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ABSTRACT: Aiming to address the limitations of the standard Chimp Optimization Algorithm (ChOA), such as
inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle (UAV) path planning, this
paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization
Algorithm (IChOA). First, this paper models the terrain and obstacle environments spatially and formulates the total
UAV flight cost function according to the constraints, transforming the path planning problem into an optimization
problem with multiple constraints. Second, this paper enhances the diversity of the chimpanzee population by
applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s
search accuracy and convergence speed. Finally, this paper proposes a dynamic adjustment strategy for the number
of chimpanzee advance echelons, which effectively balances global exploration and local exploitation, significantly
optimizing the algorithm’s search performance. To validate the effectiveness of the IChOA algorithm, this paper
conducts experimental comparisons with eight different intelligent algorithms. The experimental results demonstrate
that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV
3D path planning. It effectively solves the issues of efficiency in finding the shortest path and ensures high stability
during execution.
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1 Introduction

1.1 Research Background
UAVs play a pivotal role in various fields due to their cost-effectiveness and operational flexibility.

Among the many aspects of Unmanned Aerial Systems (UAS), UAV path planning is a critical task, with
its core objective being the determination of an optimal path from the starting point to the target point.
Over the past few decades, UAV technology has advanced rapidly. Through autonomous flight or remote
control, UAVs can perform a wide range of tasks and are widely applied across numerous sectors, including
military, agriculture, logistics, environmental monitoring, and disaster rescue. In the military sector [1],
UAVs conduct military rescue operations in complex terrain and hostile environments; in agriculture, UAVs
assist in farmland mapping and precision pesticide spraying, thereby enhancing crop yield and quality;
in aerial photography, UAVs capture images from unique perspectives, providing valuable materials for
film, television, and geographic exploration; in environmental monitoring, UAVs collect real-time data on
atmospheric conditions, water quality, and more, enabling timely identification of environmental issues; in
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logistics, UAVs facilitate efficient distribution; and in disaster rescue, UAVs enable the deployment of rescue
materials across multiple locations.

Therefore, designing an efficient and rational UAV path planning scheme is crucial. This design must
not only ensure that the UAV effectively avoids various threatening areas, such as adverse weather conditions,
no-fly zones, and obstacles, but also guarantee smooth navigation to the destination, ultimately improving
the efficiency and safety of mission execution.

1.2 Research Status
To identify the optimal flight path, researchers have employed both traditional algorithms and intel-

ligent optimization algorithms. Traditional methods, such as the artificial potential field method [2,3],
Dijkstra’s algorithm [4,5], and intelligent optimization algorithms, such as the ant colony algorithm [6] and
the grey wolf algorithm [7], have contributed to the development of UAV path planning to varying extents.
However, these algorithms exhibit several limitations, such as slow convergence speed, a tendency to fall into
local optima, or poor accuracy and efficiency in path planning within complex environments. In response,
many scholars have actively worked on improving these algorithms, aiming to overcome existing bottlenecks
and enhance the performance and quality of UAV path planning.

For instance, Na et al. [8] proposed an IA-RRT* algorithm (Improved A* algorithm integrating RRT*
Thought) for solving path planning problems. The algorithm modifies the cost evaluation function of
the A* algorithm and combines the concept of randomness of the RRT* algorithm with the inflection
penalty term to find a path with fewer inflection points. Wang et al. [9] proposed a parallel particle swarm
optimization and augmented sparrow search algorithm for UAV path planning, which enhances random
jumps in the producer’s position to ensure global search capability, each forager continuously learns from
the producer’s experience, and also incorporates an elite reverse search strategy to improve diversity. Sonny
et al. [10] proposed a UAV path planning framework based on an improved particle swarm optimization
algorithm, which first determines the optimal communication position with the user and then searches
for energy-efficient obstacle-avoidance paths, achieving favorable results in terms of energy consumption,
time, and user rate. Hao et al. [11] improved the traditional artificial potential field method by introducing a
collision risk assessment mechanism and virtual subgoals, solving the local minima and target unreachability
problems, and optimizing the flight path. Nguyen et al. [12] proposed a multi-UAV cooperative path planning
algorithm based on game theory and particle swarm optimization, using game theory to find equilibrium
solutions and hierarchical particle swarm optimization to find the global optimum, thereby achieving
efficient formation path planning. Diao et al. [13] introduced the Artificial Potential Field-Improved Rapidly-
exploring Random Trees (APF-IRRT*) algorithm by combining the artificial potential field and the improved
Rapidly-exploring Random Tree (RRT*) algorithm, addressing slow convergence and unsmooth paths, with
excellent performance in both static and dynamic environments. Zhang et al. [14] proposed a heuristic
crossing search and rescue optimization algorithm (HC-SAR), which combines the heuristic crossing
strategy with the underlying SAR to improve the convergence speed and maintain the population diversity
during the optimization process. In addition, a real-time path adjustment strategy is proposed to straighten
the UAV flight path. He et al. [15] proposed an improved chaotic sparrow search algorithm, in which a
piecewise chaotic mapping strategy, a nonlinear dynamic weighting factor strategy, and an enhanced sine-
cosine algorithm strategy are used for optimization and improvement in order to overcome the problems
of slow convergence and falling into local optimums in the path planning of UAVs in three-dimensional
complex environments. Ouyang et al. [16] proposed a dual-strategy improved sparrow search algorithm
(DSSA), which employs circle mapping and specular reflection learning strategies to solve the UAV path
planning problem. Oliva et al. [17] used a chaotic algorithm to improve the probability of whale position
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updates to increase the performance of the optimization algorithm in global search. Shankar et al. [18]
proposed a hybrid approach for mobile robot path planning combining Particle Swarm Optimization (PSO)
technique and Artificial Potential Field (APF) method for locating feasible routes in environments with many
static obstacles. Tang et al. [19] proposed a nonlinear time-varying hybrid particle swarm algorithm and
a differential evolution algorithm based on ranked adaptive strategies, and fused the two to enhance the
effectiveness of path planning.

