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ABSTRACT: With the rapid development of artificial intelligence and Internet of Things technologies, video action
recognition technology is widely applied in various scenarios, such as personal life and industrial production. However,
while enjoying the convenience brought by this technology, it is crucial to effectively protect the privacy of users’ video
data. Therefore, this paper proposes a video action recognition method based on personalized federated learning and
spatiotemporal features. Under the framework of federated learning, a video action recognition method leveraging
spatiotemporal features is designed. For the local spatiotemporal features of the video, a new differential information
extraction scheme is proposed to extract differential features with a single RGB frame as the center, and a spatial-
temporal module based on local information is designed to improve the effectiveness of local feature extraction; for the
global temporal features, a method of extracting action rhythm features using differential technology is proposed, and
a time module based on global information is designed. Different translational strides are used in the module to obtain
bidirectional differential features under different action rhythms. Additionally, to address user data privacy issues, the
method divides model parameters into local private parameters and public parameters based on the structure of the
video action recognition model. This approach enhances model training performance and ensures the security of video
data. The experimental results show that under personalized federated learning conditions, an average accuracy of
97.792% was achieved on the UCF-101 dataset, which is non-independent and identically distributed (non-IID). This
research provides technical support for privacy protection in video action recognition.
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1 Introduction

In recent years, video action recognition technology has made significant progress and is widely
applied in fields such as intelligent surveillance, human-computer interaction, and sports analysis. Due
to breakthroughs in deep learning algorithms, especially the widespread use of models like CNN and
LSTM, the accuracy and robustness of video action recognition have been greatly improved [1,2]. However,
with the further development of these technologies, data privacy and security issues related to video

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.061396
https://www.techscience.com/doi/10.32604/cmc.2025.061396
mailto:zcm84@cuit.edu.cn

4962 Comput Mater Contin. 2025;83(3)

action recognition have become increasingly prominent, emerging as key factors that constrain its broader
adoption [3,4]. For instance, in a home environment, a surveillance camera must continuously record images
of household members, which inherently involves capturing sensitive data related to the user’s daily life and
privacy. Therefore, we need to consider how to ensure user privacy in data collection and processing. On the
one hand, we must ensure that data processing and application tasks are performed locally, with no possibility
of uploading the data to a server. This requires us to consider security in the design of data processing systems
to avoid data leaks and abuse. On the other hand, we need to prevent the dissemination and storage of data
across distances from causing security risks.

Federated learning algorithms can effectively solve the privacy issue of user data in video monitoring.
Under the framework of federated learning, the model can use scarce data locally to complete training, and
the models of each user are aggregated through different methods and strategies on the central server. The
data do not need to be transmitted to the central server, ensuring the security of data privacy. Utilizing a
federated learning framework for video action recognition can significantly enhance the security of user
privacy [5-9].

This paper integrates federated learning, fully considering user data security and privacy, and proposes
a video action recognition method based on personalized federated learning and spatiotemporal features.
Under the framework of federated learning, this method designs a video action model that extracts spa-
tiotemporal features using differential methods. The model embeds a spatiotemporal module based on local
information and a temporal module based on global information within a residual network structure. These
two modules respectively use RGB differences and feature differences to extract local spatiotemporal features
and global temporal features, thereby improving model efficiency while ensuring recognition performance.
The main contributions of this paper are as follows:

(1)  Toaddress the needs of privacy protection and data security in video surveillance, this paper combines
federated learning with video action recognition models to propose a method based on personalized
federated learning and spatiotemporal features.

(2) Regarding the spatiotemporal features of video segments, this paper proposes a spatial-temporal
module based on local information, which uses a new differential information extraction method to
provide complementary spatial static information with temporal features.

(3) Regarding the time-based features of complete videos, this paper proposes a time module based on
global information that utilizes differential information of local features to extract action rhythm
features, thereby improving the extraction effect of time-based features.

2 Related Work

In the field of personalized federated learning for video action recognition, scholars have proposed
various innovative solutions. Zhao et al. [10] proposed an activity recognition system that uses semi-
supervised federated learning, where clients use unlabeled local data to learn general representations through
long short-term memory autoencoders, and the cloud server uses labeled data with a Softmax classifier for
supervised learning. Experimental results show that their proposed system achieves higher accuracy than
centralized systems and semi-supervised federated learning with data augmentation, and its accuracy is
comparable to that of supervised federated learning systems. Shome et al. [11] proposed a federated learning
framework for facial expression recognition that uses a small amount of labeled private facial expression
data to train local models in each training round and aggregates all local model weights on the central
server to obtain the global optimal model. Rehman et al. [12] proposed a general FL framework FedVSSL
based on SWA for pre-training video-SSL methods in FL. This method shows strong competitiveness in
action recognition tasks compared to FedAvg and centralized video SSL. Doshi et al. [13] proposed an
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effective federated learning solution based on 2D CNN models for detecting distracted driver activities.
This solution trains the detection model in a distributed manner while protecting privacy and reducing
data communication. Tu et al. [14] proposed a federated few-shot learning framework FedFSLAR, which
collaboratively learns classification models from multiple FL clients using a small number of labeled video
samples to recognize unknown actions.

