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ABSTRACT: With the development of economic globalization, distributed manufacturing is becoming more and more
prevalent. Recently, integrated scheduling of distributed production and assembly has captured much concern. This
research studies a distributed flexible job shop scheduling problem with assembly operations. Firstly, a mixed integer
programming model is formulated to minimize the maximum completion time. Secondly, a Q-learning-assisted co-
evolutionary algorithm is presented to solve the model: (1) Multiple populations are developed to seek required decisions
simultaneously; (2) An encoding and decoding method based on problem features is applied to represent individuals;
(3) A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population; (4)
Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;
(5) Three neighborhood structures based on problem features are constructed, and a Q-learning-based iterative local
search method is devised to improve exploitation abilities. The Q-learning approach is applied to intelligently select
better neighborhood structures. Finally, a group of instances is constructed to perform comparison experiments. The
effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without
the Q-learning method. Three renowned meta-heuristic algorithms are used in comparison with the developed
algorithm. The comparison results demonstrate that the designed method exhibits better performance in coping with
the formulated problem.

KEYWORDS: Distributed manufacturing; flexible job shop scheduling problem; assembly operation; co-evolutionary
algorithm; Q-learning method

1 Introduction
Currently, traditional manufacturing modes have been impacted and developed rapidly towards the

direction of distributed production due to the advancement of intellectual technologies [1–3]. Many
enterprises are applying the distributed production mode having multiple factories to actual industrial
manufacturing environments, aiming to achieve the reduction of operation cost and the improvement of
response speed [4]. At the same time, scheduling is widely adopted in distributed manufacturing systems to
efficiently arrange production tasks with limited resources [5].

Nowadays, distributed production scheduling problems are broadly discussed and investigated by
scholars and engineers [6]. Distributed flexible job scheduling problems (DFJSPs), classic distributed
scheduling problems, refer to an extension of flexible job shop scheduling problems to distributed production
environments. In a DFJSP, a collection of jobs necessitates allocation to flexible job shops for processing.
Each flexible job shop contains a group of machines to process the assigned jobs. DFJSPs are widespread
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in actual industry applications, such as building materials equipment manufacturing [7] and food pro-
cessing [8]. Hence, research on modeling and optimization of DFJSPs has become the key content for
manufacturing enterprises.

Furthermore, the overall optimization of supply chains is gradually receiving more and more atten-
tion [9]. Managing various activities in supply chains from the integration perspective is becoming a core
measure of reducing operation costs [10]. In these activities, production and assembly are crucial in the
supply chain. The former involves processing jobs on machines, while the latter is about assembling these
jobs into products. However, the existing studies on integrated scheduling of production and assembly
activities mainly focus on single-factory manufacturing environments [11]. Research on distributed produc-
tion scheduling problems considering assembly operations is lacking, especially in distributed flexible job
shop scenarios.

Consequently, this research studies integrated scheduling problems of production and assembly oper-
ations within distributed flexible job shop environments. Since the NP-hard features of DFJSPs have been
demonstrated [5], the investigated problems are also NP-hard. Therefore, we develop a meta-heuristic
incorporating cooperative evolutionary strategies and Q-learning approaches to handle the investigated
problem. The concrete contributions of this work are given as follows.

(1) A DFJSP with assembly operations is proposed. To handle the problem, a mixed integer programming
model is formulated to minimize maximum completion time (MCT).

(2) A Q-learning-assisted co-evolutionary algorithm (QA-CEA) is devised to solve the model. Multi-
population strategies, crossover approaches, and Q-learning-based local search methods are designed
to improve the performance of QA-CEA. A Q-learning approach is employed to adaptively assist
the best individuals in the population in selecting neighborhood structures for further enhancing
exploitation abilities.

(3) Numerical experiments regarding QA-CEA and three popular meta-heuristics are carried out on
problem instances. Comparison outcomes validate the preeminent performance of QA-CEA in coping
with the researched problem.

The remainder of this work is outlined below. Section 2 provides an overview of relevant stud-
ies. Section 3 gives the statement and model of the studied problem. The designed algorithm is given
in Section 4. In addition, the results and analysis of the comparison experiments are reported in Section 5.
The conclusion and future research are provided in Section 6.