1.3 Research Motivation, Innovation and Methodology
Despite the advancements in existing algorithms, their convergence speed and optimization search

accuracy remain limited. In complex environments, traditional path planning algorithms often struggle to
find the shortest paths, leading to inefficient and less stable task execution. To address these limitations, this
study proposes an improved Chimp Optimization Algorithm (IChOA) [20]. The main innovations are as
follows:

(1) Sine Chaos Mapping Initialization: Unlike the random initialization in the original Chimp Optimiza-
tion Algorithm (ChOA), the Sine chaos mapping method is employed to generate the initial chimp
population. This approach enhances population diversity, enabling broader exploration of the solution
space and reducing the likelihood of getting trapped in local optima. The chaotic sequences’ rich
diversity and unpredictability offer a better starting point for the algorithm, improving the chances of
finding the global optimal solution.

(2) Improved Linear Convergence Factor: The original ChOA’s linearly decreasing convergence factor is
replaced with a nonlinear convergence factor. This new factor adaptively adjusts the search behavior of
the population throughout the algorithm’s execution. In the early stages, it promotes extensive global
exploration to avoid overlooking potential high-quality solutions. In the middle stages, it accelerates
convergence towards promising areas, and in the late stages, it maintains a level of local exploitation
to refine the solution. This enhances both the overall convergence speed and solution accuracy.

(3) Dynamic Adjustment of Search Strategies: In the IChOA, the number of chimpanzee advance echelons
is dynamically adjusted based on the magnitude of the coefficient vector. During the global exploration
phase, a larger number of high-quality solutions are retained as pioneers to thoroughly explore the
search space. In the local exploitation phase, the number is reduced to focus on fine-tuning the search
around potential optimal solutions, achieving a better balance between global and local search and
optimizing the algorithm’s performance.

In conclusion, by proposing a multi-strategy improvement to the IChOA algorithm, this paper over-
comes the limitations of existing algorithms and makes a significant contribution to the field of UAV path
planning. Through extensive simulations and comparisons with other algorithms, the effectiveness and
superiority of IChOA in UAV 3D path planning are demonstrated, providing a more reliable and efficient
solution for practical applications.

2 System Modeling and Problem Description

2.1 Problem Description
The core objective of path planning is to find an optimal flight path in a complex three-dimensional

space that meets the UAV’s performance requirements while effectively avoiding obstacles such as mountain
peaks and sources of threat. First, an accurate 3D mission environment model must be established. Based
on this model, the constraints associated with UAVs performing missions in 3D space are comprehensively
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considered. An objective function model is then constructed according to these mission requirements,
leading to the design of a path planning algorithm with superior performance.

2.2 Environmental Threat Constraints
(1) Topographical constraints
The terrain barrier h is a 3D spatial model that combines a ground model h1 and a peak model h2 to

simulate a near-real environment. The original digital terrain model is defined by h1 (x , y) and the peak
equivalent model is constructed by h2 (x , y).

h = max (h1 , h2)

h1 (x , y) = sin (y + a) + b × sin (x) + c × cos (d∗
√

x2 + y2) + e × cos (y) + f × sin (g ×
√

x2 + y2)

h2 (x , y) =
N
∑
i=1

Hi ex p [−(x − Aoi

asi
)

2
− ( y − Aoi

bsi
)

2
] (1)

where Hi denotes the height of peak i, (Aoi , Aoi) represents the position of the center of peak i, and (asi , bsi)
denotes the attenuation coefficient of peak i, which reflects the steepness of the peak.

(2) Hazardous area restraints
The ground threat was modelled as a hemispherical kill zone proportional to the threat level. Addition-

ally the area that must not be accessed during UAV flight is defined as a no-fly zone, which is simplified to a
height-adjustable cylinder for ease of analysis. The threat modeling function is shown in Eq. (2).

Wi (x , y, z) =
N
∑
i=1
(x − xo)2 + (y − yo)2 + (h − ho)2 = r2 (h ≥ 0) (2)

where r denotes the radius of the sphere, (x , y, z) are the coordinates of any point on the sphere, and
(x0, y0, z0) are the coordinates of the center of the sphere.

2.3 Path Cost
(1) Path Length Cost
The path length cost plays a crucial role in path planning. When calculating this cost, both the UAV’s

flight trajectory and the distance between each path point must be considered comprehensively to derive a
surrogate value that accurately reflects the UAV’s flight cost. The path length cost is shown in Eq. (3).

Path Cost =
n
∑
i=1

dist (pi−1 , pi) (3)

where n denotes the number of nodes on the path, and (Pi−1 , Pi) denotes the distance between node Pi−1
and node Pi .

