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ABSTRACT: AI-driven materials databases are transforming research by integrating experimental and computational
data to enhance discovery and optimization. Platforms such as Digital Catalysis Platform (DigCat) and Dynamic
Database of Solid-State Electrolyte (DDSE) demonstrate how machine learning and predictive modeling can improve
catalyst and solid-state electrolyte development. These databases facilitate data standardization, high-throughput
screening, and cross-disciplinary collaboration, addressing key challenges in materials informatics. As AI techniques
advance, materials databases are expected to play an increasingly vital role in accelerating research and innovation.

KEYWORDS: Data-driven; materials database; AI assistant; materials design

1 Introduction
The rapid evolution of materials science has been significantly influenced by the integration of

data-driven methodologies. Traditional approaches, relying on trial-and-error experimentation and
computational modeling, have faced challenges such as data fragmentation, high costs, and time-consuming
validation processes. To overcome these limitations, AI-driven materials databases are emerging as
transformative tools, revolutionizing how materials are discovered, analyzed, and optimized.

Recent advancements in materials informatics have demonstrated the potential of large-scale data
repositories to accelerate materials discovery. A variety of materials databases, ranging from computational
repositories such as Materials Project [1], ICSD (Inorganic Crystal Structure Database) [2], and Aflowlib [3],
to emerging AI-enhanced platforms like DigCat [4] and DDSE [5,6], are providing valuable resources to the
scientific community. While each of these databases has unique strengths, the integration of experimental
and computational data, coupled with AI-driven analytics, represents a major step forward in addressing
challenges such as data standardization, predictive modeling, and real-world validation.

2 The Role of Materials Databases in Scientific Research
Materials databases have evolved to serve a broad range of applications in computational and

experimental materials science. These repositories enable researchers to:

• Access structured materials data: Consolidating experimental measurements and computational
predictions in a centralized format.
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• Data mining to search materials with target function: Based on the database, users can find materials
with target functions for specific applications. Notable examples include the search of new stable metal
oxide materials for electrocatalysis [7–9].

• Facilitate high-throughput screening: Leveraging computational modeling to predict new materials
with desirable properties.

• Support AI-driven insights: Utilizing machine learning (ML) and large language models (LLMs) to
extract patterns from vast datasets.

• Enhance cross-disciplinary research: Bridging experimental and theoretical studies to accelerate
material discovery cycles.

However, key challenges remain in optimizing database interoperability, integrating diverse data
sources, and ensuring consistency in reported experimental and computational results. Addressing these
challenges requires continued innovation in AI-driven platforms that merge predictive modeling with
experimental validation.

3 The Innovations of DigCat and DDSE

3.1 DigCat: The First AI-Driven Experimental Catalysis Database
The Digital Catalysis Platform (DigCat: https://www.digcat.org/) is a pioneering AI-powered database

integrating over 800,000 experimental and computational catalyst data points [7]. Unlike traditional
repositories that primarily house DFT-calculated properties, DigCat combines real experimental results with
AI-driven predictive models, providing a closed-loop feedback mechanism to accelerate catalyst discovery.

Key features of DigCat:

• Dynamic visualization tools: Allows researchers to interact with high-dimensional data for better
trend analysis.

• LLM-based literature mining: Extracts key insights from scientific publications to expand the
database dynamically.

• AI-powered regression model: An online machine learning prediction model is built using advanced
regression methods such as Bayesian regression, XGBoost regression, and others.

• Reaction microkinetic modeling: Enables real-time prediction of reaction kinetics based on
experimental and theoretical datasets.

• Machine-learning force field development: Supports accurate simulations of catalytic processes under
realistic conditions.

So far, some notable works have been published based on the new materials phenomenon idenified
by the DigCat. For example, based upon big data, the DigCat identifies the anomalously high oxygen
reduction activity of weak-binding M–N–C single-atom catalysts [10] and the pH-depenent performance
of Sn-based CO2RR catalysts [11,12], which are alomost brand-new ingishts in the area of electrocatlysis.
Besides, the DigCat has been used for the comparative and benchmarking analysis by comparing the
performance between the new materials and the literature materials (e.g., for catalytic water purification [13]
and electrocatalytic hydrogen evolution [14] and oxygen evolution [15]). “Finding new insights from old
papers” become possible.