2 Literature Review
Recently, studies regarding distributed production scheduling problems have emerged endlessly. Many

scholars and practitioners in manufacturing and service fields have conducted in-depth discussions on such
issues. Lei et al. [12] consider a distributed parallel machine scheduling problem to reach minimal tardiness
and makespan. An artificial bee colony (ABC) approach is presented to deal with the problem. Bai et al. [13]
study a distributed flow shop scheduling problem (DFSP) considering uniform machines and release dates.
They propose an ABC method to minimize makespan. Pan et al. [14] solve a DFSP to realize minimal
makespan. They design five meta-heuristics, namely genetic algorithm, harmony search, Jaya, ABC, and
particle swarm optimization method. Xie et al. [15] cope with a DFJSP to minimize makespan. A hybrid
approach combining genetic algorithm and tabu search is presented to handle it. Cao et al. [16] propose a
DFJSP to achieve minimal energy consumption (EC) and makespan. A cooperative optimization method
with the inverse model and neighborhood search is employed to solve this problem. Liu et al. [17] focus
on handling a DFSP having blocking constraints. An iterated greedy method is adopted to reach a minimal
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makespan. Yan et al. [18] propose a memetic algorithm (MA) to solve a DFSP, aiming to achieve makespan
and carbon emission minimization. Yu et al. [8] address a DFJSP to realize minimal makespan and EC.
They devise a bi-population evolutionary strategy to handle the problem. Tang et al. [19] study a DFJSP with
sequencing flexibility. An MA is presented to solve the problem. Zhu et al. [5] discuss a DFJSP with order
cancellation. An MA is proposed to realize minimal makespan and EC.

Meanwhile, in the supply chain management field, the current hot topics lie in integrated scheduling
problems of production and assembly. Existing research focuses on production models combined with
assembly operations, such as flow shop [20,21] and job shop [11,22]. Many objectives are considered according
to real problem indicators, including makespan [23,24], total tardiness [25], EC [26], and cost-related
criteria [27]. To effectively handle the problems, various meta-heuristics have been used and improved, e.g.,
MA [28], ABC [26], and teaching-learning-based optimizer [11].

Due to the development of market globalization, research on distributed production processes that
consider assembly operations is also increasing. Wang et al. [29] settle a distributed assembly flow shop
scheduling problem (DAFSP). They use an MA to minimize EC and makespan. Zhao et al. [30] study a
DAFSP considering no-wait constraints. They adopt an iterated greedy approach to minimize flow time. Luo
et al. [31] investigate a DAFSP to minimize total tardiness and EC. An MA is improved to deal with it. Huang
et al. [32] discuss a DAFSP considering an assembly machine. They employ an MA to minimize tardiness.
Shao et al. [33] solve a DAFSP to minimize makespan by using a hyper-heuristic. Tian et al. [34] study a
distributed assembly job shop scheduling problem. They adopt a genetic algorithm to address it.

In addition, reinforcement learning is combined with meta-heuristics to solve complex scheduling
problems since its learning mechanisms contribute to improving the performance of meta-heuristics [35].
Wang et al. [36] propose an ABC based on Q-learning to solve a DAFSP considering factory eligibility,
transport capacity, and setup time. The objectives of this research are to minimize makespan and total
tardiness. Zhang et al. [37] present a Q-learning-based particle swarm optimizer to address a DFSP, aiming
to reach minimal makespan and EC. Yu et al. [38] propose a DAFSP to minimize MCT, earliness, tardiness,
and carbon emission. Five meta-heuristics combined with Q-learning are designed to deal with this problem.
Zhao et al. [39] consider a DFSP with no-wait conditions. An iterative greedy method based on Q-learning
is devised to achieve minimal makespan and total tardiness. Zhang et al. [40] adopt a Q-learning-driven
ABC to handle a DFJSP considering maintenance and transportation operations, aiming to minimize MCT
and factory workload. Chen et al. [41] investigate a dynamic flexible job shop problem having limited
transportation resources. They design a Q-learning-based genetic algorithm to minimize makespan and total
tardiness. Zhang et al. [7] consider a DFJSP to minimize the sum of makespan and EC. A hyper-heuristic
incorporating Q-learning is presented to solve it.

Based on the above work, they share the following features: (1) Distributed scheduling problems have
been widely investigated. Nevertheless, fewer studies consider subsequent assembly operations, especially
the work on DFJSPs. (2) Research on integrated scheduling of production and assembly has attracted
much attention. However, distributed manufacturing scenarios regarding flexible job shops are rarely
considered. (3) Integration methods of meta-heuristics and reinforcement learning are widely adopted to
solve optimization scheduling problems in many studies. A great many numerical experiments indicate that
they have stronger abilities in addressing these problems. According to the analysis, the DFJSP with assembly
operations is ignored in existing studies. Thus, we study such scheduling problems by designing a QA-CEA.
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3 Presented Problem and Model

3.1 Problem Statement
This article investigates a DFJSP with assembly operations. In the first phase, multiple factories operate

in parallel, with each one being regarded as a flexible job shop equipped with a versatile array of multi-
functional machines. A group of jobs necessitates handling within shops, where each job comprises a
series of operations having a given processing sequence. Each operation ought to be handled on one of the
available machines, and all operations of a job are fabricated at the same shop. In the second phase, multiple
assembly machines are utilized. A collection of products requires assembling by using the jobs finished in
the production phase. The objective of solving the problem is to minimize the MCT, i.e., the latest time that
all products are finished for assembly.

