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ABSTRACT: Anomaly detection (AD) in time series data is widely applied across various industries for monitoring
and security applications, emerging as a key research focus within the field of deep learning. While many methods
based on different normality assumptions perform well in specific scenarios, they often neglected the overall normality
issue. Some feature extraction methods incorporate pre-training processes but they may not be suitable for time
series anomaly detection, leading to decreased performance. Additionally, real-world time series samples are rarely
free from noise, making them susceptible to outliers, which further impacts detection accuracy. To address these
challenges, we propose a novel anomaly detection method called Robust One-Class Classification Detection (ROC).
This approach utilizes an autoencoder (AE) to learn features while constraining the context vectors from the AE within
a sufficiently small hypersphere, akin to One-Class Classification (OC) methods. By simultaneously optimizing two
hypothetical objective functions, ROC captures various aspects of normality. We categorize the input raw time series
into clean and outlier sequences, reducing the impact of outliers on compressed feature representation. Experimental
results on public datasets indicate that our approach outperforms existing baseline methods and substantially improves
model robustness.

KEYWORDS: Time series anomaly detection; self-supervised learning; robustness

1 Introduction
Analyzing time series allows us to understand the underlying processes that generate these sequences,

thereby enhancing our comprehension of these processes. Anomaly detection in time series is a critical
challenge in data mining, with applications across diverse fields such as transportation and manufacturing,
where it serves to monitor system behavior. For instance, in aircraft engine fault detection, monitoring
the time series of engine RPM, fuel pressure, temperature, and vibration signals enables the identification
of abnormal fluctuations or patterns, allowing for early detection of mechanical failures and preventing
accidents during flight. In railway transportation systems, monitoring the status of trains involves real-time
analysis of data such as wheel temperature, axle vibration, and electrical signals. By detecting anomalies,
potential hazards that could lead to derailments or failures can be identified and mitigated promptly. In
manufacturing production lines, equipment health management is facilitated through the monitoring of
vibration, temperature, and current of machinery via time series data, enabling the identification of potential
failures and timely maintenance, thus minimizing downtime and ensuring production efficiency.

Time Series Anomaly Detection (TSAD) is also essential in applications like health monitoring
and fraud detection, where it involves identifying unique time series instances that deviate from typical
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patterns [1]. For example, in health monitoring, detecting abnormal heart rates and brain waves in elec-
trocardiogram (ECG) and electroencephalogram (EEG) data can reveal health issues such as arrhythmias
and epilepsy. In credit card fraud detection, analyzing user transaction patterns and identifying unusual
behaviors, such as large purchases in a short time or transactions at atypical locations, helps in detecting and
preventing fraudulent activities. Additionally, in network traffic anomaly detection, analyzing time series
data of network traffic can uncover abnormal data transmission behaviors, such as DDoS attacks, data
breaches, or malicious software activities.

In recent years, deep learning-based approaches have achieved impressive results in time series anomaly
detection, particularly with complex datasets. These methods excel at modeling long-term and nonlinear
temporal patterns within the data, surpassing traditional methods such as similarity search and density-
based clustering [2–5]. Neural network-based approaches commonly use an encoder to compress the input
time series into a compact latent representation, which is then decoded to reconstruct the original series.
This encoder-decoder framework, commonly referred to as an autoencoder [6], compresses the initial input
through a bottleneck layer, promoting the formation of compact latent representations. This structure enables
the model to capture essential patterns within the time series while filtering out irrelevant or atypical patterns,
such as anomalies [7]. This approach aids in the detection of anomalies by evaluating the reconstruction
error between the original time series and its reconstructed counterpart. A larger reconstruction error
suggests an increased probability that the related observations are anomalies. One-class (OC) techniques
consolidate normal instances into a single category by minimizing the volume of the hypersphere that
encompasses the feature representations. However, despite the strong performance demonstrated by deep
learning techniques [8–10] such as autoencoders, they encounter two major challenges.

Single Hypothesis: A single hypothesis often captures only a limited aspect of sample normality, while
anomalies can manifest in diverse forms, such as point anomalies, subsequence anomalies, and anomalies
across entire time series. Inspired by the principles of ensemble anomaly detection methods, we suggest that
detectors relying on a singular hypothesis may be insufficient to capture this diversity, potentially limiting
their effectiveness in detecting varied anomaly types [11]. Consequently, while these methods may excel in
detecting specific types of anomalies, their effectiveness often diminishes when encountering others.