(2) Altitude Difference Cost
Excessive altitude variation during UAV flight increases energy consumption and threatens flight

stability and safety. Therefore, the altitude difference cost is quantified using Eq. (4), which evaluates the
altitude change along the flight path by summing the altitude differences between neighboring path points.

High Cos t =
n
∑
i=1
∣zi − zi−1∣ (4)
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where n represents the number of nodes on the path, z represents the height value of each node on the path,
and Zi represents the height of the ith node on the path, ∣ Zi − Zi−1 ∣ represents the absolute value of the
height difference between node Pi−1 and node Pi .

(3) Turning Angle cost
During the planning process, a formula based on the change in direction between neighboring path

points is used to quantify the turning angle cost. By optimizing this metric, the goal is to select paths
with small turning angles and low frequencies, thereby reducing energy consumption and improving flight
efficiency while ensuring the UAV’s safety and stability during flight. The expression for this evaluation
function is shown in Eq. (5).

Corner Cos t =
n
∑
i=1
(cos θ − C (i)) (5)

where θ = π
2 and C (i) denotes the cosine of the steering angle between two consecutive points, point (i) and

point (i + 1).
In this paper, multiple cost indicators are normalized and combined into a comprehensive cost function

model, as shown in Eq. (6).

Cos t = ω1 × Path Cos t + ω2 ×High Cos t + ω3 × Corner Cos t (6)

where ω1, ω2 and ω3 are the relative weight coefficients corresponding to the three cost indicators, and ω1 +
ω2 + ω3 = 1. In this paper, 0.4 is taken ω1, 0.4 is taken ω2, and 0.2 is taken ω3.

3 Improved Chimp Optimization Algorithm
The Chimp Optimization Algorithm (ChOA) suffers from limitations such as weak global search

capability and unbalanced local exploitation, making it prone to falling into local optima. To enhance the
performance of ChOA, this paper proposes three strategies: introducing the Sine chaotic mapping strategy,
improving the linear convergence factor, and dynamically adjusting the search strategy.

3.1 Sine Chaotic Mapping Initialization
The initialization approach used in the original Chimp Optimization Algorithm (ChOA) [21] has

several limitations. First, the randomness of the initialization process can lead to insufficient population
diversity, causing the algorithm to become trapped in local optima and increasing the difficulty of finding
a globally optimal solution. Second, random initialization can result in slow convergence and unnecessary
computational overhead. Additionally, randomly generated individuals may lack search experience, which
limits the optimization process and negatively impacts the final optimization accuracy.

To overcome these issues, this paper introduces the Sine chaotic mapping method for initializing the
chimp population. Yang et al. [22] demonstrated that the Sine chaos model exhibits more complex nonlinear
properties than the Logistic chaos model, with an infinite folding number. Therefore, the Sine chaos model is
adopted for the population initialization of the chimp population. This method generates chaotic sequences
through a one-dimensional self-mapping expression (Eq. (7)), and its distribution properties are illustrated
in Fig. 1.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xi+1 =
k
4
× sin (π ⋅ xi)

k ∈ (0, 4]
(7)
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where xi represents each value in the iterative sequence, i is a non-negative integer indicating the number
of iterations, x0 belongs to the interval (0, 1), and k is a system parameter with values in the range (0, 4]. In
the experiments of this paper, setting k = 4 generates Sine chaotic sequences with specific properties.
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Figure 1: Sine chaotic sequence distributions

Sine chaotic mapping, as a nonlinear dynamical system, is capable of generating chaotic sequences with
high diversity. This property enables the ChOA to achieve a broader distribution of the initial population
within the search space during the initialization phase, thereby covering more potential solution areas.
This improves the likelihood of the algorithm identifying the globally optimal solution. Additionally, the
randomness and unpredictability of chaotic mapping allow the algorithm to escape local optima, thereby
enhancing its global exploration capability. Furthermore, this chaotic mapping improves the algorithm’s
convergence speed, enabling faster convergence to the vicinity of the optimal solution and reducing
computational costs.

3.2 Improved Linear Convergence Factor
In the Chimp Optimization Algorithm (ChOA), the coefficient vector a plays a central role, as its

magnitude directly influences the population’s search strategy. When (∣a∣ > 1), the population disperses,
enhancing global exploration capability. Conversely, when (∣a∣ < 1), the population focuses its search,
improving local exploitation capability. However, the linearly decreasing convergence factor f in the original
algorithm has notable shortcomings. During the initial phase, the linear decrease in f may lead to under-
exploration, potentially missing high-quality solutions. Later in the process, the premature reduction of f
can cause the algorithm to fall into local optima, hindering a fine-grained search.