To acquire a feasible solution, the following requirements need to be met: (1) At time zero, all machines
are available, and all jobs wait to be processed; (2) A machine is capable of executing at most one operation
at a time; (3) An operation undergoes processing only once; (4) An assembly machine can fabricate at most
one product at a time; (5) A product can be assembled only once; (6) Machine interruption is not allowed in
the two phases.

The considered problem includes five key decisions: (1) Factory assignment of jobs; (2) Machine
assignment of operations at factories; (3) Operation processing sequence; (4) Assembly machine assignment
of products; (5) Product assembly sequence on assembly machines. To visualize the studied problem, a
schematic is provided in Fig. 1, where three products with six jobs need to be handled on a production system
with two factories, two jobs per factory, and two assembly machines.

Figure 1: Illustration of the studied problem

3.2 Model Formulation
To build a mathematical programming model of the investigated problem, this work uses the follow-

ing symbols.
Set and index
F: Set of factories, F = {1, 2, . . . , f }, f indicates the number of factories. g ∈ F, g is a factory index.
M: Set of machines at a factory, M = {1, 2, . . . , m}, m represents the quantity of machines at a factory.

h ∈ M, h is a machine index.
N : Set of products, N = {0, 1, 2, . . . , n}, where 0 indicates a dummy product without assembly time, and

n represents the number of products. i ∈ N , i is a product index.
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J: Set of jobs, J = {0, 1, 2, . . . , j}, where 0 implies a dummy job without processing time, and j indicates
the number of jobs. k ∈ J, k is a job index.

Qk : Set of operations regarding job k, Qk = {1, 2, . . . , qk}, qk signifies the number of operations about
job k. l ∈ Qk , l is an operation index.

V : Set of assembly machines, V = {1, 2, . . . , v}, v represents the number of assembly machines. u ∈ V ,
u is an assembly machine index.

Parameter
Okl : l-th operation of job k.
ηkl hg : If machine h at factory g is one of the available machines in processing Okl , ηkl hg = 1; Otherwise,

ηkl hg = 0.
pkl hg : Processing time of Okl on machine h at factory g.
ξi k : If job k is a component of product i, ξi k = 1; Otherwise, ξi k = 0.
aiu : Assembly time of product i on assembly machine u.
G: A very large number.
Decision variable
Xk g : If job k is allocated to factory g for processing, Xk g = 1; Otherwise, Xk g = 0.
Ykl k′ l ′hg : If machine h at factory g processes Ok′ l ′ immediately after Okl , Ykl k′ l ′hg = 1; Otherwise,

Ykl k′ l ′hg = 0.
Zi i′u : If assembly machine u fabricates product i′ immediately after i, Zi i′u = 1; Otherwise, Zi i′u = 0.
Sα

kl : Production start time of Okl .
Cα

kl : Production completion time of Okl .
Eα

k : Production completion time of job k.

Sβ
i : Assembly start time of product i.

Cβ
i : Assembly completion time of product i.

CM : MCT.
By using the above notations, this research establishes a mixed integer programming model for the

considered problem below.

min CM (1)

s. t.

∑
g∈F

Xk g = 1,∀k ∈ J/{0} (2)

Xk g = ∑
k′∈J
∑

l ′∈Qk′

∑
h∈M

Ykl k′ l ′hg ,∀k ∈ J/{0},∀l ∈ Qk ,∀g ∈ F (3)

∑
k′∈J
∑

l ′∈Qk′

∑
h∈M
∑
g∈F

Ykl k′ l ′hg = 1,∀k ∈ J/{0},∀l ∈ Qk (4)

Ykl k l hg = 0,∀k ∈ J/{0},∀l ∈ Qk ,∀h ∈ M ,∀g ∈ F (5)

∑
k′∈J
∑

l ′∈Qk′

Ykl k′ l ′hg ≤ ηkl hg ,∀k ∈ J/{0},∀l ∈ Qk ,∀h ∈ M ,∀g ∈ F (6)
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∑
k′∈J
∑

l ′∈Qk′

Ykl k′ l ′hg = ∑
k′∈J
∑

l ′∈Qk′

Yk′ l ′k l hg ,∀k ∈ J/ {0} ,∀l ∈ Qk ,∀h ∈ M ,∀g ∈ F (7)

∑
k∈J/{0}

∑
l∈Qk

Y0 l ′k l hg ≤ 1,∀l ′ ∈ Q0,∀h ∈ M , l ′ = h,∀g ∈ F (8)

Sα
kl ≥ Cα

k , l−1 ,∀k ∈ J/{0},∀l ∈ Qk/{1} (9)