An alternative approach divides the process into two phases: pre-training on the overall time series,
followed by fine-tuning for anomaly detection (AD). For instance, deep SVDD [12] initially utilizes an
autoencoder for feature extraction and subsequently refines these features for anomaly detection through
a one-class loss function. Similarly, Reference [13] applies contrastive learning in the first phase and utilize
one-class methods for detection in the second phase. Formally, these approaches combine feature extraction
methods with the assumptions of one-class learning; however, the objectives of the two phases are often
misaligned. While the pre-training phase may yield representations that align with typical patterns, these
representations can also be influenced by extraneous features unrelated to anomaly detection. As a result,
the performance of such methods may be constrained by these pre-trained features.

Robustness: In unsupervised learning, training data often includes anomalies. Because the encoder
compresses all observations in the input time series, even those that are anomalous, the hidden representation
may become susceptible to these outliers. Particularly when anomalies are high in amplitude, even a few can
compromise the latent information, leading to a risk that the latent representation itself reflects anomalous
patterns from the training data.

Deep learning-based soft sensors for time series anomaly detection exhibit significant vulnerabilities
to adversarial attacks. Knowledge-guided adversarial perturbations can be designed to subtly manipulate
the input data distribution without causing noticeable changes, resulting in a substantial degradation of
model performance. This exposes the insufficient robustness of current deep learning methods in time
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series anomaly detection [14]. Reference [15] proposes an adversarial training strategy using historical
gradients and domain adaptation. By leveraging historical information to capture temporal dynamics and
mapping input samples to a shared feature space, this approach effectively enhances model robustness against
adversarial examples. This is particularly critical for time series anomaly detection, where data distribution
changes introduce additional uncertainty. As a result, the model may produce lower reconstruction errors for
specific anomalies, making it difficult to distinguish them from normal data, which in turn negatively affects
accuracy. As shown in Fig. 1, training set data contaminated by anomalies can lead to the model generating
smaller reconstruction errors for similar anomalies during testing, complicating their detection. To mitigate
this issue, a robust solution is required to ensure that the latent representation is not influenced by anomalies
present in the training data.

Figure 1: A portion of the time series from the training set for anomaly detection, where the orange shading represents
the actual anomalous segments and the red solid line represents the anomaly score. In unsupervised anomaly detection,
the training set typically relies on benign samples, which results in the model learning characteristics associated with
anomalies. Consequently, the model becomes less sensitive to certain anomalies present in the test set

We introduce a novel autoencoder framework to address the issues of robustness and single hypothesis
in anomaly detection. In this study, we introduce a single-stage anomaly detection approach termed the
Robust One-Class Classification (ROC) autoencoder. We hypothesize that normal samples will be more
accurately reconstructed, with their projection vectors in the latent space forming a compact hypersphere.

Rather than reconstructing the input time series T directly, we decompose it into two components:
the clean time series TL and the anomalous time series Ts . Using an integrated autoencoder, we then
reconstruct only the clean component TL , thereby ensuring that the latent representation remains unaffected
by anomalous data. This approach enhances robustness and, consequently, improves the model’s accuracy.

In summary, the main contributions of this paper are as follows:

• The proposed method differs from traditional single-hypothesis autoencoder approaches by integrating
a multi-hypothesis anomaly detection framework that combines autoencoders with OC methods,
capturing richer feature representations in the time series.

• Unlike standard denoising autoencoders, our method does not require additional noise-free training
data. By optimizing the sparsity of Ts in the objective function, we can effectively separate the anomalous
components in the training data, achieving the effect of noise-free training data.

• The effectiveness of the proposed approach has been validated on publicly available time series datasets,
where it demonstrates superior performance compared to existing methods.
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2 Related Work

2.1 Problem Definition
A time series T = ⟨s1 , . . . , sC⟩ consists of C observations, with each observation si in R

D . If D = 1, then
T is a univariate time series; if D > 1, it represents a multivariate or multidimensional time series.

For a specified time series T = ⟨s1 , . . . , sC⟩, we aim to calculate the anomaly score OS(si) for every
observation si . Observations with higher anomaly scores are more likely to be classified as anomalies.
Anomalies are not specifically categorized as point anomalies or sequence anomalies; rather, a set of
consecutive observations is considered a sequence anomaly if they share high anomaly scores.