To overcome these limitations, this paper introduces an improved nonlinear convergence factor f ′,
whose mathematical expression is provided in Eq. (8). A comparison of the degradation rates between the
original and improved factors is shown in Fig. 2.

f ′ = f0 − (
f0

2
) × (1 − cos ( I

Max_iter
π)) (8)
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The proposed nonlinear convergence factor initially declines slowly, then decreases rapidly in the
middle stage, and slows down again in the later stages of the algorithm. This pattern promotes broad
exploration of the search space early on, preventing premature convergence and enhancing global search. In
the middle stage, it accelerates convergence toward high-quality solutions, improving efficiency. In the later
stages, it refines the search process, reducing the risk of local optima and enhancing local exploitation. By
incorporating the nonlinear convergence factor, the Chimp Optimization Algorithm adaptively adjusts the
search step size, balancing global exploration and local exploitation, ultimately improving both convergence
speed and solution accuracy.
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Figure 2: Convergence factor improvement before and after

3.3 Dynamic Adjustment of Search Strategies
In the original Chimp Optimization Algorithm (ChOA), the four best solutions form the vanguard

echelon, which guides the other chimpanzee individuals in exploring the solution space and updates their
positions using Eqs. (9)–(11).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAttacker = ∣c1 × xAttacker −m1 × x∣
dBarr i er = ∣c2 × xBarr i er −m2 × x∣
dC haser = ∣c3 × xC haser −m3 × x∣
dDr iv er = ∣c4 × xDr iv er −m4 × x∣

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = xAttacker − a1 × dAttacker

x2 = xBarr i er − a2 × dBarr i er

x3 = xC haser − a3 × dC haser

x4 = xDr iv er − a4 × dDr iv er

(10)



5686 Comput Mater Contin. 2025;83(3)

x (t + 1) = (x1 + x2 + x3 + x4)
4

(11)

To improve the algorithm’s efficiency and performance, this paper proposes a dynamic adjustment
strategy for the number of precedence echelons. By considering the magnitude of the coefficient vector a,
the algorithm flexibly adjusts the size of the first echelon. During the global exploration phase (∣ a∣ > 0.5), the
algorithm retains the maximum number of first echelons, utilizing position update Formula (11) to preserve
a sufficient number of high-quality solutions as pioneers. This facilitates extensive search space exploration,
preventing premature convergence to local optima. Conversely, in the local exploitation phase (∣a∣ < 0.5),
the number of leading echelons is reduced, retaining only a few optimal solutions as pioneers and applying
position update Eq. (12) to enhance search efficiency and accelerate convergence toward potential optimal
solutions.

x (t + 1) = (x 1 + x2)
2

(12)

This dynamic adjustment strategy not only retains the leading echelon guidance of the original Chimp
Optimization Algorithm but also enhances its efficiency and adaptability. By balancing global exploration
and local exploitation, it significantly improves the algorithm’s overall search performance.

3.4 Pseudo-Code for the IChOA Algorithm
IChOA algorithm pseudo-code as shown in Algorithm 1.

Algorithm 1: Pseudo-code of the IChOA algorithm
Initialize the chimp population xi using Eq. (7) Sine chaotic mapping (i = 1, 2, . . . , n)
Initialize f0, m, a and c
Calculate the position of each chimp
Calculate the fitness of each chimp
xAttacker = the best search individual
xBarr i er = the second search searcher
xC haser= the third search searcher
xDr iv er = the fourth search searcher

While (t <maximum number of iterations)
for each chimp

Calculate the improved nonlinear convergence factor f ’ according to Eq. (8)
Update the parameters m, a, c
Calculate the distance d according to Eq. (9)
Update the current position of the search agent according to Eq. (10)

end for
for each search chimp

if (μ < 0.5)
Use dynamic adjustment of search strategy
if (∣a∣ > 0.5)

Global search phase
update the current search position according to Eq. (11)

else if (∣a∣ < 0.5)
(Continued)
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Algorithm 1 (continued)
Local exploration phase
update the current search position according to Eq. (12)

end if
else if (μ > 0.5)

Update the position using the chaos model
end if

end for
Update f ’, m, a and c
Update xAttacker , xBarr i er , xC haser , xDr iv er
t = t+1

end while
return xAttacker

4 Algorithm Simulation and Result Analysis

4.1 Experimental Setup
This study was implemented in MATLAB R2019b and executed on an Intel(R) Core(TM) i7-8750H

CPU. To comprehensively evaluate the proposed algorithm’s performance, eight existing algorithms were
selected for comparison: the Chimp Optimization Algorithm (ChOA) [21], Particle Swarm Optimization
(PSO) [23], and its improved versions TACPSO [24] and MPSO [25]. Additionally, the Escape Algorithm
(ESC) [26], Pied Kingfisher Optimizer (PKO) [27], Sine Cosine Algorithm (SCA) [28], and Beetle Antennae
Search Algorithm (BAS) [29] were included.

The simulation experiment involves ten benchmark functions as shown in Table 1. Functions F1–F7 are
unimodal and primarily assess optimization performance in simple scenarios, testing global search ability,
convergence rate, and solution accuracy. In contrast, F8–F10 are multimodal functions, containing multiple
local optima that increase in complexity with higher dimensionality. These functions evaluate the algorithms’
exploration capability, particularly their effectiveness in navigating complex search spaces and avoiding
local optima.

To ensure stability and reproducibility, all experiments were conducted under identical computational
conditions with uniform parameter settings. Multiple adjustments were made to parameter selection across
different experimental conditions to ensure both fairness and accuracy. The study found that a small pop-
ulation size or dimensionality often led to premature convergence, while excessively large values increased
computational costs and slowed convergence. Additionally, convergence trend analysis indicated that setting
the maximum number of iterations to 500 achieved an optimal balance between accuracy and computational
efficiency. Thus, the parameters were set as follows: N = 50, Max_iter = 500, and Dim = 30, ensuring both
enhanced global search capability and efficient computation.