Sα
kl ≥ Cα

k′ l ′ +G × (Yk′ l ′k l hg − 1) ,∀k ∈ J/{0},∀k′ ∈ J ,∀l ∈ Qk ,∀l ′ ∈ Qk′ ,∀h ∈ M ,∀g ∈ F (10)

Cα
kl ≥ Sα

kl + pkl hg × Ykl k′ l ′hg ,∀k ∈ J/ {0} ,∀k′ ∈ J ,∀l ∈ Qk ,∀l ′ ∈ Qk′ ,∀h ∈ M ,∀g ∈ F (11)

Eα
k = Cα

kqk
,∀k ∈ J/{0} (12)

∑
i′∈N
∑
u∈V

Zi i′u = 1,∀i ∈ N/{0}, i ≠ i′ (13)

∑
i′∈N

Zi i′u = ∑
i′∈N

Zi′ iu ,∀i ∈ N{0},∀u ∈ V (14)

Z0iu ≤ 1,∀i ∈ N/{0},∀u ∈ V (15)

Sβ
i ≥ Eα

k × ξi k ,∀i ∈ N/{0},∀k ∈ J/{0} (16)

Sβ
i ≥ Cβ

i′ +G × (Zi′ iu − 1) .∀i ∈ N/{0},∀i′ ∈ N ,∀u ∈ V (17)

Cβ
i ≥ Sβ

i + aiu × Zi i′u ,∀i ∈ N/{0},∀i′ ∈ N ,∀u ∈ V (18)

CM ≥ Cβ
i ,∀i ∈ N/{0} (19)

Xk g ∈ {0, 1} ,∀k ∈ J/{0},∀g ∈ F (20)

Ykl k′ l ′hg ∈ {0, 1} ,∀k, k′ ∈ J ,∀l ∈ Qk ,∀l ′ ∈ Qk′ ,∀h ∈ M ,∀g ∈ F (21)

Zi i′u ∈ {0, 1} ,∀i , i′ ∈ N ,∀u ∈ V (22)

Sα
kl ≥ 0, Cα

kl ≥ 0, Cα
0 l = 0, Eα

k ≥ 0, Sβ
i ≥ 0, Cβ

i ≥ 0, Cβ
0 = 0, CM ≥ 0,∀k ∈ J ,∀l ∈ Qk ,∀i ∈ N (23)

where Eq. (1) is to realize minimal MCT. Eq. (2) indicates that each job must be allocated to only one
factory. Eq. (3) guarantees that all operations belonging to a job must be machined within the same
factory. Eqs. (4) and (5) stipulate that an operation ought to be processed on machines only once. Eq. (6)
indicates that each operation can be only handled by the machines that are available for the operation. Eq. (7)
defines that an operation possesses a unique predecessor operation and a unique successor operation. Eq. (8)
implies that each dummy operation possesses at most one successor operation. Eqs. (9) and (10) define the
production start time of operations. Eqs. (11) and (12) give the production completion time of operations and
jobs, respectively. Eq. (13) ensures that a product can be assembled only once. Eq. (14) indicates that a product
has only one predecessor product and one successor product. Eq. (15) signifies that a dummy product has at
most one successor product. Eqs. (16) and (17) define the assembly start time of products. Eq. (18) formulizes
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the assembly completion time of products. Eq. (19) defines the MCT. Eqs. (20)–(23) provide the values of
decision variables.

4 Proposed Algorithm
Drawing inspiration from the co-evolutionary processes found in nature, numerous studies are devoted

to designing various collaborative approaches to further enhance the performance of evolutionary algo-
rithms when tackling intricate engineering optimization challenges [42,43]. The fundamental concept of
co-evolutionary strategies revolves around partitioning a complex system into distinct subsystems, with each
subsystem undergoing independent evolution. Then, the evolved subsystems are combined into a new system
to achieve the goal of overall evolution [44]. By integrating co-evolutionary technologies, meta-heuristics are
empowered to perform more efficient searches. This is because they can simultaneously explore the solution
space for optimal solutions from multiple directions.

Meanwhile, local search methods are widely adopted to further improve the exploitation abilities [40].
Moreover, Q-learning, one of the most well-known reinforcement learning methods, is widely utilized to
assist meta-heuristics in selecting search strategies and user parameters to enhance algorithms’ perfor-
mance [41]. Thus, a Q-learning-based iterative local search method is designed to refine individuals. Then,
a co-evolutionary algorithm combined with it (QA-CEA) is developed to deal with the problem under
consideration. Among them, multiple populations are established according to production decisions. Each
population independently evolves to search for better decisions. Finally, the optimal solution to the studied
problem is derived by integrating individuals in multiple populations. The introduction of QA-CEA is
provided as follows.

4.1 Encoding and Decoding Methods
This research employs an integer string π = (πF , πM , πO) with three substrings to represent a solution.