3.2 DDSE: The Largest Dynamic Solid-State Electrolyte Database
The Dynamic Database of Solid-State Electrolytes (DDSE: https://www.ddse-database.org/) is a unique

resource for solid-state battery research, containing over 2500 experimentally validated solid-state
electrolytes and 600 computationally predicted candidates [5,6]. DDSE provides a foundation for
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accelerating the development of next-generation battery materials by integrating experimental and AI-
driven insights.

Key innovations of DDSE:

• AI-driven conductivity prediction: Utilizes machine learning models to identify promising SSEs for
all-solid-state batteries.

• User-interactive material comparison: Enables researchers to input experimental data and compare
against existing entries.

• Integrated Large Language Model (LLM) analytics: Automates literature analysis to extract
performance trends and guide material selection.

A comparative overview of major materials databases, including DDSE and DigCat, is provided
in Table 1.

Table 1: Comparative overview of typical materials databases

Material databases Types Materials License AI functions
Inorganic Crystal

Structure Database
(ICSD)

Experimental Inorganic
crystal

Paid None

Cambridge
Structural

Database (CSD)

Experimental Organic
molecules

Paid None

Materials Project
(MP)

Computational Inorganic
crystal

Free AI regression model

Automatic-FLOW
(AFLOW)

Computational Inorganic
crystal

Free AI regression model

ElectroCat Experimental Fuel cell
catalyst

Free None

Catalysis-Hub.org Computational Thermo and
electrocata-

lysts

Free AI regression model

MatNavi Experimental Polymers,
inorganics,

metals

Free None

AtomWork Adv Experimental Crystal
structure

Paid None

DigCat Experiment
+ Computa-

tional

Catalysts Free AI Q&A, Machine Learning
regression model, Machine
learning force field, AI data

collection, LLM-based Chatbot
DDSE Experiment

+ Computa-
tional

Solid state
electrolytes

Free AI Q&A, Machine Learning
regression model, Machine
learning force field, AI data

collection, LLM-based Chatbot
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4 Toward the AlphaFold of Materials Science
DigCat and DDSE represent the next frontier in AI-driven materials discovery, analogous to AlphaFold’s

impact on protein folding prediction. However, the complexity of materials science far surpasses that of
protein structures, particularly in areas such as:
• Surface interactions and heterogeneous catalysis: Unlike proteins, which operate in well-defined

biological environments, catalytic materials function under diverse conditions, requiring sophisticated
modeling of adsorption/desorption kinetics and reaction pathways.

• Dynamic and nonequilibrium behaviors: Battery electrolytes, for instance, exhibit non-static
behaviors influenced by external fields, making accurate AI predictions significantly more challenging.

• Interfacial phenomena: The performance of solid-state batteries and heterogeneous catalysts depends
on interface stability, defect dynamics, and long-term degradation mechanisms, which are difficult
to capture using static datasets.
By leveraging vast datasets and advanced AI methodologies, DigCat and DDSE are pioneering the first

truly predictive materials discovery platforms—a step toward achieving an “AlphaFold for materials.” Unlike
AlphaFold, which operates within a well-defined sequence-structure relationship, materials databases must
contend with multi-variable dependencies, environmental effects, and synthesis constraints, making their
predictive capabilities even more groundbreaking.

5 Conclusion
AI-driven materials databases are reshaping the research landscape, moving from passive data

repositories to intelligent, self-updating platforms that accelerate discovery. DigCat and DDSE, as pioneering
initiatives, exemplify this transformation, offering unprecedented predictive power and dynamic insights.
With continued advancements in machine learning, automated synthesis, and high-performance computing,
the vision of a truly autonomous materials discovery engine is becoming a reality—one that may surpass
even the impact of AlphaFold by tackling the unparalleled complexity of materials science.
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