2.2 Deep Learning-Based Anomaly Detection
Traditional anomaly detection methods rely on statistical features, but these approaches are often

unsuitable for time series data, leads to the feature information not being correctly represented. With
the increase in data dimensionality and volume, deep learning methods have emerged. OC methods can
capture complex features that represent “normality.” For instance, methods based on Generative Adversarial
Networks (GANs) [16] and autoencoders [17] assume that normal samples can be reconstructed better by the
model. Clustering methods, on the other hand, posit that normal samples cluster together as a large group,
while outlier data points are classified as anomalies [18]. In contrast, contrastive learning approaches enhance
the data by making positive samples closer to each other while causing the negative samples to be far apart
from each other [19]. However, these assumptions can often be overly simplistic or effective only for specific
types of anomalies. Additionally, another class of deep learning methods, such as Deep SVDD, employs a
two-stage OC classifier. This involves feature extraction using a pre-trained encoder model, which is then
classified using OC-SVM [12]. Nevertheless, this approach tends to separate the training objective from the
downstream task, hindering the effective learning of diverse time series features.

2.3 Robust Principal Component Analysis
Given a matrix M, Principal Component Analysis (PCA) is capable of discovering a low-rank matrix

that serves as an approximation of M. However, as PCA generally employs Singular Value Decomposition
(SVD) to determine the low-rank matrix, it exhibits similar sensitivity to outliers as that observed in SVD.
To enhance the effectiveness of Principal Component Analysis (PCA) in the presence of outliers, Robust
Principal Component Analysis (RPCA) [20] has been introduced. The aim of RPCA is to decompose the
matrix M into two components: a low-rank matrix L that represents the underlying clean data and a sparse
matrix S that captures the outliers. Specifically, RPCA expresses the original matrix M as follows:

M = L + S (1)

In this decomposition, L serves as a low-rank matrix that approximates the clean data within the
original matrix M, while S represents a sparse matrix composed of elements identified as outliers, which
are not encapsulated by the low-rank matrix L. RPCA accomplishes this decomposition by resolving the
optimization problem outlined in the following formula.

argmin
L ,S

rank(L) + λ∥S∥0 s.t. X = L + S (2)

In this context, rank (L) represents the rank of matrix L; ∥S∥0 is the �0 norm of matrix S, which indicates
the count of non-zero elements within S; and λ serves as a parameter that adjusts the relative significance
of ∥S∥0. Additionally, given that M is expressed as the sum of L and S, the optimization is subject to the
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constraint M = L + S. To discover a low-rank matrix L that closely approximates the original matrix M
and a sparse matrix S capturing the outliers, the loss function is minimized. Although RPCA is efficient in
detecting and excluding outliers, it is limited by its lack of support for time series data and its restriction
to linear transformations. Time series data, however, frequently involves complex, nonlinear variations that
this approach cannot fully address.

3 Methodology

3.1 Overall Approach
In unsupervised learning, training data may already contain anomalies. As the encoder compresses

the time series, the hidden representation becomes highly sensitive to these anomalies. This means that the
anomalous information in the training data can contaminate the latent representation, causing the model to
learn abnormal features. As a result, the model may exhibit low reconstruction errors for anomalous samples,
making it difficult to distinguish them from clean samples.

To address this issue, we propose a robust method that ensures the latent representation is not affected
by anomalies in the training data. Drawing on the principles of RPCA, our proposed neural network is
designed to partition the input data during training into two segments: the clean time series TL and the
anomalous component Ts , ensuring that T = TL + Ts . We then input the clean series TL into a deep one-class
(OC) method to capture the overall features of the positive samples under multiple hypotheses. The specific
approach is illustrated in Fig. 2.

Figure 2: The architecture of the proposed ROC model is depicted, where c represents the center of the hypersphere.
Projection vectors of normal instances (e.g., qi ) are contained within the hypersphere, while those of anomalous
instances are positioned beyond its boundary. Simultaneously, we separate Ts from TL , and only clean time series are
used as input to the autoencoder, resulting in the reconstruction of the time series T ′L

3.2 Deep OC
In our proposed deep one-class (OC) method, we combine two assumptions: that normal samples can be

better reconstructed and that when mapped to a high-dimensional space, they will form a hypersphere with
a smaller radius. This approach allows for a more comprehensive learning of the features of clean samples.