πF = (πF
1 , πF

2 , . . . , πF
j ) denotes the factory allocation of jobs, and πF

k indicates a factory index assigned to job
k. πM = (πM

1 , πM
2 , . . . , πM

j ) implies the machine assignment of operations, πM
k = (π

M
k1 , πM

k1 , . . . , πM
kqk
) denotes

the machine assignment as regards all operations belonging to job k, and πM
kl refers to a machine index to

which operation Okl is arranged. πO = (πO
1 , πO

2 , . . . , πO
s ) represents the processing sequence of operations,

and s indicates the total quantity of operations about all jobs. Each element represents a job index, and the
number of occurrences of a job index signifies the corresponding operation respecting this job.

Fig. 2 showcases an illustrative example of the encoding method. πF represents that jobs 1, 2, and 3 are
severally assigned to factories 1, 1, and 2 for processing. From πM , it is found that O11 and O12 are respectively
arranged to be handled on machines 1 and 2. πO depicts that O31 is arranged to machine 2 in factory 2
for fabricating at first, and then O11 is arranged to machine 1 in factory 1 for performing. In this way, all
production decisions can be obtained. Once the production decisions have been made, the decisions in the
assembly phase are determined by a designed decoding approach as mentioned later. Thus, all the decisions
regarding the problem under consideration are obtained.

It is noteworthy that the aforementioned encoding methodology solely encapsulates the decisions
pertinent to the production phase, and the decisions about the assembly phase are not explicitly derived.
Thus, this research meticulously crafts a decoding approach as follows: (1) When jobs are processed in
production factories, a left shift method is adopted [45] to reduce idle time; (2) In the assembly phase,
a product is assembled once its involved jobs finish being handled in the production phase, and the
assembly start time for a given product is equal to the latest production completion time of all jobs that
constitute the particular product. Based on the above method, a solution can be directly decoded into an
executable program.
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Figure 2: Illustration of the encoding method

4.2 Population Initialization
The encoding scheme comprises three substrings, each one corresponds to a distinct decision. To tackle

these decisions individually, this work introduces three populations: PF , PM , and PO . Each population is
dedicated to exploring one of the decisions. PF aims to search for a better factory allocation of jobs, where
each individual is linked to πF in π.PM focuses on obtaining a preferable machine arrangement of operations,
where each individual corresponds to πM in π. PO focuses on finding a superior operation processing
sequence, where each individual is related to πO in π.

To produce populations with diverse and high-quality characteristics, this research employs a blend of
heuristic rules and stochastic methods to initialize populations with individuals. The combination method
is offered below.

In PO , the first two individuals are generated using the most work remaining and most operation
remaining [46] rules, respectively. The remaining individuals are created by using random methods. In PF ,
we adopt an NR1 rule [47] to produce the first two individuals, and randomly generate the rest individuals.
In PM , the first two individuals are created by employing the minimum completion time and operation
minimum processing time [46] rules, respectively. The remaining individuals are generated at random. Based
on the above methods, we can generateN individuals for the three populations, respectively, whereN denotes
the population size.

It is noteworthy that a solution is made up of three components. Each component corresponds to an
individual in each population. To assess the effectiveness of individuals across these three populations, we
select individuals with the same indices from PF , PM , and PO to form a solution. Importantly, the objective
value of this constructed solution is identical to the objective values achieved by the individuals themselves.

4.3 Evolutionary Strategies
In QA-CEA, genetic operations are used as evolutionary strategies to achieve independent evolution of

populations. The specific process is described as follows.

(1) Evolutionary strategies of PF : (a) A binary selection method [48] is adopted to select two individuals
from PF as parent individuals. (b) A two-point crossover [49] method is employed to create new
individuals. It randomly selects two positions on πF . The elements between two positions in the
new individual come from one parent individual, and the remaining elements are from the other parent
individual. (c) A mutation strategy with a probability of σ is applied, randomly chooses a job, and
alters its factory index in πF . Notably, the best-performing individual is directly propagated to the
next generation, and the aforementioned process is utilized to create the remaining N − 1 individuals.
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In addition, an example is used to illustrate the crossover method and mutation strategy as shown in
Fig. S1a in the Supplementary File.

(2) Evolutionary strategies of PM : (a) The same parent individual selection approaches as evolutionary
strategies of PF are used. (b) A uniform crossover method [50] is used to create new individuals. A
binary string is produced. If the corresponding numbers of elements in new individuals are zero, they
are derived from one parent individual; Conversely, they are derived from the other parent individual.
(c) A mutation approach having probability σ is executed. It randomly chooses an operation and adjusts
its machine index in πM . The generation method of the new population is the same as the evolutionary
strategies of PF . To better explain the crossover method and mutation strategy, this work provides an
example as reported in Fig. S1b in the Supplementary File.