3 Video Action Recognition Method Based on Personalized Federated Learning and Spatiotemporal
Features

The proposed video action recognition method based on personalized federated learning and spa-
tiotemporal features incorporates the characteristics of the video action recognition model to divide the
parameters into private and public parameters. First, the complete process of the personalized federated
learning method and the production method of non-independent and same distribution video action
recognition datasets are given. Second, this section introduces the specific structure of the video action
recognition model.

3.1 Overview

The proposed personalized federated learning scheme combines the characteristics of video action
recognition models to divide private parameters and public parameters. Meanwhile, federated learning
allows for training directly on edge devices, eliminating the need to transmit raw data from client devices
to a central server, thereby reducing the risk of data leakage [15]. The video action recognition model is
divided into three parts: input, local feature extraction, and global feature extraction. Taking the overall
model segmentation number # = 3 as an example, n = 8 and n = 16 will be used for experimental results in
subsequent experiments. In the input stage, video data are divided into three segments; for each segment,
one frame of RGB is sampled first followed by taking the first two frames before and after the selected frame,
respectively, and calculating the difference with the selected frame to obtain four RGB differences. In the local
feature extraction stage, the differences are stacked and passed through a pooling layer to obtain initial local
difference information, which is then input together with the video frame into the second stage network of
ResNet for spatial feature extraction. Another copy of the initial difference information is also input into the
second stage network of ResNet to extract temporal features and the spatial features are added to the temporal
features to obtain the final local spatial features of each segment. In the global feature extraction stage, each
segment’s local features are compressed in the channel dimension and a bidirectional global difference is
obtained by translating each segment’s features. Through a convolutional neural network, global features are
obtained, corresponding to the last three stages of ResNet with different stacking layers. Three rounds of
global feature extraction are performed in total. Finally, the global features are input into a classifier to obtain
the final video action recognition results.

When performing local feature extraction, the model focuses more on the static information of video
data, including some key image information such as human body, color, and objects, so it is highly dependent
on training data. Local features, serving as private parameters for users, are retained on the users’ local devices
and are not uploaded to the central server. This ensures that users’ original video data and personalized
features never leave their devices, thereby greatly enhancing privacy protection. Conversely, global feature
extraction focuses more on dynamic information and extracts features that change with time. In personalized
federated learning, local feature extraction is more suitable for training and storage at the user’s local device,
corresponding to the private parameters of the local model, whereas global features are better suited for
aggregation at a central server, resulting in shared parameters that are saved as the public model. Fig. 1 shows
the personalized federated learning-based video action recognition method.
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Figure 1: Diagram of the video action recognition framework based on personalized federated learning and spatiotem-
poral features

This paper combines the video action recognition model with the personalized federated learning
mechanism. For the model in the four feature extraction stages, the parameters of the local feature extraction
stage are used as personalized models for each user, while the parameters of the global feature extraction
stage are used as global shared parameters. In Fig. 1, the blue rectangle represents the private parameters
of user A, the red rectangle represents the private parameters of user B, and the green diagonal rectangle
represents the public parameters downloaded from the central server after step (). After backpropagation
and parameter update in local training (step (2)), the entire model undergoes different changes for each user.
Then, the updated public parameters are uploaded to the central server through step (3) and the parameters
are aggregated again by the central server in step (4) to obtain new public parameters. The process is repeated
for a new round of federated learning communication.

