predicted class y.
Algorithm:
1:F←I_Block(I) // Initial feature extraction.
2:for i = 1,. . .,n do
3: \ \ F←L_Block(F) // Extract local features.
4: end for
5: for j = 1,. . .,m do
6: \ \ F←G_Block(F) // Capture global features.
7: end for
8: y←C_Block(F) // Classification.
9: return y

The main difference between our method and MobileViTs is the E_Module and D_Module in L_Block
and G_Block. Both of these modules adopt a dual branch structure, and the E_Module incorporates channel
split technology, feature reuse technology, channel attention mechanism, and ideas similar to residual con-
nections. To achieve downsampling operations, the D_Module utilizes channel shuffle technology, channel
attention mechanism, and depthwise separable convolution. To enhance the model’s ability to balance local
details and global features when processing images and achieving multi-level feature learning, our method
adopts a combination of CNN and Transformer. When processing images, the Initial Feature Extraction
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Block first extracts the basic abstract features of the image, such as edges, textures, etc. Subsequently, the
image undergoes n-layer of L_Block to learn the local details of the image. On this basis, the image enters
the m-layer G_Block to integrate global information, enabling the model to understand the correlations
and contexts between different parts of the image. Finally, the extracted features are classified using the
C_Block. The entire process fully utilizes the advantages of CNN and Transformer, achieving hierarchical
feature learning, effectively capturing and integrating images’ local and global features, and improving the
classification performance of the model.

3.1 D_Module and E_Module
Recent studies [28] have shown that using a step size of 2 for downsampling achieves comparable

results to pooling layers and even performs better in larger network sizes. Therefore, in our work, E_Module
and D_Module adopt depthwise separable convolution, which consists of two parts: feature extraction and
pointwise convolution. In the stage of feature extraction, the deep convolution achieves independent and
abundant spatial features by convolving data channels separately. In the stage of pointwise convolution, the
output of a convolution is calculated by applying a convolution kernel with a size of 1 × 1. When performing
downsampling operations, we set the step size to 2 during the pointwise convolution stage. The step size with
smaller value can extract more local and elaborate features in the stage of the deep convolution operation. In
addition, to address the potential gradient explosion problem caused by network depth, the BN technology
is introduced in our model after each convolution operation. In parallel, the SiLU activation function is
uniformly used in the proposed model, which can effectively avoid the “inactive neurons” problem because
of its smoothness and approximation.

As shown in Fig. 3, the lightweight channel attention mechanism is used in our CloudViT model. It not
only can extract global contextual feature information but also can attain local feature information in the
cloud map. At last, the lightweight structure design of CloudViT can meet the computing requirement in
resource-limited environments, for example, the mobile device of ground-based cloud gauge.

Figure 3: The structure of the lightweight channel attention

Based on what is mentioned above, the D_Module’s structure is shown in Fig. 4a. The input feature map
is divided into two branches, which are calculated according to the Eqs. (1) and (2), respectively. Then, this
feature information is fed into the lightweight channel attention mechanism module. This process can not
only reduce the interference of redundant features and noise but also enhance relevant feature information.
Finally, the feature information of the two branches is concatenated to generate a multi-scale feature map,
which improves the model’s feature representation ability by integrating the multi-scale information.
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Figure 4: The structure of the (a) D_Module and (b) E_Module

In Eq. (3), the shuffle denotes channel blending, Ifeature denotes input features, and contact denotes
splicing operation on two sets of feature maps in channel dimension.

G1 = SiLU(BN(DW3×3
str id e=1(I f eature))), (1)

G2 = eca((SiLU(BN(DW3× 3
str id e=2PW((I f eature)))))), (2)

F = shu f f l e(concat(G1 , G2)). (3)

The E_Module can be seen in Fig. 4b. The input feature map is divided into two branches along the
channel dimension. Short skip connection is used in the first branch to merge the input feature map directly
with the output feature map of the second branch, which is similar to residual connections and combines
the local and global feature information of the cloud picture. The shot skip connection helps to enhance
the ability of feature representation and alleviate gradient issues for CloudVit. Specifically, the E_Module is
calculated by the Eqs. (4) and (5) as follows:

G2 = SiLU (BN (DW3×3
str id e=2PW ((

I f eature

2
))) , (4)

F = concat ((
I f eature

2
) , G2) . (5)

