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ABSTRACT: Underwater Wireless Sensor Networks (UWSNs) are gaining popularity because of their potential uses in
oceanography, seismic activity monitoring, environmental preservation, and underwater mapping. Yet, these networks
are faced with challenges such as self-interference, long propagation delays, limited bandwidth, and changing network
topologies. These challenges are coped with by designing advanced routing protocols. In this work, we present Under
Water Fuzzy-Routing Protocol for Low power and Lossy networks (UWF-RPL), an enhanced fuzzy-based protocol that
improves decision-making during path selection and traffic distribution over different network nodes. Our method
extends RPL with the aid of fuzzy logic to optimize depth, energy, Received Signal Strength Indicator (RSSI) to Expected
Transmission Count (ETX) ratio, and latency. The proposed protocol outperforms other techniques in that it offers more
energy efficiency, better packet delivery, low delay, and no queue overflow. It also exhibits better scalability and reliability
in dynamic underwater networks, which is of very high importance in maintaining the network operations efficiency
and the lifetime of UWSNs optimized. Compared to other recent methods, it offers improved network convergence
time (10%–23%), energy efficiency (15%), packet delivery (17%), and delay (24%).
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1 Introduction
Underwater control and monitoring systems are among the challenging topics in electronics and

computer sciences. It has been discussed that the lower the cost-to-efficiency ratio under the same working
conditions and quality, the greater the popularity of that method. The equipment known as a sensor can
be used to monitor changes in the surrounding environment or the status of each set [1,2]. Every sensor
can sense and present changes in the desired environment using specific parameters such as temperature,
humidity, and pressure. For example, monitoring and controlling the underwater environment is feasible
using information from sensors embedded in the water. The data link layer protocol is responsible for
coordinating the access of nodes to the shared wireless media in underwater sensor networks with high
throughput and energy efficiency. Network nodes can share a broadcast channel through a media access
control protocol [3,4]. For its core functionality, the Medium Access Control (MAC) protocol is developed
to prevent concurrent data transmissions and manage packet collision resolution [5]. Additionally, it ensures
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energy efficiency, minimizes channel access delays, and maintains a balanced load across network nodes.
Due to the harsh and weak underwater audio channels, the Media Access Control layer protocol is critical
in using the underwater sensor network. Developing an interlayer protocol is a significant challenge in
developing underwater sensors. It is ideal for an interlayer protocol (between the network and the data link
layer) to simultaneously provide optimal underwater media access control with high throughput, low energy
consumption, and high-reliability paths for data exchange to select the desired destination [6]. Due to the
strain on the medium in underwater sensor networks (UWSNs), the transmission speed of audio frequency is
significantly reduced. The delays in the transmission and distribution of information packets in this network
will result in the packets not reaching their intended recipients on time, and the meetings between the
networks will be lost due to the delays in transmission and distribution. Instead, the simultaneous sending
of neighbors, known as hidden terminal, results in congestion in the media environment and noise passing
through the surface. As determined by the above decision, crowding and collision are the most significant
challenges facing underwater sensor networks. Path congestion, collisions, and queue slippage will also be
added to these challenges in the following stage. To address the issues and problems raised in this research,
a method is proposed to prevent congestion and, in the event of congestion, a way to reduce and address
it. Additionally, we would like to avoid time waste by dynamically varying the work cycle time of meetings
between the neighbors of the member nodes of the main paths [7].
Motivation and Contributions