Table 1: Test functions

Typology Typology Range Optimum value

Single peak

F1 (Sphere) [−100, 100] 0
F2 (Schwefel 2.22) [−10, 10] 0
F3 (Schwefel 1.2) [−100, 100] 0

F4 (Schwefel 2.21) [−100, 100] 0

(Continued)



5688 Comput Mater Contin. 2025;83(3)

Table 1 (continued)

Typology Typology Range Optimum value
F5 (Rosenbrock) [−30, 30] 0

F6 (Step) [−100, 100] 0
F7 (Quartic) [−1.28, 1.28] 0

Multi-peak
F2 (Schwefel 2.22) [−5.12, 5.12] 0

F9 (Griewank) [−600, 600] 0
F10 (Penalized 1.1) [−50, 50] 0

4.2 Comparison Test
Each algorithm was independently tested 30 times on ten benchmark functions. After each test,

detailed records were maintained, and the mean, standard deviation, and optimal value of the 30 trials were
calculated. Table 2 summarizes the results, providing a performance comparison of the nine optimization
algorithms across the benchmark functions.

Table 2: Benchmark function test results

Function Agorithm Mean Std Min Function Agorithm Mean Std Min

F1

ChOA 1.361E−08 2.850E−08 1.726E−24

F2

ChOA 1.212E−06 1.244E−06 1.495E−10
PSO 1.768E+00 8.042E−01 7.402E−01 PSO 3.339E+00 8.691E−01 1.858E+00

TACPSO 3.860E−03 1.182E−02 1.864E−05 TACPSO 3.997E−01 1.839E+00 5.958E−03
MPSO 2.672E−02 9.981E−02 2.665E−05 MPSO 1.666E+01 1.188E+01 6.104E−02

ESC 6.236E−05 2.093E−05 2.462E−05 ESC 2.289E−02 5.562E−03 1.451E−02
SCA 1.23E+01 2.12E+01 3.99E−03 SCA 1.82E−02 3.29E−02 4.17E−04
PKO 1.352E−01 1.823E−01 4.153E−06 PKO 6.986E−02 1.531E−01 6.689E−05
BAS 9.983E+04 1.422E+04 7.306E+04 BAS 1.753E+11 7.483E+11 1.102E+02

IChOA 5.18E−12 4.114E−11 1.71E−13 IChOA 1.642E−08 1.553E−08 1.437E−09

F3

ChOA 1.736E+01 4.436E+01 1.331E−01

F4

ChOA 6.621E−02 7.563E−02 2.997E−03
PSO 1.322E+02 4.057E+01 7.494E+01 PSO 1.811E+00 2.097E−01 1.343E+00

TACPSO 5.325E+02 9.813E+02 3.789E+01 TACPSO 5.612E+00 2.243E+00 1.716E+00
MPSO 8.067E+03 6.479E+03 1.520E+02 MPSO 1.311E+01 4.945E+00 7.450E+00

ESC 1.919E+03 6.699E+02 9.152E+02 ESC 1.082E−02 7.035E−03 4.788E−03
SCA 7.82E+03 5.03E+03 5.85E+02 SCA 3.80E+01 1.20E+01 1.10E+01
PKO 2.621E+03 1.914E+03 2.898E+02 PKO 4.520E+00 2.723E+00 1.656E+00
BAS 9.779E+05 9.951E+05 1.253E+05 BAS 9.483E+01 2.741E+00 8.835E+01

IChOA 2.022E+02 9.720E+02 2.535E−02 IChOA 2.112E−01 5.329E−01 1.651E−03

F5

ChOA 2.891E+01 9.030E−02 2.872E+01

F6

ChOA 3.079E+00 3.581E−01 2.096E+00
PSO 7.492E+02 4.523E+02 2.634E+02 PSO 1.758E+00 9.546E−01 5.374E−01

TACPSO 8.652E+01 5.511E+01 2.614E+01 TACPSO 6.497E−03 2.133E−02 1.242E−05
MPSO 1.540E+04 3.397E+04 2.501E+01 MPSO 7.379E−03 1.307E−02 1.109E−05

ESC 3.763E+01 3.024E+01 2.081E+01 ESC 6.058E−02 2.688E−01 2.261E−04
SCA 3.35E+04 5.57E+04 2.36E+02 SCA 2.80E+01 5.97E+01 4.49E+00
PKO 2.253E+02 2.577E+02 2.709E+01 PKO 6.544E−02 1.115E−01 4.154E−04
BAS 4.513E+08 1.288E+08 2.079E+08 BAS 1.039E+05 1.658E+04 7.029E+04

IChOA 2.781E+01 6.261E−01 2.641E+01 IChOA 2.879E+00 3.107E−01 2.133E+00

F7

ChOA 7.235E−04 5.607E−04 4.500E−05

F8

ChOA 9.466E+00 9.692E+00 3.349E−07
PSO 1.220E+01 7.282E+00 2.505E+00 PSO 1.542E+02 2.685E+01 1.124E+02

TACPSO 4.560E−02 1.683E−02 2.253E−02 TACPSO 6.735E+01 2.114E+01 3.781E+01
MPSO 1.528E−01 4.905E−01 2.750E−02 MPSO 1.190E+02 2.900E+01 7.768E+01