3.2 G_Module
The structure of G_module is shown in Fig. 5. Firstly, the depthwise separable convolution is used in

this module to incorporate the features from the last layer. Secondly, the separable self-attention mechanism
is used to compensate for spatial feature maps with missing information. The separable self-attention
mechanism is calculated by the Eqs. (6)–(8) as follows:

Cs = so f tmax(k), (6)

Cv = ∑
k
i=1 Cs(i)xk(i), (7)



5736 Comput Mater Contin. 2025;83(3)

y =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑
⎛
⎜
⎝

c3	





�






�
σ (WI) ∗ xWK

⎞
⎟
⎠

�
























































�
























































�
C1

ReLU (xWV)

⎞
⎟⎟⎟⎟⎟⎟
⎠

WO . (8)

In Eqs. (6)–(8), k represents the k-dimensional vector of the distance between the latent marker L and
input x, Cs is the context score of the k-dimensional vector, WI , Wk, Wv, and Wo represent the input weight,
key weight, value weight and output weight, respectively. xk represents the output of input x linearly projected
onto d-dimensional space using the key branch K with weight WK , and Cv represents the context vector
obtained by calculating the weighted sum of Cs and xk.

Figure 5: The structure of G_Module

4 Experimental Setup and Result Analysis

4.1 Dataset
The Huayun BJUT-MIP cloud dataset (HBMCD) is currently the largest ground-based cloud image

dataset, which was captured by the whole-sky imager made by Huayun Shengda Meteorological Technology
Co. Ltd. (Beijing, China). The HBMCD dataset contains 25,118 cloud images and is categorized into 11 cloud
classes including 10 cloud genera categories recommended by WMO and an additional “No Cloud” (No)
category. The 10 cloud genera classes are Ac, As, Cb, Cc, Ci, Cs, Cu, Ns, Sc, and St, respectively. All the
cloud images were labeled by experts [16]. It is important to note that while the WMO recommends a more
detailed classification system that includes 29 subclasses, our study focuses on the primary cloud genera
categories. This decision is based on the comprehensive nature of these primary categories, which provide a
robust framework for understanding major cloud types and their associated weather patterns. Additionally,
the dataset used in this study was labeled by experts based on these primary cloud genera categories, ensuring
the accuracy and reliability of the labels. Subsets of samples for each class from this dataset are depicted
in Fig. 6.

In these experiments, we divided the HBMCD dataset into training, validation, and test sets in a random
manner using an 8:1:1 ratio. The specific data distribution of the divided HBMCD dataset is illustrated
in Fig. 7. It is evident from the figure that the No class has the highest data volume, while the Ns class has the
lowest data volume, approximately one-third of the No class.
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Figure 6: Samples of 11 cloud types in HBMCD dataset

Figure 7: Distribution of the HBMCD dataset

In addition to the HBMCD, the Singapore Whole-sky IMaging CATegories Database (SWIMCAT) is
one of the most widely used datasets for ground-based cloud image classification tasks. Introduced by Dev
et al. [9], it consists of a total of 748 sky/cloud patch images, with each image having a resolution of 125 × 125
pixels. These images are categorized into five classes: clear sky, patterned clouds, thick dark clouds, thick
white clouds, and veil clouds. Subset samples for each class from this dataset are illustrated in Fig. 8.

Unlike the HBMCD, the SWIMCAT currently has the smallest number of ground-based cloud images
available. Therefore, using this dataset can demonstrate the applicability of the proposed model for cloud
image classification tasks with a small sample size. In these experiments, the partition strategy for the
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SWIMCAT aligns with that of the HBMCD dataset. The specific data distribution of the divided SWIMCAT
dataset is illustrated in Fig. 9.

Figure 8: Sample of 5 cloud types in the SWIMACT dataset

Figure 9: Distribution of the SWIMACT dataset

4.2 Experimental Parameters and Evaluation Indexes
Based on the model described in Section 3, we conducted three experiments in this study. The first

