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ABSTRACT: In this study, a completely different approach to optimization is introduced through the development of a
novel metaheuristic algorithm called the Barber Optimization Algorithm (BaOA). Inspired by the human interactions
between barbers and customers, BaOA captures two key processes: the customer’s selection of a hairstyle and the
detailed refinement during the haircut. These processes are translated into a mathematical framework that forms
the foundation of BaOA, consisting of two critical phases: exploration, representing the creative selection process,
and exploitation, which focuses on refining details for optimization. The performance of BaOA is evaluated using 52
standard benchmark functions, including unimodal, high-dimensional multimodal, fixed-dimensional multimodal,
and the Congress on Evolutionary Computation (CEC) 2017 test suite. This comprehensive assessment highlights
BaOAs ability to balance exploration and exploitation effectively, resulting in high-quality solutions. A comparative
analysis against twelve widely known metaheuristic algorithms further demonstrates BaOA’s superior performance, as
it consistently delivers better results across most benchmark functions. To validate its real-world applicability, BaOA is
tested on four engineering design problems, illustrating its capability to address practical challenges with remarkable
efficiency. The results confirm BaOAs versatility and reliability as an optimization tool. This study not only introduces
an innovative algorithm but also establishes its effectiveness in solving complex problems, providing a foundation for
future research and applications in diverse scientific and engineering domains.

KEYWORDS: Optimization; metaheuristic; barber; hairstyle; human-based algorithm; exploration; exploitation

1 Introduction

Optimization is a fundamental concept in mathematics and various applied sciences, representing
problems where more than one feasible solution exists. In these cases, the task is to identify the best
solution among all available options. An optimization problem is characterized by having at least two feasible
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solutions, but it may also have an infinite number of feasible solutions. The systematic process of determining
an optimal solution is known as optimization [1]. These problems can be formulated mathematically using
three critical components: decision variables, constraints, and objective functions. The primary aim of
optimization is to find the values of the decision variables that satisfy the constraints while optimizing the
objective function [2]. Approaches to solving optimization problems generally fall into two broad categories:
deterministic and stochastic methods [3].

Deterministic approaches, further subdivided into gradient-based and non-gradient-based methods,
demonstrate efficiency in solving problems that are linear, convex, continuous, and differentiable. However,
as optimization problems become increasingly complex, involving nonlinear, nonconvex, discontinuous,
and high-dimensional features, deterministic approaches often fail. These methods may become trapped in
unsuitable local optima, rendering them ineffective for practical applications [4]. The inherent limitations
of deterministic methods, combined with the complexity of many real-world optimization challenges, have
necessitated the development of stochastic approaches [5].

Among the stochastic methods, metaheuristic algorithms have gained significant popularity due to their
ability to tackle complex optimization problems. These algorithms employ random search techniques within
the solution space and utilize random operators to enhance their performance. Metaheuristic algorithms are
inspired by various sources, such as nature, physics, human behavior, etc. For example, the Orangutan Opti-
mization Algorithm (OOA) is a nature-inspired metaheuristic that mimics orangutans’ foraging and nesting
behaviors, ensuring an efficient exploration and exploitation for engineering optimization problems [6].
The Artificial Satellite Search Algorithm (ASSA) is a physics-based algorithm that mimics satellite motion,
utilizing orbit control and quantum computing for an improved exploration and efficiency [7]. Inspired by
human behavior, Enterprise Development Optimization (EDO) is a metaheuristic algorithm inspired by
enterprise development, integrating tasks, structure, technology, and human interactions with an activity-
switching mechanism for solution updates [8]. Other recently published metaheuristic algorithms include
Tactical Flight Optimizer (TFO) [9], Paper Publishing Based Optimization (PPBO) [10], and Revolution
Optimization Algorithm (ROA) [11].

Metaheuristic algorithms, including improved, hybrid, and integrated variations, have gained signif-
icant traction in solving complex real-world problems across a wide range of fields. These algorithms are
particularly valuable in optimization tasks, where traditional methods may fail due to the high computational
complexity or nonlinearity of the problem [12]. One of the most prominent applications of metaheuristics
is in engineering optimization, where they are used to design structures, optimize manufacturing processes,
and improve product quality [13]. In the energy sector, metaheuristics have been employed in power genera-
tion and distribution systems [14]. Hybrid algorithms that combine features of different metaheuristics, have
been used for an optimal placement of distributed generation sources in electrical grids, improving efficiency
and reducing operational costs [15]. Transportation and logistics industries also benefit from metaheuristics
in vehicle routing, scheduling, and traffic management [16]. Metaheuristic algorithms like ACO, PSO,
GA, and SA, when integrated with the adaptive neuro-fuzzy inference system (ANFIS) in the AnFiS-
MoH framework, significantly enhance parameter tuning and improve the accuracy and generalization
of models for complex, high-dimensional, nonlinear problems, demonstrating their practical utility [17].
In summary, metaheuristic algorithms, especially their improved and hybrid forms, offer a flexible and
powerful approach to solving real-world optimization problems across various industries, demonstrating
their practical relevance and adaptability [18].

Metaheuristic algorithms are widely appreciated for their simplicity, ease of implementation, and

efficiency in addressing nonlinear, discontinuous, and NP-hard problems. They also perform well in
unknown and nonlinear search spaces [19]. The optimization process in metaheuristic algorithms begins by
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generating a random set of candidate solutions that adhere to the given constraints. Through iterative update
mechanisms, these candidate solutions are progressively refined. At the end of the algorithm’s execution, the
best candidate is presented as a near-optimal solution to the problem [20]. While metaheuristic algorithms
do not guarantee global optima due to their stochastic nature, the solutions they generate are typically close
to the global optimal solution, making them suitable for practical applications.

For metaheuristic algorithms to be effective, they must exhibit robust global and local search capabilities.
Global search, or exploration, enables the algorithm to identify promising regions within the search space and
avoid being trapped in suboptimal solutions. Conversely, local search, or exploitation, allows the algorithm
to thoroughly examine promising regions to converge towards the global optimum [21]. The success of
metaheuristic algorithms hinges on their ability to balance exploration and exploitation throughout the
optimization process [22].

Different metaheuristic algorithms employ varying strategies for exploration and exploitation, leading
to diverse performances across the same optimization problem. The quest for more effective solutions has
driven researchers to develop numerous metaheuristic algorithms.

A critical research question in the field of metaheuristic algorithms is whether the introduction of new
algorithms is still necessary, given the plethora of existing methods. The No Free Lunch (NFL) theorem [23]
provides insight into this question by stating that no single algorithm can outperform all others across every
optimization problem. Consequently, the effectiveness of a metaheuristic algorithm for one problem does
not guarantee its success for another one. This theorem underscores the importance of continued innovation
in designing new algorithms to address the unique challenges of diverse optimization problems.

In this context, this paper introduces an innovative metaheuristic algorithm, the Barber Optimization
Algorithm (BaOA), inspired by the dynamic interactions between a barber and their customer. The BaOA
draws fundamental inspiration from the processes of selecting and refining a hairstyle during a haircut.
This concept is mathematically modeled in two key phases: exploration and exploitation, which simulate the
interactions between the barber and the customer.

The BaOA’s effectiveness is evaluated using 52 benchmark functions, including unimodal, high-
dimensional multimodal, fixed-dimensional multimodal ones, and the CEC 2017 test suite. Furthermore,
its performance is compared against 12 well-established metaheuristic algorithms. Additionally, the BaOA's
capabilities in solving real-world optimization problems are demonstrated through four engineering design
case studies.