ESC 4.631E−03 1.416E−03 2.669E−03 ESC 1.505E+01 5.591E+00 8.373E+00
SCA 9.85E−02 9.64E−02 1.11E−02 SCA 3.91E+01 3.42E+01 5.88E−03
PKO 3.327E−02 2.107E−02 1.329E−02 PKO 3.274E+01 2.456E+01 9.098E−01
BAS 2.681E+01 1.181E+01 9.398E+00 BAS 3.382E+02 4.203E+01 2.537E+02

IChOA 2.792E−04 2.103E−03 3.042E−05 IChOA 3.833E−05 1.507E−04 6.594E−11

(Continued)
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Table 2 (continued)

Function Agorithm Mean Std Min Function Agorithm Mean Std Min

F9

ChOA 1.177E−02 1.816E−02 1.089E−11

F10

ChOA 3.484E−01 1.631E−01 2.259E−01
PSO 9.567E−02 3.768E−02 2.012E−02 PSO 2.728E−02 3.072E−02 4.858E−03

TACPSO 2.464E−02 2.274E−02 3.227E−05 TACPSO 1.108E+00 9.707E−01 8.668E−04
MPSO 3.640E−02 4.065E−02 1.136E−04 MPSO 1.578E+00 1.271E+00 1.927E−03

ESC 3.855E−03 8.842E−03 1.623E−06 ESC 3.456E−02 1.893E−02 2.406E−05
SCA 1.12E+00 6.71E−01 2.25E−01 SCA 2.09E+05 9.88E+05 7.78E−01
PKO 5.183E−02 7.513E−02 5.166E−06 PKO 3.973E+00 5.892E+00 9.899E−03
BAS 9.197E+02 1.525E+02 5.828E+02 BAS 1.147E+09 2.750E+08 6.516E+08

IChOA 1.457E−08 7.834E−08 4.652E−14 IChOA 2.718E−01 4.953E−02 1.668E−01

The IChOA algorithm demonstrated strong optimality-seeking performance in tests involving uni-
modal benchmark functions. In terms of mean values, IChOA consistently achieved low results across most
test functions, indicating its reliable ability to approach the global optimal solution. The algorithm’s small
standard deviation in several test functions further verifies its stability in handling unimodal problems.
Additionally, IChOA achieved competitive minimum values in multiple test functions, demonstrating its
frequent ability to locate positions close to the global optimum. Compared to other algorithms, IChOA
exhibits superior performance in terms of optimality-seeking capability, stability, and robustness.

For multimodal benchmark functions, the test results indicate that IChOA outperforms the other eight
optimization algorithms. In F8, F9, and F10, IChOA demonstrates strong global search ability and stability.
Notably, in F8 and F9, the optimal value of IChOA shows significant improvement over other algorithms,
confirming its accuracy in locating the global optimal solution. In F10, although IChOA does not achieve the
lowest optimal value, its mean and standard deviation outperform those of other algorithms, reflecting its
robust overall performance. Overall, IChOA exhibits clear advantages in multimodal optimization problems,
excelling in both solution accuracy and algorithmic stability. These characteristics make it a promising choice
for solving such problems.

4.3 Algorithm Convergence Curve Analysis
The convergence curve of the IChOA algorithm is a crucial tool for analyzing its convergence trend.

It provides an intuitive comparison of convergence speed, accuracy, and the ability to escape local optima
across different algorithms. To effectively evaluate IChOA’s optimization accuracy and convergence speed, six
test functions were selected to compare nine optimization algorithms, and their corresponding convergence
curves were plotted. Fig. 3 presents the average convergence curves from 30 independent optimization
tests. Fig. 3a–d corresponds to unimodal functions F1–F4, while Fig. 3e,f represents multimodal functions F8
and F9, respectively. The vertical axis denotes the objective function value, and the horizontal axis represents
the number of iterations.

When comparing the convergence curves of IChOA with those of other algorithms, it is observed that
IChOA employs Sine chaos mapping to initialize the population, enabling a more comprehensive search of
the solution space. Consequently, its convergence curves may not initially lie entirely below those of other
algorithms. However, this does not indicate inferior performance; rather, it reflects IChOA’s initial emphasis
on global exploration over rapid convergence. As iterations progress, particularly in the middle and later
stages, IChOA exhibits a superior convergence trend, with increased speed and higher optimization accuracy.
This improvement is attributed to key optimization mechanisms in IChOA, such as the enhanced nonlinear
convergence factor and the dynamic adjustment strategy for the number of chimpanzees in the first echelon.

The IChOA algorithm demonstrates strong performance on both unimodal and multimodal functions.
In single-objective optimization, it achieves higher objective function values within the same number of
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iterations, delivering the fastest optimization speed and highest convergence accuracy. For multi-objective
optimization, IChOA effectively escapes local optima, converging faster and requiring fewer iterations.
Comparative analysis reveals that IChOA not only surpasses other algorithms in final convergence accuracy
but also outperforms them in convergence speed. Overall, IChOA exhibits enhanced global search capability
and convergence performance, making it a highly competitive optimization algorithm.