3.1.1 Spatial-Temporal Module Based on Local Information

In recent years, some efficient methods for obtaining temporal information have been proposed. Among
them, RGB difference and temporal shift methods are both simple and effective. RGB difference can simply
obtain boundary and action information by performing a difference between RGB frames, whereas a
temporal shift shifts the feature map in the time dimension, allowing features to overlap in time and extract
dynamic information during further feature extraction.
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The local spatiotemporal module proposed in this paper uses a convolutional neural network to extract
features from RGB frames, obtaining local spatial features, and then extracts supplementary temporal
information from the difference between multiple frames of RGB over a period of time to obtain the local
spatiotemporal information of the current video segment. This module addresses the issues of traditional
methods relying on complex data preprocessing and time-consuming processes when extracting short-term
temporal information from local regions. It achieves a more efficient way to obtain temporal information
and enhances model performance. The structure of the local module is shown in Fig. 2 and the entire module
can be divided into two branches. For the input frame I; at time ¢, the first branch directly inputs the raw
input data into the convolution layer to extract features, obtaining the static information of the current video
frame and the original spatial features of the current segment. The second branch obtains data from two
frames before and after ¢, performs a difference operation on a total of five frames, smooths the feature in
the channel dimension, passes through an average pooling layer in the planar dimension, and then adds
the pooled feature to input into the convolutional network. At this time, it can obtain the supplementary
temporal features of the current video segment. These features are divided into two paths: one directly
inputs into the second-stage network of ResNet to extract features and the other combines with the static
feature and upsamples according to the feature shape of the first branch, adding it to the first branch feature
and inputting into ResNet. Finally, the two feature maps are re-scaled and added to obtain the final local
spatiotemporal feature.
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Figure 2: Spatial-temporal module based on local information and time module based on global information
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Theoretically, the neighboring frames of the input frame I, at time t are I;_,, I;_y, I;41, and I;4,. The
difference between these 4 frames and I; is taken, with F,; representing the differential features and Frgp
representing the static features. The calculation process of the two paths can be represented by Eqs. (1) and (2):

Fyiff=Conv Y Avg(l,—I:;) W
i=—2,21,1,2

FRGB = COHV(It) (2)

In the equations, Avg represents the average pooling layer mapping, and Conv represents the con-
volutional layer mapping. Finally, F; represents the features of the local module, which can be expressed
by Eq. (3):

Fi = ResNet[Frgp + UpSample(Fyisr)] + UpSample[ResNet(Fqifr)] (3)

In the equation, UpSample represents the upsampling of features, and ResNet represents the residual
network mapping.

3.1.2 Time Module Based on Global Information

After obtaining the local spatiotemporal features of video segments, it is necessary to further acquire
the temporal features between segments. Both local and global temporal features are important for action
recognition. Some video actions may occur in a few moments but have a fixed order. It is necessary to extract
local spatiotemporal features and further interact features across the entire temporal dimension of the video.
Some actions are slow and continuous actions, requiring the model to grasp the data features of each stage.

For this reason, this paper further proposes a time module based on global information, which uses
feature differencing to extract action rhythm information. The input of the module is the local spatiotemporal
features of each segment. For features of different segments, differential interaction can be performed
through fixed time rules to extract the time features of fixed action rhythms. In the model proposed in this
paper, different time intervals essentially represent different action rhythms.

Fig. 2 illustrates the overall structure of the time module based on global information. For the local
feature F, of the nth segment, a backup is first saved and directly connected to the lower-level network,
which is theoretically similar to a residual network, preventing gradient and degradation problems and
accelerating propagation. Meanwhile, the original frame-level features can also be retained in the current
module. Secondly, the original F, is input into a convolutional network to achieve compression in the
channel dimension, smoothing the features. This is because there is a large gap between the features
of different segments and direct differencing operations may introduce a significant amount of noise,
disrupting the original spatiotemporal features. Smoothing the features in the channel dimension before
differencing makes the differencing features more effective. The smoothed features are also backed up for
later differencing calculations. Another copy is input into the convolutional layer for feature extraction
and then the difference is calculated with the backup features of other segments to obtain the difference
information of different segment features. Different features participate in differencing interactions under
different translation strides.

In existing video action recognition models based on action rhythm features, different action rhythm
features are often extracted by sampling at different data frequencies, and different input sizes require separate
network channels for feature extraction, greatly increasing the model parameter count and training time cost.
The approach proposed in this paper for extracting action rhythm features directly implements differential
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feature extraction at different intervals within existing local features through different translation strides,
thereby controlling the model size while improving recognition performance.

For the extraction of action rhythm, as shown in the feature vector at the top of Fig. 2, different features
of interaction under different displacement step sizes are marked on the vector. When the step size is small,
action changes within a relatively short period of time can be obtained, which is suitable for extracting fast-
paced action features. Similarly, when the step size is large, it captures slow-paced action changes. In this
paper, the method of calculating differences is still used to obtain the temporal features between segments.
This module addresses the issue of efficiently extracting video action rhythm features while reducing noise
interference by smoothing the features before differencing.