Developing UWSNs faces significant challenges due to a few factors, e.g., adverse node positioning,
environmental noise interference, and Doppler frequency shifts, all of which negatively impact network
throughput, data transmission efficiency, and communication reliability. These factors make data trans-
mission to the central node collecting data (Sink) particularly challenging. Consequently, effective route
planning is essential to ensure seamless data propagation from nodes to the sink. However, deep-water
environments inherently exhibit slow data propagation speeds which leads to high energy consumption for
inter-node communication. Furthermore, UWSNs operate within a dynamic and complex system, distinct
from Terrestrial Wireless Sensor Networks (TWSNs) due to their lower energy consumption and reduced
latency. Given the harsh underwater conditions, it is fundamental to develop highly secure and efficient
network links [8]. To ensure network reliability during emergencies, underwater routing protocols must
be adaptable to frequent topology modifications. The routing protocol plays a critical role in determining
how data is transmitted between underwater source nodes and surface destination nodes. With increasing
research interest in UWSNs, a growing number of studies focus on specific aspects of routing protocols,
such as energy consumption or geographic location. However, most existing surveys lack a comprehensive
comparative analysis of multi-path underwater routing protocols, which leaves a gap in the literature [7,9,10].
Concequntly in this paper, we address this gap by presenting a structured evaluation of routing protocols in
UWSNs. First, we provide a Routing Protocol Review, classifying protocols into geographical-based, energy-
based, and data-centric categories, with a focus on multi-hop and multi-path transmission. Second, we
propose a Fuzzy-Based RPL Enhancement, where fuzzy logic is employed for more effective parent selection,
leading to improved energy efficiency and enhanced data delivery. Third, we introduce Queue Management
& Performance Analysis, integrating congestion control mechanisms and evaluating the enhanced UWF-
RPL. Our findings demonstrate significant improvements in packet delivery, network stability, and energy
efficiency. Furthermore, we categorize energy-based routing protocols into reactive, proactive, hybrid,
depth-based, reinforcement learning-based, bio-inspired, and cooperative reliability models. The paper
is structured as follows: Section 2 discusses the fundamental architecture and concepts of underwater
sensor networks, followed by a review of existing management techniques in Section 3. Section 4 focuses
on routing protocols, while Section 5 details our proposed approach. Section 6 presents the evaluation,
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simulation results, and comparative analysis, and finally, Section 7 concludes with key findings and future
research directions.

2 Concept and Architecture of UWSN
UWSN architecture is classified based on node mobility into static, mobile, and hybrid types. Static

nodes are fixed to buoys or the ocean floor, while mobile nodes move autonomously or with water currents,
such as Autonomous Underwater Vehicles (AUVs), Unmanned Underwater Vehicles (UUVs), and Remotely
Operated Vehicles (ROVs) [1,11]. Hybrid UWSNs combine both static and mobile nodes. Depending on the
application, UWSNs can be 2D, 3D, or 4D (with ROVs) [12]. This section outlines UWSN topology as the
foundation for its applications [13,14]. In the next part, we will consider the basic requirements for UWSNs,
i.e., One-Dimensional Underwater Wireless Sensor Network (1D-UWSN): A one-dimensional underwater
network where sensors collect, process, and send data to a base station. An example is a buoy that submerges
to gather data and resurfaces to transmit it. 2D-UWSN: A two-dimensional network with clustered sensor
nodes. Each cluster has a leader (anchor node) that gathers and forwards data to surface nodes via horizontal
and vertical communication. 3D-UWSN: Sensors are deployed at different depths, forming clusters that
communicate within and across levels. Cluster heads manage communication and relay data efficiently. 4D-
UWSN: An advanced 3D network that includes ROVs. These ROVs collect and forward data to buoys or
directly to the network.
Design Challenges for UWSN Routing Protocols

It is important to note that UWSNs and TWSNs differ in many ways. TWSNs communicate using a
Radio Frequency (RF), whereas UWSNs communicate using an acoustic signal. UWSNs have sensor nodes
that are either stationary or mobile in a specified direction, whereas TWSNs have sensor nodes that are
moving because of water currents [7,8,11]. In this regard, directly using the routing protocols in TWSN for
UWSN is impossible. As a result of its unique characteristics, the acoustic communication used in UWSNs
is unique. UWSN routing algorithms should be designed considering the multiple challenges that UWSNs
face, as outlined in, e.g., [1,15–17].

• Limited Bandwidth: Acoustic signals replace radio waves underwater, but they have low bandwidth and
require more energy to transmit data.

• Dynamic Network: Water currents move sensor nodes 1–3 m/s, making it hard for them to stay in place,
leading to constant topology changes.

• High Propagation Delay: Acoustic signals travel at 1500 m/s, which is five times slower than radio waves,
causing delays in data transmission.

• Connectivity Voids: If a node fails or loses power, communication gaps may occur, and the system must
find alternative routing paths.

• Energy Constraints: Underwater sensors have non-replaceable batteries and consume more energy than
terrestrial networks, requiring energy-efficient routing.