5186 Comput Mater Contin. 2025;83(3)

The motivation behind this is that under a single assumption, the normality features learned by the model
may be one-sided, leading to a situation where certain features of abnormal samples differ from those of
normal samples, but those features are not recognized by the model. As a result, specific types of anomalies
may go undetected by a model based on a single assumption. The specific objective function is as follows:

L = lae(T , T ′) + λ1 ⋅ lO C(qi , c) (3)

For a given set of N time series training samples, the objective function consists of two parts: one for
learning the features of the time series from the perspective of the autoencoder and the other from the one-
class (OC) method. The parameter λ1 controls the weights of these two components. lae(T , T ′) represents
the reconstruction error of the seq2seq model, defined as follows:

lae(T , T ′) = ∥T − DθAE(EθAE(T))∥2
2 (4)

T ′ is the reconstructed time series, defined as DθAE(EθAE(T)). This is primarily calculated by measuring
the mean squared error between the original sequence and the reconstructed sequence, ensuring the model’s
reconstruction is as close to the original input as possible.

The lO C(qi , c) represents the OC error defined as:

loc(qi , c) = ∥qi − c∥2 (5)

The data point q is obtained by projecting the hidden representations of the training samples from
the encoder into a high-dimensional feature space. The distance between q and the center point c is then
calculated, with the objective of minimizing the size of the hypersphere centered at c with q as the radius.
The center point is determined using a Gaussian mixture model, which can effectively model complex data
distributions and handle noise and outliers more effectively.

c = ∑
N
i=1 G(qi , c) ⋅ qi

∑N
i=1 G(qi , c)

(6)

where G(qi , c) is the weight function based on the Gaussian distribution, specifically defined as:

G(qi , c) = exp(−∥qi − c∥2

2σ 2 ) (7)

where σ is the standard deviation of the Gaussian distribution, controlling the degree of fuzziness, and in
the testing phase, the classification of the time series T as anomalous is based on the calculated anomaly
score S.

S = lae(T , T ′) + λ1 ⋅ loc(qi , c) (8)

x =
⎧⎪⎪⎨⎪⎪⎩

anomaly, S > τ
normal, S ≤ τ

(9)

where τ is the predefined classification threshold.

3.3 Robust Anomaly Detection
In Principal Component Analysis (PCA), a given matrix M can be approximated by identifying a low-

rank matrix. To obtain a low-rank representation, PCA applies Singular Value Decomposition (SVD), which
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makes it inherently sensitive to outliers. To enhance robustness in the presence of outliers, Robust Principal
Component Analysis (RPCA) has been proposed. RPCA aims to break down the original matrix M into two
parts: a low-rank matrix L that represents the underlying clean structure of M and a sparse matrix S that
contains the elements identified as anomalies.

Inspired by the approach of RPCA, we can separate the anomalous parts from the input time series
and focus solely on learning the benign features from the samples. In this context, the clean time series
TL encapsulates the trends and periodic patterns present in the time series data, whereas Ts identifies the
anomalous characteristics, which largely include random fluctuations that do not conform to established
patterns. By eliminating this component’s influence on the hidden representations, we can more accurately
learn the information from clean samples and better differentiate them from anomalous samples. The
objective function is as follows:

arg min ∥TL − Dθ AE(Eθ AE(TL))∥2 + λ1 ⋅ loc(q, c) + λ2 ⋅ ∥Ts∥0 s.t. T = TL + Ts (10)

Eθ AE represents the encoder part, while Dθ AE represents the decoder part. λ2 are parameters used to
control the balance between the sparsity of Ts . From our analysis, we observe that λ2 plays a crucial role
in separating the anomalous values in the time series. Specifically, when λ2 is small, the objective function
encourages more data to be classified as anomalous and separated from the original data. Conversely, when
λ2 is large, most of the data is retained, with only a small portion being isolated.

In Eqs. (1) and (9), the loss functions include an l0 norm term to optimize the sparsity of anomalous
values while ensuring their semantics. However, the l0 norm is non-convex, making optimization challeng-
ing. According to the [21], transforming the l0 norm to the l1 norm can provide a good approximation of the
l0 norm. The formula is as follows:

arg min ∥TL − Dθ AE(Eθ AE(TL))∥2 + λ1 ⋅ loc(q, c) + λ2 ⋅ ∥Ts∥1 s.t. T = TL + Ts (11)

3.4 Algorithm
The optimization problems of ROC have constraints and thus cannot be solved by gradient descent

based back-propagation (BACKPROP). The optimization task may instead be reformulated into two
segments and approached using the Alternating Direction Method of Multipliers (ADMM). ADMM fun-
damentally works by breaking down the main objective into several sub-objectives, enabling the iterative
optimization of each sub-objective while holding the remaining ones constant. Upon optimizing a given sub-
objective, the method applies constraints to ensure consistency with the overall objective [22]. Furthermore,
the Proximal Algorithm [23] is employed to address elements involving the l1 norm.