Accordingly, the key contributions of this research can be described in completely different and more
detailed terms as follows:

o The Barber Optimization Algorithm (BaOA) draws inspiration from the intricate human interac-
tions observed between a barber and a customer, emphasizing their dynamic relationship during the
haircut process.

o The fundamental basis of BaOA originates from two key processes: the customer’s selection of a desired
hairstyle and the refinement or correction of hairstyle details during the haircut, simulating real-world
decision-making and problem-solving behaviors.

o The theoretical structure of BaOA is comprehensively articulated and mathematically formulated
to represent two distinct phases: exploration, which mimics the creative selection of solutions, and
exploitation, which focuses on refining and improving the selected solutions to achieve optimal results.

o BaOAs effectiveness is extensively evaluated using a completely diverse set of fifty-two benchmark func-
tions. These include unimodal functions for testing convergence speed, high-dimensional multimodal
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functions for global search capability, fixed-dimensional multimodal functions for specific challenges,
and the comprehensive CEC 2017 test suite for advanced performance analysis.

o The algorithm’s results are rigorously compared against the performance of twelve widely recognized
metaheuristic algorithms, showcasing BaOA’s superior ability to solve optimization problems and its
competitive edge in achieving better solutions.

Finally, BaOAS capability to address real-world challenges is validated by applying it to four distinct engi-
neering design problems, demonstrating its practicality and versatility in solving complex optimization
applications across various domains.

The remainder of this paper is structured as follows: Section 2 presents a comprehensive literature
review. Section 3 introduces and mathematically models the proposed BaOA approach. Section 4 discusses
simulation studies and results. Section 5 evaluates the BaOAs performance in real-world applications.
Finally, Section 6 provides some conclusions and suggestions for future research directions.

2 Literature Review

Metaheuristic algorithms have emerged as powerful computational tools inspired by a wide array of
completely different and intriguing phenomena observed in nature, science, and human behavior. These
algorithms draw inspiration from diverse sources, including the complex dynamics of natural phenomena,
the organized and collective behavior of animals, the intricate mechanisms of biological processes, the
fundamental laws governing physics, strategic principles derived from games, and even the rich spectrum of
human interactions and cultural practices. Each source offers unique insights and methodologies for solving
challenging optimization problems across various domains.

To better understand their underlying principles, metaheuristic algorithms are categorized into four
distinct groups based on the foundational ideas they emulate.

Swarm-based metaheuristic algorithms are completely different from other groups, as they are inspired
specifically by swarming phenomena and collective behaviors observed in the natural life of animals, aquatic
creatures, insects, reptiles, plants, and various other living organisms. Some of the most prominent and
widely used swarm-based metaheuristic algorithms include Particle Swarm Optimization (PSO) [24], Ant
Colony Optimization (ACO) [25], the Artificial Bee Colony (ABC) [26], and Firefly Algorithm (FA) [27].
PSO’s fundamental concept is derived from the coordinated swarm movement of birds and fish as they
search for food sources. Similarly, ACO is inspired by the remarkable ability of ants to find the shortest
communication path between their nest and food sources. In the case of ABC, the foraging activities of
honey bee colonies have been the core inspiration, while the optical communication observed among fireflies
has influenced the design of FA. The hunting strategies, foraging, and migratory behaviors commonly
observed in wildlife have inspired the development of several other swarm-based algorithms, such as the
Emperor Penguin Optimizer (EPO) [28], the Reptile Search Algorithm (RSA) [29], Grey Wolf Optimization
(GWO) [30], the Tunicate Swarm Algorithm (TSA) [31], the White Shark Optimizer (WSO) [32], the African
Vultures Optimization Algorithm (AVOA) [33], and the Marine Predators Algorithm (MPA) [34] which
further demonstrate the diversity of swarm-based algorithms.

Evolutionary-based metaheuristic algorithms are fundamentally different in their inspiration, as they
are based on biological sciences, genetic processes, and the principles of natural selection and survival of the
fittest. These algorithms often simulate evolutionary concepts to solve optimization problems. Two of the
most notable evolutionary-based algorithms are a Genetic Algorithm (GA) [35] and Differential Evolution
(DE) [36]. The design of GA and DE incorporates elements such as reproduction, genetic inheritance,
Darwinian evolutionary theory, and stochastic operators like selection, crossover, and mutation. Other
examples in this category include Genetic Programming (GP) [37], the Cultural Algorithm (CA) [38],
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the Artificial Immune System (AIS) [39], the Evolution Strategy (ES) [40], and the Biogeography-based
Optimizer (BBO) [41]. These algorithms provide unique frameworks to address optimization challenges by
mimicking the complex mechanisms of evolution and natural adaptation.

Physics-based metaheuristic algorithms, as their name suggests, are derived from completely different
sources of inspiration—namely, the fundamental laws, phenomena, transformations, and forces in physics.
Simulated Annealing (SA), one of the most prominent physics-based algorithms, takes its cue from the
process of annealing metals, where a controlled cooling process enables the material to reach a state
of minimal energy and maximum structural integrity [42]. Various physical forces have inspired other
algorithms, such as the Spring Search Algorithm (SSA) based on tensile force of springs [1], which draws
on the tensile force of springs, and the Gravitational Search Algorithm (GSA) [43] models the gravitational
pull as a means of guiding optimization. Furthermore, cosmological concepts play a significant role in
algorithms like cosmological concepts are employed in the design of algorithms such as the Galaxy-based
Search Algorithm (GbSA) [44], Black Hole (BH) [45], and the Multi-Verse Optimizer (MVO) [46]. Other
physics-based algorithms include the Artificial Chemical Reaction Optimization Algorithm (ACROA) [47],
the Small World Optimization Algorithm (SWOA) [48], the Ray Optimization (RO) [49] algorithm, and the
Magnetic Optimization Algorithm (MOA) [50]. These algorithms reflect the application of physical theories
to computational problem-solving.

Human-based metaheuristic algorithms are entirely different in their foundation, as they are inspired by
human thoughts, interactions, and social dynamics. Teaching-Learning Based Optimization (TLBO) [51] is
perhaps the most well-known example, modeled after the knowledge transfer between teachers and students
in an educational setting. The Mother Optimization Algorithm (MOA) is a novel human-based metaheuristic
approach that draws inspiration from the nurturing relationship between Eshra’s moher and her children,
simulating the phases of education, advice, and upbringing to guide the optimization process [52]. Other
examples include Brain Storm Optimization (BSO) [53] and War Strategy Optimization (WSO) [54].

Despite the extensive diversity of inspirations, a completely different approach has yet to be explored:
designing a metaheuristic algorithm based on the dynamic interactions between a barber and a customer
in a barbershop. Activities such as selecting a hairstyle, making detailed adjustments, and finalizing the
haircut represent intelligent and iterative processes with significant potential for computational modeling.
This research paper addresses this gap by presenting a novel human-based metaheuristic algorithm inspired
by the mathematical modeling of barber-customer interactions, as elaborated in the subsequent section.

3 Barber Optimization Algorithm

In this section, the newly developed Barber Optimization Algorithm (BaOA) is comprehensively
introduced, and its underlying mathematical framework is elaborated in detail.