• Difficult Localization: Global Positioning System (GPS) does not work underwater, making position
estimation slow and resource-intensive for routing.

• High Energy Usage: UWSNs consume more energy than TWSNs, with transmission using more power
than receiving or idle states.

• 3D Deployment Challenges: Nodes operate in a three-dimensional space, requiring multi-hop commu-
nication and depth adjustments for better connectivity.

• Doppler Effect: Changes in distance between transmitter and receiver shift the signal frequency, affecting
data transmission accuracy.
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• High Maintenance Costs: Underwater sensors are expensive to maintain, adding to operational
challenges.

• Noise & Interference: UWSNs experience higher noise levels than TWSNs due to water surface
reflections, the seabed, and marine life.

• Limited Memory: Sensor nodes have a small storage capacity, restricting data processing and
transmission.

• Data Compression Needs: Large amounts of environmental data must be compressed to save energy and
bandwidth, and then decompressed at the sink.

• Data Aggregation: Sensors combine collected data before sending it to the sink, improving reliability
and efficiency [18].

• Path Loss: Acoustic waves lose energy due to attenuation, spreading, and scattering. Multi-hop routing
is preferred to reduce transmission loss.

3 Related Works

3.1 UWSN Localization Techniques
Node localization in UWSNs is crucial for accurate data collection [19,20]. Since GPS does not work

underwater, specialized techniques are used, classified into range-based and range-free methods. Range-
based methods, like Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA), and
RSSI, measure distance or angles to determine location. Range-free methods estimate position using area-
based or hop-count techniques, making them useful for layered ocean deployment [20]. The classification
of localization algorithms in UWSNs has been a focal point of research due to the challenges posed by the
underwater environment. Based on the deployment of sensor nodes, localization techniques can also be clas-
sified into static, mobile, and hybrid categories [20,21]. Static nodes, often attached to buoys or moored to the
seabed, contrast with mobile nodes, such as AUVs or ROVs, which move either autonomously or due to water
currents. Hybrid systems utilize both static and mobile nodes to enhance localization accuracy. Moreover,
depending on the application and network scale, UWSN localization techniques can be further divided into
small-scale and large-scale approaches, with additional classification based on anchor usage—anchor-based
or anchor-free methods [21,22]. Researchers have extensively explored UWSN-based localization methods
from various perspectives, addressing the need for accurate and efficient algorithms [23]. The choice of a
specific localization method often depends on the network’s requirements and the desired accuracy. Hybrid
techniques, which combine multiple localization methods, have also gained attention for their ability to
improve localization performance in complex underwater environments. As UWSNs continue to evolve, the
ongoing refinement of these algorithms will be crucial in overcoming the inherent challenges of underwater
communication and enhancing the reliability and precision of node localization [20,24].

3.2 Methods of Collecting UWSN Data
The data collection process in UWSNs involves measuring water properties like temperature, salinity,

pressure, and pH. Unlike TWSNs, UWSNs face 3D deployment, limited bandwidth, high delays, and energy
constraints, making traditional mobile data collection methods ineffective [25]. AUVs are ideal for large-
scale UWSNs as they reduce transmissions, balance energy use, and extend sensor lifespan [26]. Acting as
mobile sinks, AUVs continuously collect data while moving and transfer it to a fixed base station [27]. This
method ensures efficient energy use and wider network coverage as also discussed in [8]. Generally, UWSN’s
data collection methods can be grouped into several categories [28,29] as follows:

• Void-handling algorithms help route data efficiently, especially in networks with void nodes. They are
divided into location-based and pressure-based methods. Location-based techniques, like Adaptive
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Hop-by-Hop Vector-Based Forwarding (AHH-VBF) and Void Bypass Vector Assignment (VBVA), use
node positions and strategies such as unicast and geo-cast to navigate around voids. These methods are
commonly used in geo-routing protocols, which adjust transmission power or use mobility assistance
to avoid void areas. Pressure-based methods, including Localized Link State Routing (LLSR) and Inter-
Vehicle Ad Hoc Routing (IVAR) [26], rely on depth and pressure data to maintain stable communication
in dynamic environments. Other techniques, such as geographical and opportunistic routing, duty
cycling, and mobility-based data collection, further enhance network efficiency. Together, these methods
highlight the importance of void-handling algorithms in maintaining robust network performance [30].