experiment aimed to evaluate the performance of the proposed model. The second experiment focused on
verifying the applicability of the model using a small sample dataset. Lastly, the third experiment involved
conducting comparative analyses to examine performance differences among various models. In these
experiments, the CloudViT is constituted by two L_Blocks and three G_Blocks. The specific structure of the
CloudViT is presented in Table 1. The input size of the samples is set to 224 × 224. To achieve better accuracy,
we utilize the cross-entropy function as the loss function in combination with the AdamW optimizer. For
learning rate decay, we employ the cosine annealing strategy, with the initial learning rate set to 0.001. The
batch size is configured to 32. These hyperparameters were determined through preliminary experiments,
where we systematically tested various configurations and found this combination to yield the best per-
formance in terms of both training stability and accuracy. During the training process, an early stopping
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mechanism is applied, with the maximum training epochs set to 100. This mechanism halts training if the
validation set loss does not decrease for a specified number of consecutive evaluations. The model with the
highest validation accuracy is selected for testing to ensure optimal performance. To enhance the robustness
and generalization of the model, various data augmentation techniques are employed. These include image
resizing, cropping, and rotation, which diversify the training data and mitigate overfitting. Additionally,
we evaluate the model’s scalability and adaptability by testing it across different datasets and varying data
distributions, ensuring that the proposed approach maintains its effectiveness in diverse contexts.

Table 1: CloudViT model specific structure and parameters

Layer Output size Kernel size Stride Output channel
Input image / 224 × 224 / / 3

I_Block / 112 × 112 / 2 16

L_Block_1 D_Module 56 × 56 / / 32E_Module

L_Block_2 D_Module 28 × 28 / / 64E_Module

G_Block_1 D_Module 14 × 14 / / 128G_Module

G_Block_2 D_Module 8 × 8 / / 192G_Module

G_Block_3 D_Module 4 × 4 / / 256G_Module

C_Block Avg pool 1 × 1 7 × 7 1 256
Fc / / / 11

Our experimented to evaluate the performance of different models on cloud images. To analyze how
models make decisions, we utilized Grad-CAM [29] to generate feature visualizations. Additionally, we
assessed the classification and generalization capabilities of the CloudViT model using various evaluation
indexes such as confusion matrix, single-class and multi-class evaluation metrics. The formulae for the
various evaluation indicators are as follows:

Precision = TP
TP + FP

, Recal l = TP
TP + FN

, (9)

Accurac y = ∑
C
c TPC

N
, F1 = 2 × P × R

P + R
, (10)

Pmacro =
1
C∑

C
i=1 Pi , Rmacro =

1
C∑

C
i=1 Ri , (11)

Pmicro =
∑C

i=1 Ti

∑C
i=1 Fi

, Rmacro =
∑C

i=1 Ti

∑C
i=1 Ni

. (12)

In these formulae, TP (True Positive) refers to the number of samples correctly predicted as the positive
class, FP (False Positive) denotes the number of negative samples incorrectly predicted as the positive class,
and FN (False Negative) represents the number of positive samples incorrectly predicted as the negative class.
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4.3 Experimental Results and Analysis
This section presents and analyzes the results of the three experiments mentioned in Section 4.2. The

core purpose of the first experiment is to comprehensively evaluate the performance of the proposed model
and verify its classification accuracy and stability on the HBMCD. The second experiment focuses on testing
the applicability and generalization ability of the model on a limited small sample dataset, SWIMCAT,
to explore its performance in situations of data scarcity. The third experiment aims to further reveal the
advantages and limitations of each model by comparing and analyzing the performance differences between
different models.
(1) Overall performance evaluation of the model

In this experiment, we provide a detailed evaluation of the overall performance of the proposed model,
including analyses of two key aspects: confusion matrix and multi-class evaluation indicators. The confusion
matrix is shown in Fig. 10, our method achieved extremely high classification accuracy for the four cloud
types of Cu, No, Ns, and St on the HBMCD dataset without any misclassification.

Figure 10: Confusion matrix results on the HBMCD dataset

The evaluation metrics for multi-class classification based on the HBMCD dataset are presented
in Table 2. The CloudViT model achieved a micro-precision of 98.45% and a micro-recall of 98.45%, indicat-
ing robust overall performance. The macro-precision and macro-recall were 98.38% and 98.31%, respectively,
with a slight difference of 0.07%. This minor discrepancy is primarily due to the high similarity between
different cloud types in the dataset, which occasionally leads to misclassification of visually similar classes,
rather than an imbalance in dataset sample sizes. The confusion matrix (Fig. 10) and single-class evaluation
metrics (Table 2) further support this analysis, showing that the model has very few misclassifications
overall. For example, certain cloud types like cirrostratus (Cs) and cirrus (Ci) share visual characteristics
that can make them difficult to distinguish, contributing to the slight difference between macro-recall and
macro-precision. This highlights the model’s effectiveness in handling a diverse and complex dataset while
maintaining high accuracy and reliability.