3.1 Inspiration

Hairstyles and haircuts have been an important part of the tradition and culture of societies since ancient
times. Photographs, texts, and descriptions indicate that over the centuries, women’s and men’s hair has been
seen in various ways, such as curled, styled, arranged, and colored, or even enhanced by the use of wigs [55].
This shows that barbering is a long-standing profession that has a special impact on people’s culture. People
are looking for a skilled barber to provide various hairdressing services to customers based on their needs,
tastes and preferences. When the customer visits the barbershop, she/he asks the barber to suggest several
suitable hairstyles so that he can choose one among them. It is also possible that the customer has already
chosen a hairstyle and asks the barber to use that hairstyle for her/him. After the customer chooses a hairstyle,
the barber starts her/his work and cuts the hair according to the hairstyle. In the second step, during the
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haircut, the customer pays attention to the details of the hairstyle and asks the barber to apply corrections to
make the hairstyle more attractive. Therefore, the barber must be able to establish a strong relationship with
the customer and follow the customer’s instructions to perform the desired hairstyle on the customer’s hair.

The inspiration behind BaOA lies in the intelligent decision-making process involved in hairstyling.
The algorithm models the two key stages of hairstyling—initial selection and refinement—as exploration
and exploitation phases in the optimization. By formalizing these human-driven selection and refine-
ment processes, BaOA introduces a novel approach that aligns intuitive decision-making with systematic
search mechanisms.

Among the human interactions between the barber and the customer, (i) choosing a hairstyle by the
customer and (ii) correcting the details of the hairstyle during the haircut are the most prominent intelligent
processes. A mathematical modeling of these intelligent behaviors is employed in the BaOA design, which is
discussed below. These processes are translated into computational operations to enhance BaOA's efficiency
in solving optimization problems, as elaborated in the following sections.

3.2 Initialization

The proposed BaOA operates as a population-based optimization algorithm, utilizing iterative processes
to identify optimal solutions within a problem space. Each BaOA member represents a potential solution,
modeled mathematically as a vector. The dimensionality of this vector corresponds to the number of decision
variables in the problem, with each element representing a specific variable.

Collectively, the BAOA members form a population represented by a matrix, initialized randomly at the
start of the algorithm. This initialization adheres to Eqs. (1) and (2):

){1 x},l x%,j xl',m
X = X, _ x;-,l x;.,j xl-:,m , )
Xixij=1bj+r-(ubj—1b;), i=12,...,N, j=L2,...,m, 2)

where X is the population matrix of the proposed BaOA, N is the number of population members, m is the
number of decision variables, X; is the ith candidate solution, x;, jisits j-th variable, r is a random number
in the interval [0,1], [b; is a lower bound, and ub; is an upper bound on the j-th decision variable.

The objective function values of the problem are evaluated for all BAOA members, forming a vector as
shown in Eq. (3):

F F(Xl)
F-|F | =|Fx)| ®)

Ey Nx1 F(Xn) Nx1

where F is the vector of the objective function values and F; is the objective function value for the i-th
candidate solution.
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The algorithm identifies the best and worst members based on their respective objective function values.
Iteratively, the BaOA population undergoes updates through two distinct phases: exploration and exploita-
tion, which are modeled mathematically based on barber-customer interactions. The initialization process
ensures a diverse population, thereby preventing premature convergence and improving the robustness of
the search process.

3.3 Phase I: Choice of Hairstyle by the Customer (Exploration Phase)

Choosing a suitable hairstyle is the most important step for the customer in the barbershop. With the
help of the barber, the customer chooses a hairstyle among the hairstyles offered by the barber according
to her/his appearance and interests. The hairstyle selection simulation is employed in the design of the first
phase of the BaOA update. The choice of a hairstyle by the customer phase, by making major changes in the
position of the population members in the search space, leads to an increase in the global search capability
and BaOA exploration in escaping from locally optimal solutions and identifying the main optimal area
in the search space. This mechanism enhances the diversity of candidate solutions, thereby reducing the
likelihood of getting trapped in local optima. The schematic of this phase of BaOA is shown in Fig. 1. This
figure shows that the customer first selected the hairstyle he wants. Then the barber, based on this hairstyle,
has made widespread changes to the customer hair. These widespread changes to customer’s hair correspond
to widespread changes to the position of population members that represent a global search with the aim of
enhancing the exploration ability of the BaOA.

nal o6

h After

Before SHS; .
Based on the selected hairstyle (SHS;) 0

>

Figure 1: Schematic of the exploration phase of BaOA

In order to model this phase, first, the set of hairstyles offered by the barber to the customer for each
BaOA member is determined based on the comparison of the objective function values using Fq. (4). In fact,
for each member of BaOA, the position of other population members that have a better objective function
value than the corresponding member is considered as a hairstyle.

HS; ={X),Fy<F;and ke {1,2,...,N}}, wherei=12,...,N, (4)

here, HS; is the set of hairstyles for the i-th customer.
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In the BaOA design, it is assumed that the customer chooses a hairstyle randomly among the proposed
hairstyles. Then, based on modeling the customer’s haircut according to the chosen hairstyle, a new position
for each BaOA member is calculated using Eq. (5). If the value of the objective function is improved at this
new position, this new position replaces the previous position of the corresponding coefficient according
to Eq. (6).

xjj =X+ 1y (SHS;j = i xi p), ®
XML FPL<F,

X, - { PO <F, (6)
X;, else,

here, SHS; is the selected hairstyle for the ith population member, SHS;  is its j-th dimension, X" is the new
position calculated for the ith population member based on first phase of the BaOA, x} } isits jth dimension,
F[' is its objective function value, r; j are random numbers from the interval [0,1], and I; ; are numbers
which are randomly selected as 1 or 2. These numbers are used to create a random nature in the performance
of metaheuristic algorithms in the search process.

3.4 Phase 2: Correction of Hairstylist Details While Cutting Hair (Exploitation Phase)

An important factor in the success of a barber is that she/he must be detail-oriented and able to
establish close relationships with the customers by having strong communication skills. An excellent and
professional barber must be able to follow the customer’s orders, so that she/he can satisfy the customer
by correctly executing the customer’s favorite hairstyle. This phase corresponds to the exploitation process
in optimization, where local adjustments refine solutions for better accuracy. The schematic of the second
phase of BOA is shown in Fig. 2. This figure illustrates that during the haircut, the barber makes small, minor
adjustments to the customer’s hair in coordination with the customer. These precise and small changes to
the customer’s hair correspond to small changes to the position of the population members, which indicates
a local search aimed at enhancing the exploitation ability of the BOA.

Before After

Making very precise and small changes on
" a the hair, based on the barber's follow-up A F

of the customer's instructions.

X; xP?

A An

Figure 2: Schematic of the exploitation phase of BaOA

The simulation of the correction of hair style details based on the barber’s follow-up of the customer’s
instructions is employed in the design of the second phase of the BaOA update. The correction of hairstylist
details durint the cutting hair phase by making small changes in the position of the population members
in the search space, leads to an increase of the local search capability and the exploitation of BaOA in the
accurate scanning of the search space in the promising areas and near the discovered solutions with the aim
of achieving better solutions.

In order to model this phase of BaOA, for each population member, the small changes in the position of
that member in the search space caused by the simulation of the correction of hairstyle details based on the
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customer’s orders, have been calculated using Eq. (7). Then, this new position replaces the previous position
of the corresponding member if it improves the value of the objective function according to Eq. (8).

ub; - 1b;
XZPE =x,-,j+ (I—Zri,j)-%, (7)
xP?2 FP2<F,
Xi = ! ! 5 (8)
Xi, else

here, X?? is the new position calculated for the i-th population member based on second phase of the
proposed BaOA, x; ? is its j-th dimension, F;? is its objective function value, r; ; are random numbers from
the interval [0, 1], and ¢ is the iteration counter.