Figure 3: Convergence curve comparison plot
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4.4 Wilcoxon Rank Sum Test
To further compare IChOA with other algorithms, this study employs the Wilcoxon rank-sum test,

a nonparametric statistical method, to analyze performance differences based on results from multiple
simulation runs. Traditional data analysis methods often rely solely on the mean and standard deviation,
which are insufficient for effectively comparing algorithmic performance across multiple runs, making
such approaches less rigorous. To comprehensively evaluate IChOA’s performance, ten test functions were
selected, and the results of IChOA were compared with those of four other algorithms using the Wilcoxon
rank-sum test [30]. The p-value was calculated, where (p < 0.05) indicates a significant difference between
the two algorithms, while (p > 0.05) suggests their performances are comparable with no statistically
significant difference.

As shown in Table 3, the p-values for IChOA are less than 0.05 in most cases, indicating that IChOA
statistically outperforms the other algorithms in solving basic function optimization problems. These
findings further demonstrate the robustness and stability of IChOA.

Table 3: Wilcoxon rank sum test results

ChOA PSO AIWPSO IPSO
F1 2.1266E−06 1.7344E−06 1.7344E−06 1.7344E−06
F2 2.6033E−06 1.7344E−06 1.7344E−06 1.7344E−06
F3 7.1571E−04 9.3157E−06 4.4493E−05 1.7344E−06
F4 3.3894E−02 2.4314E−02 3.3173E−04 5.7924E−05
F5 2.1266E−06 1.7344E−06 9.7110E−06 1.9209E−06
F6 2.1266E−06 1.2381E−05 1.7344E−06 1.7344E−06
F7 7.2716E−03 1.7344E−06 1.7344E−06 1.7344E−06
F8 7.6909E−06 1.7344E−06 1.7344E−06 1.7344E−06
F9 7.6909E−06 1.7344E−06 1.7344E−06 1.7344E−06
F10 2.7029E−02 1.7344E−06 1.2866E−03 3.1817E−06

4.5 Time Complexity Analysis
Time complexity is a crucial metric for assessing an algorithm’s operational efficiency. In the ChOA

algorithm, let the population size be N, the dimensionality of the search space be n, the time for parameter
initialization be t1, and the time for generating random numbers be t2. The time complexity of the population
initialization phase can thus be expressed as:

O(t1 + N(nt2)) = O(n + f (n)) (13)

During the iterative phase, the following time-related settings are considered: the time to calculate the
fitness values for each individual in the population is denoted as f (n); the time to compare fitness values and
select the four optimal individuals is t3; the time to update the convergence factor is t4; and the time for the
remaining individuals to update their positions based on the four optimal individuals is t5. Consequently,
the time complexity of this phase is:

O(N( f (n) + t3 + t4 + t5)) = O(n + f (n)) (14)
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Thus, the overall time complexity of the ChOA algorithm for the optimization problem is:

T(n) = O(n + f (n)) + O(n + f (n)) = O(n + f (n)) (15)

For the IChOA algorithm, the time required for population parameter initialization remains the same as
in the ChOA algorithm, with the additional time for each one-dimensional sine chaotic mapping represented
as t6. The time complexity for the population initialization phase in IChOA is therefore:

O(t1 + N(nt6)) = O(n + f (n)) (16)

In the iterative phase, the following assumptions are made: f (n) represents the time to compute the
fitness values for each individual; t7 represents the time to update the improved nonlinear convergence
factor; and t8 represents the time for implementing the dynamic priority rank strategy. Accordingly, the time
complexity of this phase is:

O(N f (n) + t7 + t8) = O(n + f (n)) (17)

The overall time complexity of the improved IChOA algorithm is:

T(n) = O(n + f (n)) + O(n + f (n)) = O(n + f (n)) (18)

In conclusion, the time complexity of the IChOA algorithm remains of the same order of magnitude as
the standard ChOA algorithm, ensuring that the improvements do not increase the computational cost.

5 UAV 3D Path Planning Based on IChOA Algorithm

5.1 Simulated Experimental Environment
The experimental environment is configured using MATLAB R2019b and an Intel(R) Core(TM)

i7-8750H processor to ensure the experiment is conducted efficiently and accurately.

5.2 Experimental Setup
To evaluate the feasibility and effectiveness of IChOA, this section presents a comprehensive assessment

of the improved algorithm using several simulation examples. The continuous space is discretized by
constructing a rectangular grid to cover the UAV’s mission range. Using the spatial slicing method, N planes
are divided to generate N path points. The specific parameters of the 3D path planning environment model
used in the experiments are listed in Tables 4–6.

In this subsection, MATLAB is utilized for constructing the 3D environment. Based on the data
provided, the simulation environment for UAV path planning is established. Fig. 4 illustrates the simu-
lation environment for the no-threat scenario, while Fig. 5 depicts the simulation environment for the
threat scenario.