As shown in Algorithm 1, when optimizing the ROC, the process is as follows: first, optimize the
integrated autoencoder part by minimizing L = λ1 ⋅ lae(T , T ′) + λ2 ⋅ lO C(qi , c); then minimize ∥Ts∥0; lastly,
update TL = T − Ts to maintain the constraint and provide the result as input for the subsequent iteration.
The optimization process concludes based on two criteria: first, when T = TL + Ts holds, and second, when
both TL and Ts remain constant, indicating that neither Ts nor TL is further changing, signifying that the
anomalous values in Ts have stabilized at an optimal state.

Algorithm 1: Training
Input: Time series T, double λ, double ε
Output: TL , Ts

1. Initialization:
(Continued)
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Algorithm 1 (continued)
2. TL ← 0; Ts ← 0; T∗ ← T ;
3. repeat
4. TL ← T − Ts ;
5. // Optimize AE θAE
6. Update θ by minimizing L = λ1 ⋅ lae(T , T ′) + λ2 ⋅ lO C(qi , c); using BACKPROP;
7. TL ← Dθ AE(Eθ AE(TL));
8. Ts ← T − TL ;
9. // Optimize Ts
10. Update Ts by minimizing ∥Ts∥1 using PROX;
11. // Compute stopping conditions:
12. condition1← ∥T−TL−Ts∥2

∥T∥2
;

13. condition2← ∥T∗−TL−Ts∥2
∥T∥2

;
14. T∗ ← TL + Ts ;
15. untill condition 1 < ε1 or condition 2 < ε2
16. Return: TL , Ts

4 Experiments

4.1 Experimental Setup
In terms of datasets, the AIOps dataset is a collection of 29 sub-datasets designed for detecting anomalies

in web services based on business cloud KPIs. It includes 29 KPI time series collected from several large
technology companies (such as Alibaba, Sogou, Tencent, Baidu, and eBay). These time series are sampled at
1 or 5-min intervals and divided into training and testing portions.

Another dataset we use the UCR Time Series Anomaly Archive, a recently launched repository
containing 250 different time series datasets specifically for time series anomaly detection research. Each
dataset contains anomalous events of varying lengths, ranging from 1 to 1700. Furthermore, these datasets
cover various fields such as health, industry, and biology, exhibiting different types of anomalies with specific
characteristics [24].

We also use the multivariate time series dataset SMAP, which comes from a real-world expert-labeled
dataset provided by NASA. Each dataset includes a training set and a testing set, with anomalies labeled in
the testing set. It consists of data from 27 entities, each monitored by 55 metrics (variables). In all datasets,
both point anomalies and collective anomalies are present, and true anomaly labels are available. Moreover,
all methods are trained using time series data that contains anomalies, as the datasets do not provide clean
time series without anomalies for training purposes. This configuration enables an investigation into the
robustness of various algorithms when confronted with anomalies.

Table 1 provides a systematic comparison of the key characteristics of the three datasets (AIOps, UCR,
and SMAP) used in this study. It outlines the configurations of the sliding window parameters (window size
and time step), the total number of samples, the data splits across training, validation, and testing sets, as
well as the anomaly proportions in the training and testing datasets. Notably, the anomaly proportions vary
significantly across datasets, with AIOps containing a small proportion of anomalies in both training and
testing sets, UCR having no anomalies in the training set and a low proportion in the testing set, and SMAP
featuring no anomalies in the training set but a relatively higher anomaly proportion in the testing set. This
highlights the diverse nature of the datasets and their suitability for different anomaly detection tasks.
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Table 1: Details of dataset

AIOps UCR SMAP
Window size 16 64 64

Time step 2 4 2
Total sample 2,961,039 4,830,858 281,400

Training/validation/testing 40%/10%/50% 24%/6%/70% 32%/8%/60%
Training/testing anomaly 2.98%/1.92% 0%/0.71% 0%/12.79%

Regarding baseline methods, we select two shallow machine learning methods, including OC-SVM [25]
and Random Cut Forest (RCF) [26]. In deep learning algorithms, we compare our approach with five
algorithms, including the deep one-class method SVDD [12], context-based anomaly detection for time series
(TS-TCC) [27], and Ensemble Detection Method AOC [28]. Lastly, we chose two variants of the ROC method
for ablation experiments: NoOC, which sets λ1 to 0, representing a single hypothesis anomaly detection
method; and NoRPCA, which directly uses the raw training data without any processing.

In our experiments, we primarily employed PA, PW, and Affiliation (precision recall and F1-
score) [29] as evaluation metrics, as they align well with the unique requirements of time series anomaly
detection tasks.