By integrating these two phases, BaOA balances exploration and exploitation more effectively than
many conventional metaheuristic algorithms. This dual-phase approach enhances convergence speed while
maintaining solution diversity, providing a theoretical and practical advantage over existing frameworks.

3.5 Computational Complexity of BaOA

In this subsection, the computational complexity of BaOA is analyzed from a completely different
perspective, employing more words and sentences to provide clarity and details. During the initialization
phase, BaOA performs several operations such as generating the initial population and setting up necessary
parameters, which together contribute to a computational complexity expressed as O(Nm). Here, N denotes
the total count of population members involved in the optimization process, while m represents the number
of decision variables associated with the problem under consideration.

Furthermore, in the exploration and exploitation phases, the population undergoes iterative updates
designed to enhance solution quality and convergence. These updates involve computational tasks pro-
portional to O(2NmT), where T symbolizes the algorithm’s maximum iteration count. Combining these
contributions yields an overall computational complexity for BaOA, succinctly represented as O(Nm(1 +
2T)). This revised analysis underscores the interplay of key algorithmic components and their impact on
computational demands.

3.6 Repetitions Process, Flowchart, and Pseudocode of BaOA

The execution of the proposed Barber Optimization Algorithm (BaOA) involves a completely different
sequence of steps that are more detailed and elaborate. Initially, the algorithm completes its first iteration
by systematically updating all members of the population. This update process, divided into two primary
phases, ensures that the solution search is efficient and effective. Once this initial stage is completed, the
algorithm transitions into the subsequent iterations. During these iterations, the population members are
dynamically updated based on their newly calculated positions. These updates are performed iteratively
following the mathematical expressions provided in Fqs. (4)-(8). This iterative cycle continues systematically
until the algorithm reaches the final iteration, thereby ensuring a thorough exploration and exploitation of
the search space.

With each iteration, the algorithm meticulously evaluates and identifies the best candidate solution. This
solution is continuously updated and preserved as the best result discovered up to that point in the execution.
By the conclusion of the algorithm’s operation, the most refined and near-optimal candidate solution is
presented as the final output, representing the resolution of the problem being addressed.
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To provide a clearer understanding of the entire process, the implementation steps of the BaOA are
illustrated comprehensively in Fig. 3 using a flowchart. Additionally, the pseudo-code representation in
Algorithm 1 complements the flowchart by offering a more detailed, step-by-step procedural view of the
algorithm’s execution. These representations ensure that the algorithm’s workings are fully transparent and
accessible to readers, providing more words and more sentences to thoroughly describe the methodology.

ST

Input information of optimization problem.

v

Set parameters of Nand 7. Set i =1 and t = 1.

No
‘No

Output the best quasi-optimal solution of the objective function found by BOA.

T

Figure 3: Flowchart of the proposed BaOA
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Algorithm 1: Pseudo-code of the proposed BaOA

Start BaOA.

1. Input the optimization problem information.

2. Set the number of iterations 7' and the number of population members N.

3. Generate the initial population at random based on Eq. (2).

4.  Evaluate the initial population.

5. Fort=1:T

7. Fori=1N

8. Phase 1: Choice of Hairstyle by the Customer (Exploration Phase).

9. Determine hairstyles set for the i-th member based on Eq. (4).

10. Select a hairstyle for the i-th member among the hairstyles proposed by the barber at random.
11. Calculate new position of the i-th population member based on Eq. (5).

12. Update the i-th population member using Eq. (6).

13. Phase 2: Correction of Hairstylist Details while Cutting Hair (Exploitation Phase).
14. Calculate a new position of the i-th population member based on Eq. (7)

15. Update the i-th population member using Eq. (8).

16. end

17.  Save the best proposed solution so far.

18. end

19. Output the best obtained proposed solution.

End BaOA.

4 Simulation Studies

In this section, the evaluation of the Barber Optimization Algorithm (BaOA) for tackling various

optimization challenges is presented. To comprehensively assess its performance, the proposed BaOA has

been tested on an extensive suite of optimization problems. This evaluation includes fifty-two standard
benchmark functions categorized into three distinct types: unimodal functions, which assess conver-
gence accuracy, high-dimensional multimodal functions, which evaluate the algorithm’s exploration and

exploitation balance, and fixed-dimensional multimodal functions, which measure its ability to escape
local optima [56]. Furthermore, the assessment incorporates the CEC 2017 test suite [57], recognized as a
challenging benchmark for modern optimization algorithms.

The reasons for choosing the CEC 2017 test suite are as follows:

Benchmark Consistency: CEC-2017 provides a well-established and standardized set of benchmark
functions that are widely recognized in the optimization community. Using CEC-2017 ensures that
comparisons between different algorithms are consistent with past studies, which helps validate the
results and maintain the integrity of research over time.

Diversity of Problem Types: The CEC-2017 test suite includes a diverse set of problem types, including
unimodal, multimodal, fixed-dimensional, and high-dimensional problems. This variety is important
for thoroughly evaluating an algorithm’s performance across different problem landscapes, and it has
become a reference for testing new algorithms in a comprehensive manner.
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3. Comparison with the Existing Literature: Since many studies and algorithms have already been eval-
uated using the CEC-2017 suite, it allows for a direct comparison with existing results. This is important
for demonstrating the relative performance of the new algorithm in relation to established methods.

4.  Widely Accepted Validation: The CEC-2017 suite is considered a reliable and robust validation tool
for assessing optimization algorithms. It has been used in numerous publications and competitions,
making it a trusted resource for benchmarking.

The effectiveness of BaOA is compared against twelve well-established metaheuristic algorithms, namely
GA (1988), PSO (1995), GSA (2009), TLBO (2011), GWO (2014), MVO (2016), WOA (2017), MPA (2020),
TSA (2020), RSA (2022), AVOA (2021), and WSO (2022). It should be mentioned that in order to provide a
fair comparison, in the simulation studies, the original versions of competing algorithms published by their
main researchers have been used. Also, regarding GA and PSO, the standard versions published by Professor
Seyed Ali Mirjalili have been used. Moreover, a complete information and details about the experimental
test suites and their optimal values are available in their respective references introduced in each subsection.

The experimental results are reported using six critical statistical metrics to provide a more detailed
and nuanced understanding of the algorithm’s performance. These include the mean, best, and worst values,
which demonstrate the overall solution quality, the standard deviation, which indicates solution stability, the
median value, which highlights the central tendency, and the rank, which facilitates a comparative analysis.
To determine the relative effectiveness of the algorithms on individual benchmark problems, the mean values
are employed as the primary ranking index.