• Geographic routing is simple and scalable, using nearby nodes without extra infrastructure but fails
with communication gaps. It includes greedy (Reliable and Energy Balanced Routing (REBAR), Hop-
by-Hop Vector-Based Forwarding (HH-VBF), Directional flooding-based (DFR), Sector-based Routing
with Destination Location Prediction SBR-DLP), and Location-based Clustering Algorithm for Data
gathering (LCAD) methods [31].

• Opportunistic routing involves selecting a nominee node from the void area to give priority to all nodes.
The sensor node with the highest priority will collect data from the chosen nominee node. In addition
to location-based routing, opportunistic routing can be classified into pressure-based routing. Vector-
Based Forwarding (VBF), Hop-by-Hop Vector-Based Forwarding (HH-VBF), and GEographic And
opportunistic Routing protocol (GEDAR) are some examples of location-based opportunistic routing.
Depth based Routing (DBR) and Void-Aware Pressure Routing (VAPR) can be cited as pressure-based
opportunistic routing [32,33].

• To achieve an extended lifetime in UWSN’s loaded traffic, the duty cycling technique relies on a periodic
sleep-wake cycle for every node in the network. Some duty cycling protocols are Simulated Annealing
(SA) and Long BaseLine (LBL) [34,35].

• Cluster-based clustering is a valuable technique for extending the life of sensor networks. CH is selected
as part of this approach, and packet forwarding is switched regularly among cluster nodes with the most
energy [36,37]. This may result in network partitioning due to the overloading of the Cluster Head (CH)
closest to the base station because of relay traffic [38]. Various protocols can be used to implement cluster-
based computing: Distributed Underwater Clustering Scheme (DUCS), Channel-Aware Distributed
Clustering (CADC), Adaptive Energy-efficient Clustering (AEC), and Mobile-Controlled Clustering
Protocol (MCCP).

• By incorporating mobility into sensor networks, new opportunities exist for improving network
performance in terms of lifetime and latency [39,40].

3.3 The Characteristics of Underwater Acoustic Channels
Since underwater acoustic channels have limited transmission bandwidths and poor communication

efficiency, they are commonly regarded as harsh communication channels. The channel’s highly frequency-
selective and time-varying nature makes developing a robust communication strategy challenging. Different
parameters are considered when designing an acoustic communication system [41,42]. The simulation
analysis considers several characteristics of the underwater acoustic communication channel, outlined in the
following paragraphs.

3.3.1 The Sound Speed in the Water
The speed of an acoustic signal is influenced by three factors: the temperature and salinity of the water, as

well as the depth of the water [43]. A mathematical formula called the Mackenzie formula is used to calculate
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the speed of an acoustic signal [44].

C = 1448.9 + 4.591T − 5.304 ∗ 10 − 2T2 + 2.374 ∗ 10 − 4T3 + 1.340 (S − 35) + 1.63 ∗ 10 − 2D + 1.675 ∗ 10
− 7D2 − 1.025 ∗ 10 − 2T (S − 35) − 7.139 ∗ 10 − 3TD3

C = 1448.9 + 4.591T − 5.304 ∗ 10 − 2T2 + 2.374 ∗ 10 − 4T3 + 1.340 (S − 35) + 1.63 ∗ 10 − 2D + 1.675 ∗ 10
− 7D2 − 1.025 ∗ 10 − 2T (S − 35) − 7.139 ∗ 10 − 3TD3

(1)

C represents the speed of the acoustic signal calculated in Celsius degrees (0○C ≤T ≤ 30○C), T represents
the temperature of the underwater environment, S represents the salinity of the water (30 ≤ S ≤ 40 PPT),
and D represents the depth of the water (0 ≤ D ≤ 8000 m). As we can see from Eq. (1), as water temperature,
salinity, and depth increase, the acoustic channel’s speed increases.