Finally, the weighted average F1-score based on the HBMCD dataset is 98.45%. This indicates that
CloudViT not only overcomes the challenge of imbalanced dataset sample sizes but also maintains high
accuracy and recall. Therefore, CloudViT delivers excellent results in the HBMCD dataset classification task.
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Table 2: Multi-category evaluation metrics based on the HBMCD dataset (%)

Pmacro Rmacro Pmicro Rmicro F1 weighted avg

98.38 98.31 98.45 98.45 98.44

(2) Model performance on small sample datasets
To ensure a comprehensive understanding of the classification performance of our method on small

sample datasets, we comprehensively used a confusion matrix and single-class evaluation indicators for
analysis and evaluation. These single-category evaluation indicators include accuracy, recall, and F1 score.
The overview of the confusion matrix is shown in Fig. 11, while the specific values of single-category
evaluation indicators are detailed in Table 3. These data and charts provide information on the classification
performance of the research method in this section on small sample datasets.

Figure 11: Confusion matrix based on SWIMCAT dataset

Table 3: Single class evaluation indicators based on the SWIMCAT dataset (%)

Category Accuracy Recall F1
Clear sky 100 100 100

Patterned clouds 100 100 100
Thick dark clouds 100 100 100
Thick white clouds 100 100 100

Veil clouds 100 100 100

As shown in the confusion matrix in Fig. 11, our method achieved 100% accuracy in cloud classification
for all categories on the SWIMCAT dataset. This result indicates that the model can effectively distinguish
all cloud types in the SWIMCAT dataset, demonstrating extremely high classification accuracy and stability.
According to the data in Table 3, we can see that in the SWIMCAT, the single-category evaluation indicators
of each category have reached a perfect 100%. This further demonstrates the effectiveness of our method on
small sample datasets.
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(3) Comparative experiments
We chose HBMCD as the core experimental dataset when analyzing the differences between the research

method in this paper and other ground-based cloud image classification methods because of the diversity and
complexity of the HBMCD dataset. To comprehensively evaluate the performance of different techniques, we
conducted an in-depth experimental analysis covering the visualization of feature maps and consideration
of multi-category evaluation metrics. In addition, we conducted a comprehensive evaluation of the overall
classification accuracy, parameter count, and Flops to demonstrate the performance characteristics of various
methods more comprehensively.

Various types of clouds can be characterized as unique texture features that describe their visual
appearance. Our method used the Grad-CAM [29] method on the HBMCD dataset to better understand
how models make decisions by generating heatmaps for the last layer in the CloudNet, LCCNet, ShuffleNet,
and CloudViT models. As shown in Fig. 12, these heatmaps illustrate the regions to which the four models
pay more attention when classifying the eight categories of images in the HBMCD dataset (Ac, Cb, Cc, Ci,
Cs, Cu, Ns, and Sc).

Figure 12: Feature visualization based on different models on the HBMCD dataset

In the image analysis process, we found that pure CNN-based ground-based cloud image classification
models like CloudNet and LCCNet exhibit fewer learned cloud image features than the CloudViT model,
which combines CNN and Transformer. Furthermore, the pure CNN models fail to capture global feature
information effectively. For example, in Fig. 12, the CloudNet and LCCNet models cannot efficiently learn the
relevant features for cloud Cs and Ns even after extensive training. Their discriminative capabilities mainly
depend on other reference objects within the cloud image. By contrast, the CloudViT model accurately
extracts features for these two cloud types and precisely classifies them based on the importance scores
assigned to individual pixels in the image. ShuffleNet, being one of the state-of-the-art models, shows
improved attention to certain features but still struggles with global contextual understanding compared
to CloudViT.
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Table 4 presents the multi-class evaluation indicators of six classification methods applied to the
HBMCD dataset, including the classic lightweight classification models, the latest ground-based cloud map
research methods, and the research method proposed in this paper. After a comprehensive analysis of
multiple evaluation indicators in Table 4, we found that the proposed CloudViT model performed excellently
on the HBMCD dataset. Specifically, regardless of macro precision, macro recall, micro precision, micro
recall, or F1 weighted average, our model demonstrated significant advantages over classical lightweight
classification models such as ShuffleNet and recent ground-based cloud image classification methods. The
overall classification performance of our method is superior for the HBMCD dataset, as it can more
accurately and efficiently identify various cloud shapes.