4.1 Evaluation of Unimodal Objective Functions

The performance evaluation of the Barber Optimization Algorithm (BaOA) on unimodal objective
functions, specifically F1 through F7, is detailed in Table 1. These functions are designed to test the algorithm’s
exploitation capabilities by focusing on the convergence toward the global optimum. According to the
results, BaOA has demonstrated a remarkable exploitation strength, achieving the global optimum for the
functions F1, F2, F3, F4, F5, and F6. Furthermore, BaOA has emerged as the top-performing optimizer for
the F7 function. A deeper analysis reveals that the BaOA, with its exceptional local search and exploitation
capabilities, outperforms the competing algorithms when applied to these unimodal functions. Compared
to alternative metaheuristics, BaOA’s performance is not only superior but also consistently competitive,
highlighting its effectiveness in handling unimodal problems.
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4.2 Evaluation of High-Dimensional Multimodal Objective Functions

The optimization outcomes for high-dimensional multimodal functions, ranging from F8 to F13, are
presented in Table 2. These functions are particularly challenging as they evaluate the algorithm’s ability to
balance exploration and exploitation while avoiding local optima. The simulation results indicate that BaOA
successfully converges to the global optimum for F9 and F11, showcasing its strong exploratory capabilities.
Additionally, BaOA outperforms all competitor algorithms, claiming the top rank for F8, F10, F12, and F13.
The results suggest that BaOA’s global search mechanism excels in traversing complex solution landscapes,
making it highly effective for these high-dimensional multimodal problems. Compared to other algorithms,
BaOA provides a superior performance, achieving high-quality solutions across all tested functions in
this category. Although the performance of some competing algorithms is close to that of BaOA based
on the simulation results, an important issue is that functions F8 to F13, by their nature, have a large
number of local optima, which challenge the exploration ability of metaheuristic algorithms. Therefore,
the greater an algorithm’s ability to converge to better solutions, the higher its capacity to escape from
local optima and explore the search space more effectively. To further confirm the superiority of BaOA
over the competing algorithms, this issue is also addressed through a statistical analysis in Section 4.4
“Comprehensive Evaluation of the CEC 2017 Benchmark Suite”. In that subsection, it is shown that BaOA
has a significant statistical advantage over the competing algorithms.

4.3 Evaluation of Fixed-Dimensional Multimodal Objective Functions

The results of employing BaOA on fixed-dimensional multimodal functions, specifically F14 through
F23, are reported in Table 3. These functions challenge the algorithm’s robustness and precision in dealing
with problems of fixed dimensionality. BaOA emerges as the best-performing optimizer for the functions
F14, F15, F21, F22, and F23. For the functions F16 to F20, the proposed BaOA approach achieves comparable
mean index values to some competitor algorithms. However, BaOA demonstrates a superior consistency, as
evidenced by its lower standard deviation (std) values, which indicate a stable performance across multiple
runs. This consistency reinforces BaOA's ability to effectively solve fixed-dimensional multimodal functions.
Overall, the BaOA achieves competitive results across this function set, yet BaOA delivers more reliable and
efficient solutions, affirming its superiority in optimizing fixed-dimensional problems.

To provide further insight into the comparative performance of BaOA and the other algorithms, boxplot
diagrams summarizing the optimization outcomes for the functions F1 through F23 are depicted in Fig. 4.
These visualizations highlight the robustness and reliability of BaOA in achieving consistent results across
diverse benchmark functions, solidifying its status as a leading metaheuristic algorithm.

4.4 Comprehensive Evaluation of the CEC 2017 Benchmark Suite

This subsection provides a detailed analysis of the performance of the proposed Barber Optimization
Algorithm (BaOA) in addressing the challenging functions of the CEC 2017 test suite. The CEC 2017
benchmark suite is widely recognized in the optimization community for its rigor and diversity, consisting
of thirty benchmark functions categorized into four distinct types: three unimodal functions (C17-F1 to
Cl17-F3), seven multimodal functions (C17-F4 to C17-F10), ten hybrid functions (C17-F11 to C17-F20), and
ten composite functions (C17-F21 to C17-F30). These functions are specifically designed to test various
aspects of optimization algorithms, including exploitation, exploration, and the ability to navigate complex,
high-dimensional landscapes.
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Boxplots of BaOA and the competitor algorithms performances for F1 to F23

algorithm

Figure 4
It is important to note that the C17-F2 function was excluded from this study due to its unstable behavior

during preliminary simulations, which could lead to unreliable results. The performance results of BaOA,
along with those of the competing algorithms, are presented in Table 4 for comparison. Additionally, boxplot
diagrams summarizing the statistical performance of BaOA and the other algorithms across all test functions
are shown in Fig. 5. These diagrams provide a visual representation of BaOA's stability and consistency.
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Figure 5: Boxplots of BaOA and the competitor algorithms performances for the CEC 2017 test suite

The optimization results demonstrate that BaOA achieves first-place rankings in the majority of the
benchmark functions, specifically for the functions C17-F1, C17-F3 through C17-F6, C17-F8 through C17-F21,
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and C17-F23 through C17-F30. This highlights BaOA’s versatility and capability to handle diverse problem
types. For unimodal functions, BaOA excels in a precise convergence toward the global optimum, showcasing
its strong exploitation ability. For the multimodal functions, BaOA effectively avoids local optima, thanks
to its robust exploration mechanisms. When tackling hybrid and composite functions, which combine
the characteristics of multiple landscapes, BaAOA demonstrates a remarkable adaptability and efficiency in
navigating complex solution spaces.

A comprehensive analysis of these results indicates that BaOA outperforms many well-established
metaheuristic algorithms in terms of accuracy, convergence speed, and solution quality. This superior
performance is evident in its ability to produce better optimization outcomes for most of the benchmark
functions compared to its competitors. The findings reinforce BaOA’s potential as a powerful and reliable
tool for solving a wide range of real-world and theoretical optimization problems.

4.5 Comprehensive Statistical Evaluation

In this subsection, a completely different approach is taken to statistically analyze the performance of
BaOA in comparison with the other metaheuristic algorithms. The primary goal of this statistical evaluation
is to determine whether the observed superiority of BaOA over its competitors is statistically significant. To
achieve this, the Wilcoxon signed-rank test [58], a widely recognized non-parametric statistical method, is
employed. This test is particularly suitable for comparing paired data samples and assessing whether there is
a significant difference between their central tendencies.

The Wilcoxon signed-rank test utilizes a key metric known as the p-value to determine statistical
significance. A p-value less than 0.05 indicates that there is a statistically significant difference between
the two data samples being compared. This threshold provides a rigorous basis for confirming whether
BaOA consistently outperforms the other algorithms or if the observed differences could be attributed to
random variations.

It is important to note that the simulation studies were conducted using the MATLAB software. In order
to report visually and reader-friendly, the results are reported in a simple manner. The important issue in the
results obtained from the statistical analysis is that p-values are less than 0.05. The smaller the p-value, the
more significant is the superiority of BaOA over the corresponding competing algorithm.

The detailed results of the Wilcoxon signed-rank test, which compare BaOA against each competing
algorithm, are comprehensively presented in Table 5. The table highlights cases where BaOA achieves a
statistically significant advantage, underscoring its reliability and robustness in solving complex optimization
problems. Specifically, for benchmark functions where the p-value is less than 0.05, it can be concluded that
BaOA demonstrates a superior performance compared to the corresponding metaheuristic algorithm.