In the specific implementation process, for the data feature F;, displaced features are obtained through
bidirectional translation. The diagrams below Fig. 2 illustrate displacement step sizes of 1, 2, and 3. On
this basis, features beyond the boundaries are removed and the blank features are filled in to obtain three
feature vectors that are displaced in the time dimension. Then, subtracting the three vectors yields differential
information for different time spans. Blank features appearing after displacement are directly filled with
null values.

Using the above method, bidirectional differential features can be obtained after bidirectional transla-
tion. Then, the features are divided into three paths: one path passes through pooling layers, convolutional
layers, and upsampling layers before being passed to the next layer while the other passes through convolu-
tional layers before being passed to the next layer; one path directly transmits the original features downward,
and the three paths are added in the next layer. This approach can further enhance the robustness of the time
module, making the smoothing operation on different segment features more effective. Subsequently, the
features are fused deeply again through convolutional layers and activation layers, and the fused bidirectional
features are added together to obtain the bidirectional differential features of the current video segment.
Afterwards, the differential features are multiplied with the original features one by one, which is equivalent
to treating the differential features as attention parameters of the original features. Attention mechanisms
are often more effective at higher levels of network structure, so this paper applies them to the time module.
Finally, the segment features with attention mechanisms are added to the original features to obtain the final
features of the time module.

Using D to represent the differential function, the differential calculation process can be expressed
by Eq. (4):
D, -1 = Conv(F,) — Conv(F,_;) (4)

Using F to represent the smoothed features, and D,, ,,_; represents the local feature difference between
the n — 1 and n segments.

Next, using H to represent the merged features of the three paths, and H' to represent the fused features,
the calculation process of the unidirectional features is shown in Egs. (5) and (6):

H,,-1=Dy 1+ Conv(D, ,-1) + Conv[UpSample(D, n-1)] (5)
H; ,_, = Sigmoid[Conv(H, ,-1)] (6)

Using UpSample to represent upsampling, and the upsampling function is used again in the global
module to unify the size of the three path features. Sigmoid is the activation function used in this layer of the
temporal module. Finally, using F to represent the final features output by the temporal module, as shown
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in equation Eq. (7):

F,=F,+F, 0 =[H, ,_ +H,,] (7)

n,n—1

S

Using F, to represent the original local features of the nth segment, and ® represents element-wise
multiplication. This means the original features are multiplied with the bidirectional features and then added,
and finally the original features are added again to obtain the temporal information of the current stage.

3.2 Federated Learning of Video Action Recognition Dataset

To verify the performance of the video action recognition model under the federated learning training
mechanism, a federated learning video dataset was created using the publicly available video dataset UCF-101.

As for federated learning, considering user privacy, each user trains the model using local data. In the
field of machine learning, datasets often follow the Independent Identically Distributed (IID) assumption,
but in the practical application scenario of federated learning, the data distribution of each user is irregular
and belongs to the Non-Independent Identically Distributed (non-IID) dataset [16,17]. Existing federated
learning research usually groups data based on existing public datasets, mainly in two ways. As shown
in Fig. 3, taking five users as an example, each user contains three types of data, where the vertical axis
represents the user number, the horizontal axis represents the number of data samples, and different colors
represent different data categories. The first method in Fig. 3 directly divides the dataset into categories and
assigns fixed category data to each user, with no overlap between users. Each category may have different
sample sizes and limited public datasets provide different granularities of classification. Reference can be
made to the large category grouping provided in the dataset for user-specific data allocation.

Grouping data into fixed categories Dirichlet distribution data grouping Category 1
U 5 Category 2
ser

User 5 Category 3
User 4 User 4
User 3 User 3
User 2 User 2
User 1 User 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Sample size Sample size

(a) (b)

Figure 3: Example of dataset grouping using Dirichlet distribution and fixed category groups. (a) Grouping data into
fixed categories; (b) Dirichlet distribution data grouping

The dataset contains N classes and it is assumed that each user’s subset of data is independently
dependent on the column-specific distribution parameter vector g, which satisfies the condition given
in Eq. (8):

qi ~ Dir(ap), q;>0, i€[l,LN] and |q|=1 (8)

Dir() represents the Dirichlet distribution, p is a prior distribution based on N, and « > 0 is a
core parameter used to control the independence of user-specific data subsets. As a approaches infinity,
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the category distribution of the subsets approaches that of the original dataset. On the other hand, as «
approaches 0, each user only contains one randomly assigned category.

Fig. 4 shows the Dirichlet grouping of the UCF-101 dataset under different values of «. The experiment
used the UCF-101 dataset, which has 101 classes displayed on the vertical axis. The horizontal axis represents
50 users and the darkness of the colors represents the percentage of samples assigned to a particular category
for a given user out of the total samples. When the colors are the same or similar across rows, it represents that
the category was evenly distributed among the 50 users, resulting in each user receiving an equal proportion
of samples. It can be seen that when a = 500, most categories are evenly distributed among users, whereas
when « =5, all categories are scattered and disorganized, forming a non-independent and non-identically
distributed (non-IID) dataset between the subsets.