(3) Evolutionary strategies of PO : (a) The same parent individual selection approaches as evolutionary
strategies of PF are adopted. (b) A precedence operation crossover [51] method is employed to create
new individuals. It randomly generates a job set, and elements in new individuals in the set are inherited
from one parent individual in the same position. The remaining elements come from the other parent
individual in the corresponding order. (c) A mutation approach with probability σ is used. It randomly
selects two operations and exchanges their positions on πO . The construction method of the new
population adheres to the same evolutionary strategies employed in PF . This work offers an example
to explain the evolutionary strategies, as given in Fig. S1c in the Supplementary File.

4.4 Q-Learning-Assisted Iterative Local Search
This work designs a Q-learning-assisted iterative local search method to improve the best solution

identified during the historical search procedure, aiming to further enhance the exploitation capabilities of
QA-CEA. The specific description is offered as follows.

4.4.1 Neighborhood Structures
Based on the characteristics of the problem under study, this research proposes a concept of critical

products and jobs to further explore the problem’s knowledge. The critical product refers to the last product
that has idle time before being assembled on the last completed machine in the assembly phase. The critical
jobs are all the jobs that constitute the critical product. Fig. 3 gives an illustration of critical products and
critical jobs. It is seen that the critical product is product 1, and the critical jobs are jobs 1 and 2. Adjusting
the factory allocation, machine arrangement, and processing sequence of the critical jobs is likely to change
the MCT of a solution.

Based on this, this work devises three neighborhood structures as follows:
L1: Select a critical job at random and change its factory index in πF .
L2: Choose an operation of a critical job randomly and change its machine index in πM .
L3: Select an operation of a critical job, and swap it with a randomly chosen operation in πO .

4.4.2 Q-Learning-Assisted Selection of Neighborhood Structures
To intelligently help the best solution to select neighborhood structures, a Q-learning method is adopted

by utilizing historical search information at each iteration. Currently, the Q-learning methods are widely used
in combination with meta-heuristics to improve their search abilities [39]. The Q-learning method mainly
includes five parts: agents, states, actions, reward value, and Q-table. In QA-CEA, the introduction of the
Q-learning method is given as follows.
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Figure 3: Illustration of the critical product and critical jobs

(1) Agent and state
In this work, the best solution at each iteration is regarded as an agent since it can directly reflect the

effectiveness of neighborhood structures. Based on the difference between the objective values of the best
solution πb and a new solution πn obtained by using a selected neighborhood structure, we define three states:
ΔO > 0, ΔO = 0, and ΔO < 0, which are indexed as 1, 2, and 3, respectively. Thereinto, ΔO = O (πb) −O(πn),
where O(πb) and O (πn) represent the objective values of πb and πn , respectively.

(2) Action
This work designs three actions in QA-CEA, which are named actions 1, 2, and 3, respectively. Each

action corresponds to a neighborhood structure, i.e., actions 1, 2, and 3 are associated with L1, L2, and L3,
respectively. In addition, an ε-greedy method [52] is adopted to help the agent select a promising action at
each local search iteration. If a random number from an interval [0, 1] is less than ε, the agent randomly
selects an action, and otherwise it selects an action having the maximal Q value in the current state from the
Q table. In QA-CEA, ε is set to 0.1.

(3) Reward value
After performing an action, the agent will receive a reward value. According to the definition of states,

we find that state 1 is the best since the new individual is better than the original individual. On the contrary,
state 3 is the worst. Therefore, this research proposes a reward function based on state changes, which is
defined as follows.

rt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

st−1 − st , st < st−1

(S − st) /2, st = st−1

0, other
(24)

where the symbols “S” and “st” indicate the number of states and the agent state at the t-th local
search iteration, respectively. rt represents the reward value obtained by the agent after the chosen action
is performed.
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(4) Q-table update
The Q value in the Q-table is used to store the search information after reward values are acquired during

the iteration process. In QA-CEA, the updated equation of the Q-table is provided as follows.

Q (st , at) ← Q (st , at) + α × (rt + γ ×max {Q (st+1 , a)} − Q (st , at)) (25)

where the symbol at indicates the chosen action of an agent at the t-th local search iteration.
max {Q (st+1 , a)} implies the maximum Q value in the Q-table at st+1. The symbols α and γ represent the
learning rate and discount factor, respectively. It is noteworthy that all elements within the Q-table are
initialized with a value of zero.

4.4.3 Local Search Methods
This work designs a Q-learning-assisted iterative local search (ILS) method to improve the best solution

at each iteration. The pseudo-code of ILS is shown in Algorithm S1 in the Supplementary File, where μ is a
given parameter.