Table 4: Multi-category evaluation metrics of six methods for HBMCD dataset (%) (Bold indicates the optimal result,
and underline indicates the suboptimal result)

Method Pmacro Rmacro Pmacro Rmacro

CloudNet [13] 73.53 69.36 74.27 74.27
ShuffleNetV2_x0_5 [30] 94.17 93.10 94.35 94.31

Voting Based Learning [15] 97.12 96.79 97.21 97.21
LCCNet [16] 96.90 96.40 96.89 96.89

MobileViTV2_050 [26] 97.11 97.29 97.37 97.37
Ours 98.38 98.31 98.45 98.45

As shown in Table 5, to explore the application effects in practical scenarios, we compared the perfor-
mance of different classification methods using critical indicators, including overall classification accuracy,
Flops, and parameter quantity. Based on the data presented in Table 5, we can see that compared to other
classic lightweight classification models and the latest ground-based cloud image classification methods,
the CloudViT model exhibits significant advantages in overall performance. Firstly, the CloudViT achieved
the optimal classification performance among numerous models, including ShuffleNet, which is considered
state-of-the-art. Secondly, it also achieved the lowest number of floating-point operations, ensuring the
best computational efficiency among the methods. Finally, compared to the CloudNet model, the proposed
CloudViT model reduces the number of parameters by approximately 61 times, making it more suitable for
resource-constrained environments.

Table 5: Comparative experiments and confounding experimental results of six methods (%) (Bold indicates the optimal
result, and underline indicates the suboptimal result. The Flops and parameter in the voting based learning method
both come from the classification model with the smallest parameter in this method)

Method Acc of dataset (%) Flops Parameter

HBMCD SWIMCAT
CloudNet [13] 77.30 98.60 8.92 × 1010 5.69 × 107

LCCNet [16] 96.90 100.00 8.72 × 108 0.44 × 106

Voting based
learning [15]

97.10 99.91 2.20 × 109 7.30 × 106

ShuffleNetV2_x0_5 [30] 94.35 100.00 1.50 × 1011 1.26 × 106

MobileViTv2_050 [26] 97.37 100.00 3.80 × 108 1.20 × 106

Our 98.45 100.00 7.93 × 107 0.93 × 106
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The comparison of heatmaps in Fig. 12, along with the quantitative results in Tables 4 and 5, underscores
the effectiveness and efficiency of CloudViT in capturing both local and global features, achieving state-of-
the-art performance in ground-based cloud image classification tasks.

5 Conclusion
In this paper, we introduced CloudViT, a lightweight neural network tailored specifically for ground-

based cloud image classification. CloudViT integrates the strengths of CNN and Transformers, effectively
addressing the limitations in capturing global features while maintaining computational efficiency. The
model’s innovative D_Module and E_Module, which incorporate lightweight channel attention mechanisms
and depthwise separable convolutions, significantly reduce both the number of parameters and the computa-
tional resources. This makes CloudViT highly suitable for deployment on resource-constrained devices, such
as ground-based cloud observation instruments. Experimental results demonstrate that CloudViT achieves
state-of-the-art performance on the HBMCD and SWIMCAT datasets, with classification accuracies of
98.45% and 100%, respectively. These results underscore the model’s ability to handle complex cloud images
characterized by small inter-class differences and large intra-class variations. Furthermore, the lightweight
design of CloudViT ensures reduced computational demands, with a parameter count approximately 61 times
smaller than that of the CloudNet model.

Despite its promising performance, the model encounters challenges in distinguishing between certain
cloud types, such as Cc and Ac, Cs and Ci, and Cs and As, due to the high similarity of samples within these
classes. To address these limitations, future work will explore leveraging multi-modal data fusion, integrating
additional information such as cloud height, temperature, density, and water vapor content collected during
image acquisition. Incorporating such complementary data is anticipated to enhance the model’s ability
to differentiate between closely related cloud types. Additionally, the limitations and challenges associated
with CloudViT warrant further investigation. While the model exhibits excellent performance on the tested
datasets, its generalizability to other regions and cloud types has yet to be validated. Future research will
focus on evaluating the model across a broader range of datasets to assess its robustness and adaptability
under diverse cloud conditions worldwide.
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