0 10 20 30 40 0 10 20 30 40 V] 10 20 30 40
0 o : 0
20 1 20 1 . 20 4
40 40 40
60 60 4 60
80 1 B0 4 80 4
100 4 - — - - 100 % - - .- - 100 +

Figure 4: Dirichlet grouping of the UCF-101 dataset under different values of «

4 Experiments

In this section, experiments were conducted to verify the effectiveness of video action recognition
models based on spatiotemporal features and personalized federated learning methods. The performance of
the models was compared across multiple indicators and the recognition accuracy on the UCF-101 dataset
was provided.

4.1 Experiments Environment

The experiments in this paper were based on the Ubuntu 22.04.1 LTS operating system, with a CPU
model of Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz. GPU was used for model training and testing, with
the graphics card model being NVIDIA GeForce RTX 3090 Ti, and the graphics card memory being 24 G.
The experimental environment was Python 3.715, PyTorch 1.10, and CUDA 11.3. If the hardware conditions,
especially the cache size, are reduced, it will increase the model training time.



4970 Comput Mater Contin. 2025;83(3)

The proposed model has a computational complexity of approximately 4.1G FLOPs and a total param-
eter size of about 25.6 M. With an input image size of 224 x 224, the memory usage is around 100-200 MB.
The real-time performance is influenced by the hardware conditions. On the 3090 Ti GPU, the inference
time of this model is approximately 5-7 ms per frame.

4.2 Datasets

The primary research objective of this paper is to investigate how to protect user data privacy in video
action recognition scenarios under a personalized federated learning framework, rather than specifically
optimizing the accuracy of video action recognition models. Therefore, the widely-used UCF101 dataset was
adopted as the experimental dataset for this study. The UCF-101 dataset contains 13,320 videos across 101
action categories, covering a wide range of human actions in various environments. This dataset is considered
one of the most comprehensive and diverse datasets for video action recognition. In the experiments of this
section, the dataset were divided into training and testing sets using the holdout method, with a split ratio
of approximately 7:3. To ensure the accuracy of the experimental results, the dataset was randomly divided
three times and the final experimental results are the average results of the three partitioning methods. In a
realistic federated learning training environment, one node corresponds to one device. The training strategy
adopted in this paper is to simulate the entire federated learning process using a single device to mimic
multiple nodes.

When testing the personalized federated learning method, the Dirichlet distribution method mentioned
above was used to partition the non-independent and identically distributed subdatasets, simulating the
federated learning scenario. This section of the experiment also tested different values of the parameter a.

4.3 Experimental Results and Analysis

In this section of the experiment, we first conducted experimental validation of the proposed spatiotem-
poral feature-based video action recognition method on the publicly available UCF-101 dataset. Subsequently,
we verified the effectiveness of the proposed personalized federated learning-based video action recognition
method on a non-independent and identically distributed (non-IID) version of the UCF-101 dataset.

4.3.1 Ablation Study

This paper proposes to obtain the difference information by subtracting the previous and next 2 frames
from the sampled frame, instead of subtracting each consecutive adjacent frame separately. In addition,
considering that for fast actions, subtracting frames with a large time interval may introduce significant noise
to the difference information, rendering it ineffective, a pooling layer is added in the channel dimension to
smooth features and extract key information. Based on these three schemes for extracting differential RGB
information, comparative experiments are conducted in this section to test the performance of each scheme.

As shown in Table 1, I;, t € {1,2,3,4,5} in the table represents the RGB frames at time ¢, where I3 is
randomly sampled for spatial feature extraction, and the other 4 frames are the 2 frames before and after
time t. Dif f;_; represents the differential information between frame I; and frame I;. To demonstrate the
effectiveness of differential RGB, the model performance without using differential information was first
tested. The Concat function was used to directly concatenate the 2 frames before and after the sampled frame
for information extraction. Experimental results show that the spatial-temporal module using differential
information achieves better experimental results, reaching 85.851% in accuracy Topl.
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Table 1: Recognition effect under different differential feature extraction methods

Number Input data Smooth features Acc. Topl
1 Concat(II,IZ,I3,I4,Is) - 79.434%
2 COﬂCat(Diffl_z, Diff2_3, Diff3_5, Diff4_5) No 85.444%
3 Concat(Diff3_1, Diff3_2, Diff3_4, Diff3_5) No 82.008%
4 Concat(Diff3_1, Diff3_2, Diff3_3, Diff3_5) Yes 85.851%

Replacing the differential between adjacent frames with the differential from sampled frames reduces
accuracy. Since greater time distance between RGB frames introduces more noise, this paper applies
average pooling to each frame after obtaining the differential frames. The pooled features are stacked and
further smoothed through a channel-wise average pooling layer, compressing differences between features
at different time points. This method improved experimental results, achieving 85.851% accuracy on the
UCF-101 dataset.