PA measures the ratio of correctly classified points (both normal and anomalous) to the total number
of points in the time series, offering a global perspective on the model’s overall performance. Its formula is
as follows:

PA = Number of Correctly Classified Points
Total Number of Points

PA is particularly suitable for scenarios where the primary goal is to assess the model’s general
classification accuracy across both normal and anomalous data. However, it may have limitations in datasets
where normal points significantly outnumber anomalies, as the metric can dilute the model’s anomaly
detection performance by emphasizing overall accuracy.

PW on the other hand, is designed to focus specifically on anomaly detection by emphasizing the
precision and recall of the model when identifying anomalies. It provides a more refined measure of the
model’s effectiveness in distinguishing anomalous data from normal data [30,31]. The formula for PW
Precision is:

PW Precision = True Positives
True Positives + False Negatives

PW is particularly well-suited for time series anomaly detection tasks where the primary focus is on
ensuring the accurate identification of anomalous samples. This metric is valuable in applications such as
fault detection in industrial systems, where missing an anomaly (false negative) or misclassifying a normal
event (false positive) can lead to significant consequences.

The choice of PA and PW as evaluation metrics reflects their ability to complement each other in time
series anomaly detection scenarios. PA offers a holistic view of the model’s classification accuracy, while
PW ensures the model’s stability and effectiveness in specifically detecting anomalies. This dual perspective
allows for a balanced evaluation of the model’s performance in time series tasks, particularly when addressing
real-world applications with imbalanced data distributions or critical anomaly detection requirements.
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By integrating these metrics, we can better assess the trade-offs between general accuracy and the
precision-recall balance in anomaly detection, ensuring the model’s applicability across diverse time series
datasets and real-world tasks.

4.2 Implementation Details
In the ROC framework, we utilize two identical three-layer LSTMs (with a dropout rate of 0.45) as

Seq2Seq autoencoders. The Adam optimizer was employed with a learning rate of 3 × 10−4, weight decay of
5 × 10−4, β1 = 0.9, β2 = 0.99, and ε = 1 × 10−8. All methods were implemented using Python 3.9, with PyTorch
1.7 for all neural network-based approaches. Additionally, Sklearn 0.24 was used for OCSVM, while Numpy
1.19 was used for EMA, SSA, and MP. Finally, Statsmodels 0.13 was utilized for STL. All experiments were
conducted on a Linux workstation equipped with an Intel 32-core CPU, 256 GB RAM, and a single NVIDIA
GeForce RTX 3090 GPU.

4.3 Results
In our study, we presented the prediction accuracy of affiliation, along with the corresponding point

accuracy (PA) and range prediction (PW) scores. The results indicate that our method performs well
across multiple datasets. Although it did not achieve the best results on the UCR dataset, it maintained a
strong competitive edge relative to other methods. It is noteworthy that RCF and LSTM exhibited excellent
performance on the UCR dataset, but their accuracy significantly declined on the AIOps dataset. This
phenomenon can be attributed to the fact that the UCR dataset typically contains only a single anomaly
segment and lacks anomalous samples in the training set. In contrast, the AIOps dataset features multiple
anomaly segments, and the training set includes some anomalous characteristics, leading to higher false
negative rates for methods that lack robustness.

To enhance the robustness of the model, the AOC method employs a soft-boundary strategy, which
effectively improves the model’s adaptability to anomalies. In contrast, our approach integrates the RPCA
method to successfully filter out a significant portion of anomalous features in the training set. This approach
also yielded favorable results on the multivariate time series dataset SMAP, further validating the broad
applicability of our method.

As shown in Table 2, in comparisons with various baseline models, we draw the following conclusions:
RCF, as a shallow model, demonstrated outstanding performance on the UCR dataset, even surpassing some
deep learning models. Meanwhile, two-stage anomaly detection methods, including SVDD and TS-TCC, did
not achieve ideal results in time series anomaly detection, revealing the limitations of staged approaches for
time series data and thereby constraining the performance of deep models. Additionally, our proposed ROC
method performed well across all three datasets, confirming the effectiveness of the ensemble approach and
its robustness against contaminated training sets.