Table 5: Obtained results from the Wilcoxon sum-rank test

Compared Unimodal  High-multimodal Fixed-multimodal CEC 2017 test
algorithms suite
BaOA vs. WSO 1.85E-24 1.97E-21 2.09E-34 2.04E-18
BaOA vs. AVOA 3.02E-11 4.99E-05 1.44E-34 3.69E-21
BaOA vs. RSA 4.25E-07 1.63E-11 1.44E-34 1.97E-21
BaOA vs. MPA 1.01E-24 1.04E-14 2.09E-34 1.97E-21
BaOA vs. TSA 1.01E-24 1.31E-20 1.44E-34 1.97E-21
BaOA vs. WOA 2.44E-24 6.13E-11 1.44E-34 3.98E-21

(Continued)
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Table 5 (continued)

Compared Unimodal  High-multimodal Fixed-multimodal CEC 2017 test
algorithms suite
BaOA vs. MVO 1.01E-24 1.97E-21 1.44E-34 2.18E-21
BaOA vs. GWO 1.01E-24 5.34E-16 1.44E-34 2.54E-21
BaOA vs. TLBO 1.01E-24 6.98E-15 1.44E-34 1.97E-21
BaOA vs. GSA 1.01E-24 1.97E-21 1.44E-34 5.41E-20
BaOA vs. PSO 1.01E-24 1.97E-21 1.44E-34 3.76E-20
BaOA vs. GA 1.01E-24 1.97E-21 1.44E-34 1.97E-21

By incorporating this rigorous statistical analysis, it becomes evident that BaOA’s enhanced optimization
capabilities are not only apparent in the numerical results but also substantiated through a formal statistical
validation. This comprehensive evaluation adds more credibility to the effectiveness of BaOA and further
solidifies its position as a leading optimization technique in both theoretical and practical applications.

5 Application of BaOA to Real-World Problems

This section provides a completely different and detailed evaluation of the proposed BaOA approach
by applying it to real-world engineering design problems. These problems, which represent practical
optimization challenges, include the tension/compression spring design, the welded beam design, the speed
reducer design, and the pressure vessel design. The results demonstrate how effectively BaOA addresses these
challenges and compares its performance with other metaheuristic algorithms.

5.1 Tension/Compression Spring Design

The tension/compression spring design problem is a classic and widely studied engineering optimiza-
tion task aimed at minimizing the weight of a spring while satisfying specific constraints. This problem is
particularly significant due to its practical implications in the design of lightweight and efficient mechanical
components. A completely different perspective can be taken by analyzing both the design variables and
constraints to achieve optimal results.

The schematic representation of the tension/compression spring design problem is shown in Fig. 6. The
problem can be mathematically formulated as follows [59]:

Consider X = [x1,x3,x3] = [d, D, P].

Minimize f(x) = (x3 +2) X,x7,

N NN |
s — D
e

Figure 6: Schematic of the tension/compression spring design
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subject to:

_ X533 <
71785x}

gi(x)=1

4x§ — X1X2 1
+ -1<
12566 (x,x7)  5108x?

& (x)=

140.45x,

&(x)=1-——<0,
X5X3

X1+ X3
xX) = -1<0,
8 (x) 15

with
0.05<x;<2,0.25<x; <1.3and 2 < x5 <15.

The BaOA approach, along with the competitor algorithms, was implemented to solve this optimization
problem. The numerical results are presented in Tables 6 and 7, showcasing the best found design values
and statistical performance. Based on the simulation results, BaOA successfully identified a near-optimal
optimal design with the following values for the design variables: (0.0516885, 0.3567142, 11.288853) and
the objective function’s minimized value was found to be (0.012665233). These results illustrate that BaOA
provides a completely different level of precision and efficiency in optimizing this problem compared to
other algorithms.

Table 6: Performance of the optimization algorithms for the tension/compression spring design problem

Algorithm Best values of the variables Minimal cost
d D p
BaOA 0.0516885 0.3567142 11.288853  0.012665233
WSO 0.040585  0.286916  8.723815  0.012672436
AVOA 0.054337  0.437455  10.24699 0.01269265
RSA 0.052952  0.401866  12.90495  0.012947052
MPA 0.054012  0.430304 10.57361 0.0126715
TSA 0.055895  0.477768  8.533558  0.012703804
WOA 0.056193  0.486452  8.178985  0.012714604
MVO 0.053075 0.406034  12.4979 0.012850589
GWO 0.053013  0.407024  12.18248 0.012705471
TLBO 0.065016  0.796741  4.713392  0.015952979
GSA 0.04279 0.32984 7.329621 0.013735892
PSO 0.064921  0.793823  4.713392 0.015891043
GA 0.067532  0.877543 3.11575 0.016337922

The convergence behavior of BaOA during the optimization process is depicted in Fig. 7, highlighting
its rapid and stable convergence to an optimal solution. A detailed analysis of the simulation results
demonstrates that BaOA outperforms the competitor algorithms in achieving superior design variable values
and satisfying statistical performance indicators. This finding underscores the algorithm’s ability to handle
complex engineering design challenges effectively and with more accuracy.
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Table 7: Statistical results of the optimization algorithms for the tension/compression spring design problem

Algorithm Mean Best Worst Std Median Rank
BaOA 0.012665233  0.012665233  0.012665233 9.84676E-19 0.012665233 1
WSO 0.012686126  0.012672436  0.012711628 9.67159E-06  0.012686917 3
AVOA 0.012908352  0.01269265  0.013619348 0.000265892 0.012800885 6

RSA 0.015939903 0.012947052 0.063738584  0.011464448 0.013064206 9
MPA 0.012683188 0.0126715 0.012705563  8.51129E-06  0.012684043 2
TSA 0.012852942  0.012703804  0.013132773  0.000107561  0.012859307 5
WOA 0.013203373  0.012714604 0.014463274 0.000598603 0.012985309 7
MVO 0.015489544  0.012850589  0.01609086  0.000989051  0.015931113 8
GWO 0.012721689  0.012705471 0.012746167 1.12674E-05 0.012720547 4
TLBO 0.016323991  0.015952979  0.016702555 0.000232427 0.016283489 10
GSA 0.01740768  0.013735892 0.020759729 0.002284236  0.017177311 11
PSO 2.50294E+13 0.015891043 2.50294E+14 7.78168E+13  0.015907491 13
GA 0.02027763  0.016337922  0.026190791 0.002568846 0.019743449 12
x10'? ijective space
é 12 Tension/Compression Spring Design | -
2
_§ 101
5 8 L
8 o
& 2
10 10! 10° 10°

Iteration

Figure 7: BaOA’s performance convergence curve for tension/compression spring

5.2 Welded Beam Design

The welded beam design problem is a completely different type of optimization challenge compared
to many other engineering design problems. Its primary objective is to minimize the total cost associated
with the fabrication of a welded beam while satisfying multiple constraints related to mechanical and
structural performance. This problem is crucial in practical engineering applications where cost efficiency
and reliability are critical considerations. To address this, a mathematical model of the welded beam
design problem has been formulated, which incorporates more words and details about its components
and constraints.

The schematic representation of the welded beam design is shown in Fig. 8. The problem involves
optimizing four design variables, which are defined as follows [59]:
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Consider X = [x1,x2,%3,x4] = [h,1,t,b].
Minimize f (x) = 1.10471x;x; + 0.04811x3x4 (14.0 + x,) ,

subject to:

g1 (x) =7(x)—-13600 <0,

2 (x) =0(x)—-30000<0,

g (x) =x1—-x4 <0,

g4 (x) = 0.10471x% + 0.04811x3x4 (14 + x,) - 5.0 < 0,
g5 (x)=0.125-x, <0,

g (x)=08(x)-0.25<0,

g7 (x) =6000-p,(x)<0

where

7(x) = \/T' +(277) ;—; + (T")z,

L 6000
\/Exlxz ’
J

X2
M = 6000 (14+ ?),
R\/x_%+(m)
4 2

2 2
pesfund 5 (222

504000
o(x)=—7~,
X4X3
65856000
6(x) = —— s,
(30-10°) x4x3
2,.6
106 X3X4
(x)_4.013(30 10°) % [ x [ 000
PelX) = 196 28 \| 4(12-100) |’

with

0.1 < x1,x4 <2and 0.1 < x5, x3 <10.
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Figure 8: Schematic of welded beam design

The application of BaOA and the competing algorithms to solve this problem has produced significant
results, which are summarized in Tables 8 and 9. BaOA demonstrated a superior performance by identifying
the best design variables as: (0.2057276, 3.470454, 9.0365335, 0.2057276) and the corresponding minimized
cost function value is: (1.724852309). The convergence curve of BaOA during the optimization process is
depicted in Fig. 9. A detailed analysis of the simulation results shows that BaOA achieved completely different
and superior outcomes compared to other algorithms. It not only provided the best design variables but also
excelled in statistical performance indicators. The results underscore BaOA’s capability to effectively solve
welded beam design problems by delivering highly efficient and cost-effective solutions.