In the time module, to extract action rhythm information, the translation stride during differential
interaction is also an important experimental parameter worthy of consideration. Different schemes have
been detailed in the previous section, and in this section, experimental results and performance analysis are
directly provided.

Table 2 shows the accuracy Topl and Top5 achieved when performing local feature differential in the
time module with different translation strides. From the experimental results, it can be seen that the model
with a stride of 1-1-2 achieves a higher accuracy Topl, reaching 85.931%. Compared to the original scheme
1-1-1, it improves the accuracy by 0.487%. The model with a stride of 1-2-2 obtains a 0.027% improvement
in accuracy Top5 compared to the original scheme, reaching 97.159%, thereby verifying the effectiveness
of global stage differential features on the UCF-101 dataset. However, when the stride is set to 1-2-3, the
recognition accuracy significantly decreases, indicating that differential information with a large time span
is no longer effective and may even affect recognition performance.

Table 2: Recognition performance of different translation strides

Number Strides Acc. Topl Acc. Top5

1 1-1-1 85.444% 97132%
2-2-2 85.038% 96.943%
1-1-2 85.931% 97.051%
1-2-1 85.092% 96.997%
1-2-2 85.363% 97.159%
1-2-3 84.686% 96.510%

AN U1 W

4.3.2 Optimal Accuracy of Video Recognition Model
Finally, based on the best model scheme and hyperparameters obtained from the experimental tests,
this paper provides the optimal recognition accuracy based on the UCF-101 dataset.

Table 3 presents a comparison of the accuracy of the proposed model with other action recognition
models. Among them, the TSM model was pre-trained on simpler datasets like ImageNet. Under the
same simple pre-training conditions, the proposed model achieved the highest accuracy of 87%. The TDN,
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HoCNet, TSM, MEACI-NET, MTNet, and CANet models were further pre-trained on the large-scale
Kinetics-400 dataset. Due to the much larger number of samples in this dataset compared to UCF-101, these
models can learn more complex data representations, resulting in a significant improvement in final accuracy.
Even under the condition of pre-training on both ImageNet and Kinetics-400, the proposed model still
achieved the highest recognition accuracy of 97.6%.

Table 3: Comparison of the performance of the model proposed in this paper with other models

Model Pre-training Backbone Acc. Topl
TSM [18] ImageNet ResNet50 83.2%
MANet [19] ImageNet ResNet50 86.2%
TDN [20] ImageNet+Kinetics ResNet50 97.4%
HoCNet [21] ImageNet+Kinetics  ResNet50 94.0%
TSM [18] ImageNet+Kinetics  ResNet50 94.5%

F2D-SIFPNet [22] ImageNet+Kinetics ResNet50 96.3%
MEACI-NET [23] ImageNet+Kinetics ResNet50 96.4%
MTNet [24] ImageNet+Kinetics  ResNet50 96.5%
CANet [25] ImageNet+Kinetics ~ ResNet50 96.6%
Our model ImageNet ResNet50 87.0%
Our model ImageNet+Kinetics ResNet50 97.6%

Specifically, the recognition accuracy for continuous actions with a strong rhythmic pattern was
improved. Examples include BlowDryHair, CleanAndJerk, HorseRiding, JugglingBalls, and Rowing, shown
in Fig. 5. These five actions involve the subject performing highly repetitive movements throughout the video,
maintaining a certain frequency, and exhibiting a distinct action rhythm. This demonstrates the effectiveness
of extracting action rhythm features through feature differences at different scales.
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Figure 5: Diagram of significant categories of action rhythm information
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In summary, the video action recognition model based on spatiotemporal features proposed in this
paper can effectively improve the recognition accuracy and achieve better performance on the UCF-101
dataset. We initialized our model using the pre-trained model weights from ImageNet and Kinetics-400.
ImageNet is a large-scale image dataset that contains over 14 million images, spanning 1000 categories;
whereas Kinetics-400 is a large-scale video dataset that includes 400 action categories. By leveraging these
pre-trained models, we ensured that our model has learned a rich and diverse feature representation, allowing
it to benefit from a broader and more varied training data. This approach also enabled the accuracy of the
model proposed in this paper reached the top level in the field.