4.5 Framework of the Proposed Algorithm
All the components of QA-CEA are described above. To illustrate their execution methods, we provide a

flowchart of QA-CEA as shown in Fig. 4. The concrete procedure is as follows. First, all algorithm parameters
and populations are initialized. Second, the following processes are looped: (1) The evolutionary strategies
based on crossover and mutation operations are conducted to update populations; (2) The Q-learning-
assisted ILS approach is performed to enhance the best individual. Finally, if a given stopping condition is
satisfied, the best solution is output.

Figure 4: Flowchart of QA-CEA

5 Experiment Results and Discussions
To evaluate QA-CEA’s effectiveness in tackling the considered problem, comparison experiments are

conducted on a set of instances. Three advanced metaheuristics are chosen from existing literature as
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competitive algorithms, namely, hybrid genetic algorithm (HGA) [53], hybrid teaching-learning-based
optimization (HTLBO) [54], and improved gray wolf optimization (IGWO) [55], respectively. All the
approaches are coded in C++ and executed on computers equipped with an Intel Core i5-8265U CPU @
1.60 GHz processor and 8 GB of RAM.

5.1 Problem Instance Generation
To test the capacities of the QA-CEA in working out the studied problem, this work constructs a group

of instances as shown in Table S1 in the Supplementary File. The number of jobs, job processing time, and the
number of machines at factories come from flexible job shop scheduling problems of the Hurink, Jurisch &
Thole benchmark [56]. The quantity of jobs, machines, and factories belong to {20, 40, 60, 80, 100}, {5, 10},
{2, 3, 4}, respectively. Furthermore, the number of products is equal to 0.3 ∗ j. The quantity of assembly
machines is from roundup(0.2 ∗ n), where roundup(X) is the largest integer close toX. The assembly time of
products is uniformly generated from an interval [1, 99]. Through the above approaches, this work establishes
30 instances named “DPSAab”, where “ab” indicates an instance index.

5.2 Performance Metrics
In the following comparisons, this article uses the maximum running time of 1.5 ⋅m ⋅ j s as the

termination criteria for all the used methods. Each instance is handled independently 20 times. We use the
relative percentage deviation (RPD) to evaluate the results of QA-CEA and its peers, and the computation
equation is given below.

RPD =
Cλ

M − C∗M
C∗M

× 100% (26)

The symbol C∗M represents the best objective value received by QA-CEA and its rivals, and Cλ
M denotes

the objective value obtained by the method at the λ-th run. Subsequently, the average RPD (aRPD), the best
RPD (bRPD), and the standard deviation of RPD (sRPD) are computed across all instances. The smaller
values of aRPD, bRPD, and sRPD indicate the superior abilities of the respective method.

5.3 Parameter Setting
To investigate the impact of parameters N, σ , μ, α, and γ on the performance of QA-CEA, Taguchi

experiment methods [57] are conducted on the instance DPSA15. Each parameter encompasses four
distinct levels: N ∈ {30, 50, 70, 90}, σ ∈ {0.1, 0.2, 0.3, 0.4}, μ ∈ {10, 15, 20, 25}, α ∈ {0.2, 0.4, 0.6, 0.8}, and γ ∈
{0.2, 0.4, 0.6, 0.8}. Thus, we adopt an orthogonal array L16(45) with 16 parameter combinations. For every
combination of parameters, QA-CEA is executed 20 times for solving this instance. The stopping condition
for each run is set to 1.5 ⋅m ⋅ j s. The objective value functions as the response variable (RV), with the average
of the 20 executions serving as the average RV (ARV). All the parameter combinations alongside their
respective outcomes are reported in Table S2 in the Supplementary File.

Table S3 provides the significance level of parameter combinations. It is observed that N possesses
the strongest impact on the solving abilities of QA-CEA, followed by σ , μ, γ, and α. The impact trends
of each parameter are illustrated in Fig. S2 in the Supplementary File. It is found that a better parameter
combination of QA-CEA is: N = 30, σ = 0.1, μ = 15, α = 0.6 and γ = 0.8. This combination will be used in
subsequent experiments.

Furthermore, to show the structure and direct result of DFJSP with assembly operations more clearly,
a Gantt chart of results obtained by QA-CEA solving instance DPSA01 is provided as reported in Fig. 5.
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DPSA01 has two factories, five processing machines per factory, 20 jobs, five operations per job, two assembly
machines, and six products. In Fig. 5, jobs with the same color markings at processing factories are assembled
into products with the same color markings at an assembly factory. It is seen that the MCT of the schedule
is 750.

Figure 5: Gantt chart of results regarding DFJSP with assembly operations

5.4 Effectiveness of Q-Learning Approaches
This research uses a Q-learning approach to enhance the performance of QA-CEA. To validate the

efficacy of the Q-learning approach, this article devises a variant of QA-CEA (named CEA) which randomly
selects a neighborhood structure for the best solution in the local search phase. The 15 instances having
different sizes are employed to perform the comparison experiments between QA-CEA and CEA.