Table 8: Performance of the optimization algorithms for the welded beam design problem

Algorithm Best values of the variables Minimal cost
h l t b
BaOA 0.2057276  3.470454 9.0365335 0.2057276  1.724852309
WSO 0.1608 2.732405 7011254 0.16318 1.72546204
AVOA 0.207408  3.714317  8.734867  0.228572 1.72549169
RSA 0.19703  5.234012  8.746253  0.238817 1.860636851
MPA 0.208703  3.686303 8.734314  0.228574  1.725382642
TSA 0.208215  3.702826  8.756985  0.229093  1.730777108
WOA 0.207495 4.003879  8.72099  0.238203 1.772931452
MVO 0.198966  3.917521 8.73814 0.228563  1.729494006
GWO 0.207775  3.70621  8.737046  0.228577 1.726139784
TLBO 0.199016  4.388882  8.326612  0.262123 1.90048239
GSA 0.169682  2.874159 6.876084  0.183816 1.757714435
PSO 0.32574 3.377452 7277437 0.385917 2.376962812

GA 0.233423  4.542673 7207004  0.343711 2.307123823




Table 9: Statistical results of the optimization algorithms for the welded beam design problem

Comput Mater Contin. 2025;83(2)

2709

Algorithm Mean Best Worst Std Median Rank
BaOA 1.724852309  1.724852309  1.724852309 6.90342E-16 1.724852309 1
WSO 1.726230228  1.72546204 1.726671734  0.000335887  1.726273592 3
AVOA 1.740247557 1.72549169 1.777608117  0.015523944  1.734363927 7
RSA 2.100721306  1.860636851  3.165403926  0.279130052  2.04242714 8
MPA 1.726050774 1.725382642  1.726434777  0.000292138 1.726088493 2
TSA 1.738233183 1.730777108 1.742998913 0.003854653  1.738845582 5
WOA 2.191733268 1.772931452 3.508865579 0.512186144 1.94002356 10
MVO 1.740182285  1.729494006  1.761570813  0.009304602 1.737575882 6
GWO 1.727770361  1.726139784  1.730012522  0.001146958  1.727564297
TLBO 1.76063E+13  1.90048239  2.96965E+14  6.6917E+13 3.855374861 12
GSA 2129517756  1.757714435  2.320486324  0.13970294 2.137341547 9
PSO 4.69928E+13 2376962812 5.69381E+14 1.36193E+14  4.051611977 13

GA 391915E+12  2.307123823  7.61258E+13  1.71734E+13  3.976688895 1
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Figure 9: BaOA’s performance convergence curve for the welded beam design

5.3 Speed Reducer Design

The speed reducer design presents a significant engineering challenge, with the primary objective being
the reduction of weight while maintaining or improving performance. This complex task involves a detailed
schematic representation, which can be found in Fig. 10, accompanied by the mathematical model that
underpins the design process [60,61]:

Consider X = [x1, X2, X3, X4, X5, X5 X7] = [b, m, p, 11, I, d1, ds] .
Minimize f (x) = 0.7854xx; (3.3333x3 +14.9334x3 — 43.0934) — 1.508x; (xg + x7 ) +7.4777 (x + x3)

+0.7854 (x4xé + x5x§) ,
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L

Figure 10: Schematic of the speed reducer design

subject to:
27
X) = -1<0,
81 (%) X1X3X3
397.5
X) = -1<0,
g (%) X1%3%3
1.93x3
x) = -1<0,
g (%) X2X3Xg
1.93x3
ga(x) = 54—130,
XZX3X7
1 745x4 \*
g (x) = — ( 4) +16.9 x 105 —1< 0,
110x; X2X3
1 745x5\*
8 (%)= — ( 5) +157.5x10°-1<0,
85x; X2X3

X2 X3
x)=—>--1<0,
g7 (x) 40

5
gg(x):ﬁ—lgo,
X1

X1
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1.5x¢ +1.9
g0 (x) = 226,
X4
1.1x7 + 1.9
gn(x) = 2 -1<0,
5
with
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26<x<3.6,07<x,<0.8,17<x3<28,7.3<x4<83,7.8<x5<83,29<x<3.9, and5< x7 <5.5.
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Figure 11: BaOA’s performance convergence curve for the speed reducer design

In addressing this challenge, various optimization algorithms have been applied, and their performance
compared in terms of how effectively they solve the speed reducer design problem. The results are presented
in Tables 10 and 11. One such algorithm, namely BaOA, has shown promising results in the simulation
studies, offering the best design solutions. This is evident from the values of the design variables—(3.499965,
0.699993, 16.99983, 7.299927, 7.799922, 3.350181, 5.28663)—and the corresponding objective function value
of 2996.348165. Moreover, the convergence curve for BaOA, shown in Fig. 11, illustrates how the algorithm
efficiently converges to the optimal solution for the speed reducer design.

Table 10: Performance of the optimization algorithms for the speed reducer design problem

Algorithm Best values of the variables Minimal cost

b m P A L d, d,
BaOA 3.499965 0.699993 16.99983 7299927 7799922 3.350181 5.28663 2996.348165
WSO 2.730607 0.546031 13.34896 5.697578 6.089215 2.614628  4.1255 2998.333593
AVOA 3.508632 0.700974 1776011 7.373101 7891722 3.365877 5.307849 2998.606975
RSA 3.551121 0.700974 17.76011 7967442 8.166541 3.712241 5.442251 3068.311155
MPA 3.508632 0.700974 1776011 7337321 7.851481 3.36581 5.307836 2998.06369
TSA 3.52034 0.700974 1776011 7404414 7851481 3.367648 5.343073 3009.309854
WOA 3.516005 0.700974 20.35411 7.671177 7903289 3.379332 5.307552 3007144822
MVO 3.512182 0.700974 17.76011 7.504644 8.025625 3.383674 5.308183 3006.509968
GWO 3.510935 0.700974 1776011 7429515 7915947 3.36911 5.308672 3000.597927
TLBO 3.53988 0.702588 22.12687 7.900463 8.050078 3.644236 5.362489 4055.526521
GSA 2.773487 0.548049 14.90346 6.184644 6.339201 2.849397 4.138361  3187.46692
PSO 3.574255 0.721681 21.78677 7.458198 7907371 3.698288 5.39443 4228.672836
GA 3.548586 0.705884 21.59069 7358079 7936775 3.426541 5.414086 3923.446243

A deeper analysis of these simulation results reveals that BaOA consistently outperforms the competing
algorithms in terms of achieving better values for the design variables, as well as superior statistical
performance indicators. These findings suggest that BaOA not only provides a more efficient solution but also
offers a more reliable approach when compared to other optimization methods applied to the speed reducer
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design problem. Therefore, this research underscores the effectiveness of BaOA in tackling the complexities

associated with speed reducer design optimization.