Table 2: Results summary

Datasets Metric SVM RCF LSTM DAGMM SVDD TS-TCC AOC ROC NoRPCA NoOC
Precision 45.8 52.6 52.2 44.7 47.3 50.5 90.3 96.2 94.3 92.2

Recall 17.5 25.7 25.3 30.4 32.1 23.4 38.6 36.7 35.1 34.8
AIOps F1-score 25.4 34.5 34.1 36.2 38.2 31.9 54.0 53.1 51.2 50.5

PA 53.4 53.2 76.1 14.2 14.3 17.5 80.1 86.3 81.6 62.3
PW 8.7 16.6 6.4 5.8 6.4 13.4 45.5 47.2 45.3 45.1

(Continued)
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Table 2 (continued)

Datasets Metric SVM RCF LSTM DAGMM SVDD TS-TCC AOC ROC NoRPCA NoOC
Precision 47.6 59.1 67.8 51.2 37.2 44.3 61.7 65.3 50.3 51.2

Recall 84.0 57.7 66.0 96.7 37.1 44.3 61.5 63.3 60.3 61.8
UCR F1-score 60.3 58.4 66.9 66.9 37.2 44.3 61.6 64.1 54.8 56.0

PA 10.1 98.2 97.8 11.3 78.2 62.3 62.6 94.9 63.2 94.8
PW 2.02 35.3 43.2 6.6 8.3 14.2 15.3 22.6 17.6 16.8

Precision 43.3 42.2 84.3 40.6 51.9 45.4 91.3 95.6 93.7 90.6
Recall 34.2 52.3 24.3 15.1 46.9 17.2 36.3 41.7 38.6 39.1

SMAP F1-score 38.2 46.7 37.7 22.0 49.3 24.9 51.9 58.1 54.7 54.6
PA 97.1 90.2 98.5 86.0 86.6 94.4 86.1 90.2 88.0 87.6
PW 14.1 7.4 49.0 7.0 13.1 12.2 37.2 40.9 37.6 35.3

On some datasets, although our methods are not the best, they do not fall behind much. The reason
why our method does not achieve the best performance on the UCR dataset may lie in the fact that many
time series in the UCR dataset exhibit strong contextual dependencies [32,33]. For instance, in motion sensor
data, transitions between different actions, or in weather data, long-term trends and seasonal patterns play
a significant role. Models like LSTM, which excel at handling strongly time-dependent sequential data, can
effectively capture critical patterns through learning temporal transitions between states. This capability
allows LSTM to achieve higher accuracy in tasks such as behavior classification and anomaly detection. As a
result, methods like LSTM are more suitable for datasets with strong temporal dependencies, such as UCR.

However, for datasets like AIOps, which encompass rich operational data and diverse task scenarios,
our method demonstrates superior performance. This is due to its ability to handle large-scale data with
highly diverse anomaly samples and to tackle more complex tasks. In such cases, our method significantly
outperforms LSTM and other approaches that rely solely on temporal dependencies.

Finally, the results from NoOC and NoRPCA indicate that combining multiple normality assumptions
with anomaly filtering models significantly enhances anomaly detection (AD) performance, this further
validates the efficacy and importance of the different elements within our model.

4.4 Hyper-Parameter Analysis
In this section, we perform a hyperparameter analysis on the AIOps dataset, with a specific focus on

examining two key parameters: λ1 and λ2 in the equations. Fig. 3a illustrates the results of varying λ1 for
RPCA, showing that the model performs best when λ1 = 0.01. We hypothesize that the underlying reason
for the observed performance may be that when the score from the one-class method constitutes a larger
proportion of the anomaly score and exceeds the threshold value of 0.01, the model’s performance tends to
approximate that of shallow methods such as SVM. Fig. 3b demonstrates the impact of λ2 on overall perfor-
mance, with the model achieving optimal results when λ2 = 0.5, identifying the best threshold for filtering
anomaly features from the training set. The y-axis in the figure represents PA and PW precision metric.

We also conducted detailed experiments to investigate the reasons behind the performance decline
associated with varying λ2. As a parameter that adjusts the sparsity in S, λ2 plays a crucial role in our analysis.
Specifically, a smaller λ2 encourages a large amount of data to be isolated as noise or anomalies in S, which
minimizes the reconstruction error of the autoencoder; however, this can severely distort the original time
series, resulting in inadequate anomaly detection due to low anomaly scores. Conversely, a larger λ2 prevents
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data from being classified as noise or anomalies, leading to increased reconstruction errors. As shown in
the Fig. 4, when λ2 is too large, the reconstruction error rises, and since only a few anomalies are isolated, the
results resemble those prior to RPCA, thus losing the filtering effect and causing a decline in performance.
The y-axis in the figure represents the model’s anomaly scores across different batches.