The comparison results of QA-CEA and CEA in metrics aRPD, bRPD, and sRPD are reported in Table
S10 in the Supplementary File. QA-CEA achieves better results than CEA in solving the used instances.
Meanwhile, the t-test method at a significance level of 0.05 with a freedom degree of 38 [40] is used to
analyze comparison results. The symbols “+”, “~”, and “−” indicate that QA-CEA is significantly better than,
statistically equal to, and significantly worse than CEA. It is seen that QA-CEA is significantly better than
CEA in most instances. Thus, it is declared that the incorporation of the Q-learning approach significantly
contributes to enhancing the performance of QA-CEA in handling the targeted problem.

5.5 Comparisons between QA-CEA and Its Rivals
This work selects three well-known meta-heuristics, i.e., HGA, HTLBO, and IGWO, as competitive

methods to test the performance of QA-CEA for the studied problem. In their original work, the three
methods are adopted to solve DFJSPs. Meanwhile, the same solution representation approaches with
QA-CEA are used. Therefore, they can be straightforwardly extended to handle the considered problem.
Consequently, this research chooses them as competitive methods. To ensure the fairness of comparison
experiments, we perform the Taguchi experiments to meticulously adjust the user parameters of the rival
methods. The exhaustive experimental outcomes are appended in the Supplementary File, while the finalized
parameter configurations are clearly outlined in Table 1.

The comparison outcome of QA-CEA and its rivals is given in Table S11 in the Supplementary File. In
terms of metrics aRPD, bRPD, and sRPD, we see that QA-CEA beats HGA, HTLBO, and IGWO in most
instances. It is discovered that QA-CEA realizes better results than HGA, HTLBO, and IGWO in general.
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The average of aRPD, bRPD, and sRPD values in all the instances, we find that QA-CEA obtains smaller
values than its comparison algorithms. Therefore, we deduce that QA-CEA is an excellent solver.

Table 1: Parameter settings of competitive methods

Algorithm Parameter setting
HGA Population size: 70; Mutation rate: 0.05.

HTLBO Population size: 70; Local search times: 10; Population initialization ratio: 0.8.
IGWO Population size: 90; Local search times: 8; Leader ratio: 0.05.

Subsequently, we provide the boxplot graphs of four instances with several scales as shown in Fig. 6. It
is seen that QA-CEA has more stable and centralized results than its competitors. Therefore, we confirm that
QA-CEA is more suitable to settle the studied problem.

Figure 6: Boxplot graphs of instances regarding QA-CEA and the peers

In addition, this work adopts the t-test, Friedman test [40], and Nemenyi posthoc test [44] approaches to
analyze the statistical difference in results obtained by the four methods. The detailed analysis and discussion
are given as follows.
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(1) The t-test results are reported in Table S11 in the Supplementary File. We see that QA-CEA is
significantly superior to HGA and HTLBO in all 30 instances, and significantly superior to IGWO in most
instances. (2) The Friedman test at a significance level of 0.05 for aRPD values is adopted. The statistic
outcomes are offered in Table S11 in the Supplementary File, and the average ranks are given in Fig. 7. We
can find that the average ranks of QA-CEA, HGA, HTLBO, and IGWO are 1.0667, 3.9000, 3.1000, and
1.9333, respectively. The p-value is 0.0000, signifying that the outcomes acquired by the four algorithms are
significantly different. (3) The Nemenyi posthoc test at a significance level of 0.05 is adopted to scrutinize the
performance disparities between QA-CEA and its competitors. Based on Table S11 in the Supplementary File,
we see that the average rank differences between QA-CEA and HGA, HTLBO, and IGWO are respectively
2.8333, 2.0333, and 0.8666, all exceeding the critical range value of 0.8563. It is manifested that QA-CEA is
significantly better than its competitors.

Figure 7: Average ranks of four algorithms

6 Conclusions and Future Research
This article presents distributed flexible job scheduling problems with assembly operations to minimize

the MCT. To address the problem, this article formulates a mixed integer programming model. Then, this
article proposes a Q-learning-assisted co-evolutionary algorithm to deal with the model. The developed
algorithm mainly consists of specific solution representation, population initialization methods, crossover
approaches, and local search methods based on Q-learning. To evaluate the performance of the developed
algorithm, comparison experiments are carried out, and three popular meta-heuristics are chosen for
comparisons. The results obtained underscore the remarkable abilities of the designed algorithm in coping
with the considered problem. This research not only enriches the theoretical framework of integrated
scheduling of production and assembly but also provides assistance for producers in making production and
assembly scheduling decisions.

The future research will focus on the following points: (1) Considering more practical operations in
supply chains based on the developed model, such as inventory and distribution; (2) Designing more effective
methods integrating meta-heuristics with reinforcement learning techniques to tackle the studied problems.
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