4.3.3 Personalized Federated Learning Method

In this section, we first conducted tests on multiple hyperparameters of federated learning, including
the number of training rounds, the number of user samples, and the degree of dataset distribution. Based on
these tests, we then validated the effectiveness of the personalized federated learning mechanism proposed
in this paper for video action recognition.

After deploying the dataset and model into the FedML framework, experimental tests are first conducted
on the setting of hyperparameters. In this section, the total number of users C s set to 20 as a fixed parameter
and kept constant. Experimental results are tested with different numbers of users sampled per round S and
the number of training epochs E for each user.

As shown in Table 4, when the user training epoch is 1, the model converges after 450 communication
rounds, while when the user training epoch is 5, it converges after 145 communication rounds. Although the
number of communication rounds decreases, the total number of training epochs increases from 1 x 450 to
5 x 145 = 725 epochs, significantly increasing the training cost. Furthermore, when the training epoch further
increases to 10, the recognition accuracy actually decreases.

Table 4: The experimental results based on different training epochs for each user

Number Users/round Epoch Communication round Acc.

1 4 1 450 96.077%
2 4 5 145 96.531%
3 4 10 85 95.696%

From the results, it can be observed that the training effect of the model under federated learning is not
stable and does not steadily increase with the increase in local training epochs of users. This is due to the
non-independent and identically distributed nature of the data, resulting in significant differences between
the data distribution of each user and the overall dataset. In traditional deep learning training, each training
epoch allows the model to learn complete data features, and the model is optimized with increasing training
epochs. However, under federated learning conditions, an increase in training epochs can lead to the model
learning too many individual characteristics of user local data, causing the model to overfit. This not only
increases the training cost but also fails to achieve better performance. Increasing the aggregation frequency
of the model can make the global model closer to the original optimal parameters.

After determining the user training epoch, this paper also conducted experiments based on different
numbers of user samples per round. The test results are shown in Table 5. It can be observed that as the
number of user samples increases, the training effect of the model also improves. This is because when the
total number of users is fixed, the more users sampled per round, the more data participates in the training,
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and the impact of each user’s individual characteristics on the aggregation is reduced. The parameters
aggregated by the central server tend to be more balanced. However, the training time cost will inevitably
increase with the increase in the number of samples. From the perspective of simulating a real federated
learning environment, the sampling value cannot be set too high. Therefore, in the following experiments,
the number of sampled users per round was set to S = 4, meaning that 1/5 of the users (data) participate in
the training each round.

Table 5: The experimental results based on different numbers of user samples per round

Number Users/round Epoch Communication round Acc.

1 2 1 480 95.448%
2 4 1 450 96.077%
3 5 1 450 96.558%

The following experiments are conducted based on different data distribution scenarios, with reference
to federated learning datasets from other fields to set parameters, using two grouping methods: Dirichlet data
distribution and uniform grouping. The experimental results are shown in Table 6, where Dir(*) represents
the Dirichlet distribution, and the parameter a controls the degree of data dispersion. In other studies, for
datasets MINIST and CIFAR-10 with 10 categories, « is often set to 0.5. Since this paper’s experiments use a
video behavior recognition dataset with a large amount of data and sample sizes, it is necessary to experiment
to test the best data grouping method. The uniform grouping data distribution matches the original dataset
and is used to compare the impact of non-IID data grouping on training effectiveness.

Table 6: Experimental results based on different data distributions

Number Data distribution Communication round Acc.

1 Dir(0.5) 480 96.023%
2 Dir(1) 450 96.077%
3 Dir(10) 420 96.377%
4 Uniform grouping 180 96.402%

From the experimental results, it can be observed that under uniform grouping, the model’s convergence
speed in federated learning training is the fastest. However, when using Dirichlet distribution for grouping,
as the o value decreases, the data distribution becomes more scattered, requiring more rounds for model
convergence. This also affects the model’s optimization process, leading to suboptimal training effectiveness
and impacting the highest recognition accuracy after convergence. The experimental results further illustrate
the impact of unevenly distributed data storage on recognition performance in the federated learning
environment. Considering the use of Dirichlet distribution for data grouping, each user’s allocation of data
types and quantities is completely random, resulting in fewer common features among user local data. This is
suitable for scenarios where public models are used for parameter training. In practical applications, however,
each user’s local data often exhibits strong personalized characteristics. Similar to datasets like MINIST and
CIFAR-10 with special labels, they are more conducive to personalized federated learning research. Therefore,
in testing the personalized federated learning scheme, we ensure each user’s training and test sets have the
same sample distribution, with the same data categories proportionally represented in both sets. Based on
the experimental results of hyperparameters and dataset grouping methods, the total number of users C is
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set to 20, the number of users sampled in each federated learning communication round S is set to 4, and the
number of local training rounds E for each user is set to 1. The dataset grouping method is Dir(1). Under the
above parameter settings, experiments were conducted to verify the personalized federated learning-based
optimization model for video action recognition proposed in this paper, comparing the experimental results
under conventional federated learning training and personalized federated learning conditions.