Table 4: Topography and start (end) point details

Topographic parameter a = b = c = d = e = f = g = 1
Starting point (m) (0, 0, 20)

Finishing position (m) (2000, 2000, 400)
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Table 5: Detailed data for each peak

Centre location (m) Height (m) Elevation
Mountain peak 1 (400, 500) 500 (100, 120)
Mountain peak 2 (600, 1800) 600 (150, 135)
Mountain peak 3 (750, 900) 800 (200, 120)
Mountain peak 4 (1660, 1000) 700 (150, 120)
Mountain peak 5 (650, 1500) 650 (150, 150)
Mountain peak 6 (850, 1750) 540 (90, 152)
Mountain peak 7 (1620, 1770) 500 (180, 150)

Table 6: Detailed data for each no-fly zone

Centre location (m) Height (m) Radius (m)
Restricted area 1 (500, 1400) 500 200
Restricted area 2 (1200, 200) 500 200
Restricted area 3 (1100, 1200) 500 200

Figure 4: Threat-free simulation environment
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Figure 5: Threat modelling environment

5.3 Experimental Results and Analysis
(1) UAV 3D path planning based on IChOA algorithm

In this section, the Improved Chimp Optimization Algorithm is used to plan the flight path of the UAV
in the non-threatening and threatening simulation environments, respectively. The number of chimpanzee
population is set to 70, the maximum number of iterations is set to 100, and the number of path nodes
between the start and end points is set to 4. The path search results after the simulation are shown as the red
lines in Figs. 6 and 7, and the changes of the iteration curves of the cost function are shown in the following
figure under the consideration of the path cost only.

Figure 6: Threat-free simulation environment. (a) 3D path planning simulation; (b) Path cost function iteration curve
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Figure 7: Threat modelling environment. (a) 3D path planning simulation; (b) Path cost function iteration curve

(2) Simulation Comparison of 3D Path Planning Algorithms
In this section, the performance of IChOA and several swarm intelligence algorithms in 3D path

planning is compared through an experiment. In a simulated environment containing a hazardous area,
uniform simulation conditions are applied across all algorithms: the population size is set to 70, the number
of iterations to 100, and the UAVs are ensured to start flying at an altitude of 20 m above the ground. A cost
function is designed to evaluate the performance of each algorithm by considering key factors such as path
length, altitude variation, and turning angle.

The experimental results are detailed in Fig. 8. Specifically, Fig. 8a presents the three-dimensional path
trajectories planned by five optimization algorithms, comparing the paths generated by IChOA, ChOA, SSA
(Sparrow Search Algorithm), PSO, and IPSO (Improved Particle Swarm Optimization). Fig. 8b illustrates
the convergence curves based on the cost function, providing an intuitive representation of the optimization
performance of each algorithm.

Figure 8: Comparison of five algorithms for 3D simulation. (a) 3D path planning simulation; (b) Path cost function
iteration curve
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In this section, to evaluate the algorithms’ optimality in search performance, a 3D path simulation
environment with three no-fly zones and a search space of (2000 × 2000) is constructed. The optimal, worst,
mean, and standard deviation of the cost functions obtained after running each algorithm 20 times are
summarized in Table 7.

Table 7: Comparison results of 3D path planning cost data

Algorithm Optimal Worst Mean Std
IChOA 3675.9257 3929.6384 3797.7858 68.8489
ChOA 3740.7007 4115.5075 3882.9362 121.3765

SSA 3654.1369 4965.7579 4009.6504 386.1752
PSO 4369.8501 4454.5927 4396.0557 30.9422
IPSO 3631.0970 4928.4037 4099.0792 313.4277

As shown in Table 6, the IChOA algorithm demonstrates significant advantages in the simulation
study of 3D task maps. Specifically, its performance in finding the optimal path is close to the theoretical
optimal solution, and the worst value of its cost function is the lowest among the five algorithms compared.
After 20 repetitions of simulation experiments, the IChOA algorithm not only achieves a lower average
surrogate value than the other four algorithms but also exhibits a standard deviation that reflects a high
degree of stability. This indicates that the IChOA algorithm can consistently find shorter paths under varying
simulation conditions.

The effectiveness of the IChOA algorithm is further validated by analyzing the changes in path
trajectories and convergence curves in the 3D environment. These statistical results not only highlight the
efficiency of the IChOA algorithm in finding the shortest path but also confirm the high stability of its
execution process.

6 Conclusion
This paper proposes a multi-strategy improved chimpanzee optimization algorithm (IChOA) for UAV

3D path planning. First, a sinusoidal chaotic mapping strategy is introduced to initialize the population,
enhancing coverage of the solution space and increasing population diversity. Next, a nonlinear convergence
factor is employed to adaptively adjust the search process, improving both convergence speed and solution
accuracy. Finally, a dynamically tuned search strategy is utilized to balance global and local search by varying
the number of chimpanzee advance teams.

To validate the effectiveness of the IChOA algorithm, an experimental comparison was conducted with
eight other algorithms. In benchmark function tests, IChOA demonstrated strong stability and optimization
capability, achieving low mean values, small standard deviations, and superior optimal values on both
unimodal and multimodal functions. In the convergence curve analysis, although IChOA does not dominate
in the initial stages, it surpasses other algorithms in convergence speed and accuracy during subsequent
iterations. Its superiority is statistically verified using the Wilcoxon rank-sum test. Notably, IChOA maintains
a time complexity comparable to the original algorithm.

Subsequently, 3D path planning experiments for UAVs were conducted using the IChOA algorithm. The
algorithm successfully planned feasible flight paths in various simulated environments. Compared to other
intelligent algorithms, IChOA consistently finds shorter paths, as evidenced by the lower standard deviation
of the cost function.
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In conclusion, the IChOA algorithm effectively addresses the limitations of the original algorithm and
demonstrates excellent performance and practical value in UAV 3D path planning, providing a reliable
solution and contributing to advancements in the field.
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