Figure 3: We conducted a hyperparameter analysis on AIOps for λ1 (a) and λ2 (b), focusing on the impact of anomaly
filtering on the model’s precision

Figure 4: The figure illustrates how the anomaly scores change with variations in λ2, where the green curve represents
the scenario in which λ2 is at its optimal value. This configuration more accurately reflects the anomaly scores of the
time series, providing a clearer indication of the actual anomalies present

4.5 Optimization Algorithm Analysis
We employ the gradient descent method as the core optimization algorithm to minimize the objective

function. Gradient descent iteratively updates the parameters by computing the gradient of the loss function
with respect to the model’s parameters, ensuring a systematic approach to minimizing loss.

In addition, we incorporate a dynamically adjusted learning rate during the optimization process.
The dynamic adjustment of the learning rate allows the algorithm to take larger steps when far from the
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optimal solution to accelerate convergence, while automatically reducing the step size as it approaches the
optimal solution. This mechanism helps to avoid overshooting the minimum and improves stability near the
global optimum. More importantly, the dynamically adjusted learning rate mitigates the risk of the algorithm
getting trapped in local minima, a common issue in non-convex optimization problems.

By comparing the effects of dynamic and fixed learning rates, Fig. 5 provides a visual representation
of how the convergence behavior differs under different learning rate strategies. The dynamic learning rate
strategy demonstrates faster convergence and better adaptability to the optimization landscape, particularly
in complex scenarios.

Figure 5: Figure demonstrates the convergence process of the optimization algorithm

In addition, we visualized the actual convergence process of the model, demonstrating the step-by-step
reduction in the loss function values during optimization. Fig. 6 not only provides an intuitive comparison
between the performance of dynamic learning rate adjustment and fixed learning rate strategies but also
strongly supports the effectiveness of the dynamic learning rate. Specifically, the dynamic learning rate
facilitates a faster reduction in loss values and exhibits greater stability as it approaches the global optimum.
This indicates that the dynamic learning rate has significant advantages in optimizing non-convex problems
and handling complex objective functions. Furthermore, it validates the applicability of this approach in
addressing challenging tasks.
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Figure 6: The optimization process with dynamic learning rate and fixed learning rate as a function of epochs

5 Conclusion
This paper introduces a robust time series anomaly detection method, ROC, which is grounded in

multiple hypotheses and eliminates the need for pre-training. The proposed method projects the hidden
representation layer of the autoencoder and integrates the objectives of both the autoencoder and one-class
(OC) methods. By filtering out anomalous segments of the input time series, ROC avoids the contamination
of the compression layer by anomalous features during training and resolves potential inconsistencies
between the two hypotheses. This approach effectively captures normal patterns from multiple perspectives,
allowing the model to learn a more comprehensive representation of typical time series data. As a result, the
method demonstrates an enhanced ability to detect diverse types of anomalies. Experimental evaluations on
three real-world datasets validate the superior performance of the proposed approach.

In future work, we plan to further enhance the method’s robustness against adversarial attacks in
time series anomaly detection. Drawing inspiration from state-of-the-art techniques, we aim to explore
feature learning from various forms of time series representations, such as residuals and frequency domains.
Additionally, we intend to combine these advanced feature extraction techniques with our robust approach
to filter anomalous features from multiple perspectives, ultimately improving the model’s effectiveness and
adaptability in complex scenarios.
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Nomenclature
AE Autoencoder
AD Anomaly Detection
ADMM Alternating Direction Method of Multipliers
AIOps Artificial Intelligence for IT (Information Technology) Operations Performance Score
AOC deep Autoencoding One Class
BACKPROP Backpropagation
DDoS Distributed Denial of Service
DAGMM Deep Autoencoding Gaussian Mixture Model
EMA Exponential Moving Average
ECG Electrocardiogram
EEG Electroencephalogram
GAN Generative Adversarial Network
KPI Key Performance Indicator
LSTM Long Short-Term Memory
MP Matrix Profile
OC One-Class Classification
OS Outlier Score
PCA Principal Component Analysis
PA Point-adjusted metrics
PW Point-wise metrics
RCF Random Cut Forest
RPCA Robust Principal Component Analysis
ROC Robust One-Class Classification Detection
SVD Singular Value Decomposition
SVM Support Vector Machine
SSA Singular Spectrum Analysis
STL Seasonal and Trend decomposition using Loess
SVDD Support Vector Data Description
TSAD Time Series Anomaly Detection
TS-TCC Time-Series representation learning via Temporal and Contextual Contrasting
UCR University of California, Riverside Time Series Anomaly Archive
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