Table 11: Statistical results of the optimization algorithms for the speed reducer design problem

Comput Mater Contin. 2025;83(2)

Algorithm Mean Best Worst Std Median Rank
BaOA 2996.348165 2996.348165 2996.348165 9.42546E-13  2996.348165 1
WSO 2999.224749  2998.333593  3000.503624  0.569766413  2999.096791 3
AVOA 3002.716642  2998.606975 3006.774134  2.493981374  3002.688553 4

RSA 3161.598674  3068.311155 3231.34145  40.90421349  3154.750717 8
MPA 2998.848764  2998.06369  2999.962202 0.496867977  2998.738542 2
TSA 3021.841298  3009.309854 3034.709636  6.230815509  3021.427834 6
WOA 3175.862584  3007.144822  4052.700839  287.0640984  3092.739521 9
MVO 3023.856405 3006.509968 3046.892061  11.31516643  3025.098902 7
GWO 3004.863422 3000.597927  3010.309431  2.48785059  3004.817052 5
TLBO 3.43005E+13  4055.526521 156969E+14 4.16756E+13  1.78072E+13 11
GSA 3355.623244 318746692  3790.265505 150.0739866  3330.730137 10
PSO 9.13563E+13  4228.672836 4.42536E+14 1.26774E+14  2.59137E+13 13
GA 6.17884E+13  3923.446243 4.37862E+14  9.9946E+13  3.44654E+13 12

5.4 Pressure Vessel Design

The pressure vessel design is a crucial engineering challenge, especially in practical applications, where
the primary objective is to minimize the overall cost of the design while ensuring safety, durability, and
efficiency. The complexity of this task is demonstrated by the pressure vessel design schematic, which is
shown in Fig. 12, alongside its associated mathematical model, as detailed in [62]:

Consider X = [x1,x2,%3,x4] = [Ts, Ty, R, L].
Minimize f (x) = 0.6224xx3%x4 + 1.778x,%3 + 3.1661x; x4 + 19.84x7 x3,

subject to:

g1 (x) = —x; +0.0193x5 < 0,
22 (x) = —x2 +0.00954x5 < 0,

g5 (x) = —mx5xy — %nxi +1296000 < 0,
g4 (x) =x4-240<0,

with

0 < x1, x5 £100,and 10 < x3, x4 < 200.

To solve this complex problem, various optimization algorithms are employed. One of the most
effective algorithms in this context is the BaOA, which has shown promising results in comparison to
other algorithms. The optimization results using BaOA and the other competing algorithms are presented
in Tables 12 and 13, providing a comprehensive comparison of the performance of each method.
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LA I

Figure 12: Schematic of the pressure vessel design

Table 12: Performance of the optimization algorithms for the pressure vessel design problem

Algorithm Best values of the variables Minimal cost
T, T, R L

BaOA 0.778019  0.384575 40.31188  199.998 5882.9013
WSO 0.623596  0.310956  31.82911  152.934 5882.9013
AVOA 0.918552  0.47668  43.57248 174.603 5882.9088

RSA 1.297069  0.526887 53.95198  89.6774 6624.5646
MPA 0.918549 0.476679 43.57233 174.6051 5882.9013
TSA 1156747  0.594301 55.67871 72.42199 5910.2826
WOA 1.104629 0.567759 52.52029 90.22139 6366.9495
MVO 1178188  0.603885 56.8916  65.79012 5928.9243

GWO 0.919488 0.477444 43.60859 174.1111 5889.473
TLBO 1.073509  2.095782 46.51753 153.2486 13859.799

GSA 0.74818  0.371513  38.20128  99.6093 6797.5343
PSO 1.615235 1114346 48.83039  131.1491 15409.18
GA 1.367064 0.813607 46.68199 155.4433 13257.991

Table 13: Statistical results of the optimization algorithms for the pressure vessel design problem

Algorithm Mean Best Worst Std Median Rank
BaOA 5882.9013 5882.9013 5882.9013 1.89E-12 5882.9013 1
WSO 5882.9137 5882.9013 5883.1494 0.056037 5882.9013 3
AVOA 6258.4626 5882.9088 7244.3707 396.54414 6184.1124 6
RSA 10714.654 6624.5646 19681.96 2923.6643 10323.778 9
MPA 5882.9014 5882.9013 5882.9014 3.08E-05 5882.9014 2
TSA 6229.4701 5910.2826 7302.4807 412.78514 5985.5448 5
WOA 7802.6641 6366.9495 10354.64 1255.4896 7332.924 8
MVO 6488.7335 5928.9243 7200.1258 354.30925 6461.6725 7
GWO 6068.9666 5889.473 7112.5407 359.23581 5906.2473 4
TLBO 29392.96 13859.799 44713.751 9072.4462 28572.828 1
GSA 21789.052 6797.5343 46711.398 10646.253 20819.584 10
PSO 43681.798 15409.18 91778.529 21609.573 36634.22 13

(Continued)
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Table 13 (continued)

Algorithm Mean Best Worst Std Median Rank
GA 33056.188 13257.991 59604.825 11024.575 31793.615 12

The simulation results indicate that BaOA delivers the best design with the values of the design
variables being (0.778019, 0.384575, 40.31188, 199.998) and the objective function value equal to 5882.9013.
The convergence curve for BaOA, shown in Fig. 13, illustrates how the algorithm efficiently approaches the
optimal solution for the design variables. This demonstrates BaOA’s superior performance in solving the
pressure vessel design problem.

%10 Objective space

E 6F | Pressure Vessel Design
o
71
35|
‘S
o= 41
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3
%20
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Figure 13: BaOA’s performance convergence curve for the pressure vessel design

Upon analyzing the results, it is clear that BaOA outperforms the competing algorithms, not only
providing better design values but also offering superior statistical performance indicators. This makes BaOA
a more effective and reliable tool for addressing pressure vessel design challenges in engineering applications.

6 Conclusion and Future Works

In this paper, we presented a novel metaheuristic algorithm inspired by human behavior, called the
Barber Optimization Algorithm (BaOA). This new approach is designed to solve complex optimization
problems across various scientific disciplines. The core inspiration behind BaOA stems from the human
interactions between a barber and a customer, which include two key processes: (1) the customer’s selection
of a hairstyle and (2) the refinement or correction of the hairstyle during the haircut. These human elements
form the basis for the two-phase process of BaOA: the exploration phase, modeled on the selection of a
hairstyle, and the exploitation phase, which simulates the correction of hairstyle details. Both phases are
mathematically modeled to guide the optimization process effectively.

The performance of BaOA in solving optimization problems was rigorously tested on a diverse set of
fifty-two benchmark functions. These functions include unimodal, high-dimensional multimodal, fixed-
dimensional multimodal ones, and those from the CEC 2017 test suite. The results from these tests
demonstrate BaOA’s strong capability to balance exploration and exploitation, allowing it to find optimal
or near-optimal solutions with high efficiency. In comparison with twelve well-established metaheuristic
algorithms, BaOA consistently delivered a superior performance, providing better solutions for the majority
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of the benchmark functions. This highlights BaOAs competitive edge in solving complex optimization
problems.

Furthermore, BaOA was applied to four engineering design problems, where it showcased its poten-
tial for real-world applications, solving practical design challenges with remarkable accuracy. The study
concludes by suggesting several avenues for future research, including the development of binary and multi-
objective versions of BaOA. Additionally, the application of BaOA to further optimization problems in a
wide range of scientific and engineering fields presents exciting opportunities for future exploration.
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