Table 7 presents the highest accuracy rates Topl and Top5 achieved by the model in this paper on local
datasets of 20 users under conventional federated learning and personalized federated learning. From the
average accuracy rates, the personalized federated learning approach proposed in this paper achieves better
results on both indicators, with the Topl accuracy reaching 97.792%, an improvement of 1.155%, and the Top5
accuracy reaching 99.861%, an improvement of 0.079%.

Table 7: Comparison of experimental results between conventional federated learning and personalized federated
learning

ID Acc. Topl Acc. Top5
FL PFL FL PFL
1 96.795%  97.312% 100% 100%
2 97701%  98.077%  100% 100%
3 97312%  98.333%  100%  99.444%
4 97.222%  97.778% 100% 99.444%
5 95.312%  95.556% 99.479%  99.444%
6 97.396% 96.774% 99.479%  99.462%
7 95402% 99.405%  98.851% 100%
8  97849% 97.849%  100% 100%
9  94.444%  97.312% 100% 100%
10 94.624% 97312%  98.925%  100%
11 94.444% 97222% 99.444%  100%
12 94.048% 96.237%  100% 100%
13 100% 97.222% 100% 99.444%
14 96.354% 98.387% 100% 100%
15 96.774% 98.718%  100% 100%
16 99.444% 98.889%  100% 100%
17 96.774%  97222% 99.462%  100%
18  98.925% 98.925%  100% 100%
19  96.237% 97.849%  100% 100%
20 95.699% 99.462%  100% 100%
Avg. 96.637% 97.792% 99.782% 99.861%

The experimental results validate the necessity of users holding private parameters, especially in the
application scenario of surveillance video action recognition. Local user data inherently possesses strong
individual characteristics. For example, in a home surveillance environment, static features such as back-
ground and main subjects can vary significantly between users and do not need to be included in the public
aggregation on the central server. The proposed video action recognition method based on personalized
federated learning and spatiotemporal features designates the first two layers of the network, which focus on



4976 Comput Mater Contin. 2025;83(3)

extracting static features, as private layers. The parameters from the subsequent three stages, which extract
action features, are used for public aggregation, thereby enhancing the model’s training performance.

5 Conclusion

This paper addresses the need for data privacy protection and data security in video surveillance by
proposing a video action recognition method based on personalized federated learning and spatiotemporal
features. First, the complete process of the personalized federated learning method and the production
method of non-independent and same-distribution video action recognition datasets are introduced. Then,
for video action recognition, a new spatiotemporal feature-based video action recognition algorithm is
proposed, which includes two main modules: a spatial-temporal module based on local information and
a time module based on global information. The local module extracts local spatiotemporal features
based on each video segment while the global module interacts with local features through a differential
approach on different action rhythms based on local information, and further uses neural networks to
extract bidirectional action features. Subsequently, a personalized federated learning training scheme is
provided. In the experimental analysis phase, multiple optional parameters for the modules were evaluated
and experiments were conducted for different learning rate settings. Finally, leveraging the personalized
federated learning framework, which incorporates stage-by-stage extraction of local spatiotemporal and
global temporal features, the proposed method achieved an average accuracy of 97.792% on the non-
independent and identically distributed UCF-101 public dataset. Additionally, a comprehensive comparison
was made between the results of traditional and personalized federated learning. By processing local and
global features separately without uploading users’ original video data or personalized features to the central
server, the risk of user privacy data leakage is minimized, making federated learning an effective mechanism
for enhancing model performance while protecting user privacy.

Future work will focus on optimizing the proposed model, particularly in terms of its adaptability to
various real-world scenarios. The current effectiveness of the method relies on the quality and quantity
of local data, and potential improvements include introducing argumentation-based methods to enhance
model interpretability. In scenarios with long-tail data distribution, some users may have limited or low-
quality local data, which can constrain the training effectiveness during the local feature extraction phase
and impact overall performance. Future research aims to investigate asynchronous federated mechanisms
and dynamic feature calibration methods to address these issues, achieving a better balance between privacy
protection and model performance.
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