3.3.2 Attenuation and Propagation Loss
We will first define a few related concepts to understand the propagation of energy loss. When sound

waves propagate from an underwater environment, some of their strength is converted into heat. There are
two categories of energy loss associated with sound wave propagation [14,29,45]:

• The acoustic signal generated by the source nodes propagates outward in wavefronts due to the geometric
spreading loss [46]. In this case, the signal does not depend on the wave’s frequency but rather on
its distance from the source. There are generally two parts to the ocean. The shallow ocean ranges
from the water’s surface up to 100 m, and the deep sea has a depth ranging from 100 m up to
10,000 m. Geometric spreading can be classified into two categories. Firstly, the cylindrical spreading
describes communication in shallow water; secondly, the spherical spreading represents communication
in deep water.

• The acoustic communication involves converting sound energy into heat, which is then absorbed by
water, reducing attenuation. Attenuation is directly linked to distance (d) and frequency (f ), as shown
in Eq. (2). Underwater acoustic signals experience path loss, calculated using specific equations. This
loss depends on two key factors: distance (km) and frequency (kHz).

10logA(d , f ) = k ∗ 10logd + d ∗ 10logα ( f ) 10logA(d , f ) = k ∗ 10logd + d ∗ 10logα( f ) (2)

• A(d, f) represents acoustic path loss. It includes propagation and absorption losses. The coefficient k
defines wave propagation: k = 1 in shallow water, k = 1.5 for practical waves, and k = 2 in deep water. α(f )
is the absorption coefficient (dB/km), and f is the frequency (kHz). This study uses f = 25 kHz.

• represents the path loss of the acoustic signal. On the right side, the first part represents propagation
loss, and the second represents absorption loss. k represents the propagation’s geometry, represented by
the propagation coefficient. A spherical wave propagates in shallow water with, a practical wave with k
= 1.5, and a spherical wave in deep water with k = 2. Where α(f ) denotes the absorption coefficient in
dB/km, and f represents the frequency in kHz. The frequency f = 25 kHz was used in this paper.

• The coefficient of absorption is represented by Eq. (3). Eq. (1) applies to high frequencies, while Eq. (2)
applies to low frequencies. For lower frequencies, the fourth option is appropriate [7,47].

10logα ( f ) = 0.11 f 21 + f 2 + 44 f 24100 + f 2 + 2.75 f 2104 + 0.003 for f ≥ 0.4( dB
km
)

10 log α ( f ) = 0.11 f 21 + f 2 + 44 f 24100 + f 2 + 2.75 f 2104 + 0.003 for f >= 0.4( dB
km
)

(3)
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10logα ( f ) = 0.11 f 21 + f 2 + 0.001 f 2 + 0.002 for f < 0.4( dB
km
)

10logα ( f ) = 0.11 f 21 + f 2 + 0.001 f 2 + 0.002 for f < 0.4( dB
km
)

(4)

3.3.3 Noise
All communication systems are subject to noise, which is an unavoidable characteristic. Noise is a

quality communication system that reduces the intensity of the signal. It is important to note that underwater
acoustic communication involves two types of noise. The two types of noise are those produced by humans
and those generated by the environment. There are two types of noise that we will discuss [48,49]:

• Human-Made Noise: Comes from ships, military units, fishing vessels, sonar, heavy machinery, and
aircraft. These cause interference during acoustic communication.

• Ambient noise consists of multiple unidentified sources and is classified into four categories: turbulence,
shipping, wind, and thermal noise (Eq. (5)). Turbulence noise (Eq. (6)) results from low-frequency
disturbances caused by tides and waves, disrupting underwater acoustic communication. Shipping noise
(Eq. (7)) is generated by distant ships, creating traffic noise that interferes with signals. Wind noise
(Eq. (8)) arises from air bubbles and breaking waves, and its intensity depends on wind speed, making
it predictable through weather forecasts. Thermal noise (Eq. (9)) represents the baseline noise level,
increasing with frequency. The total ambient noise in underwater communication is mathematically
represented as:

N ( f ) = Nt ( f ) + Ns ( f ) + Nω ( f ) + Nth ( f ) (5)

where Nt(f), Ns(f), Nω(f), and Nth(f) refer to the noise caused by turbulence, shipping, wind, and thermal
conditions, respectively, and are measured in dB re μ Pa and frequency in kHz. The following are some
examples of these noises:

10 log Nt( f ) = 17 − 30 log f 10 log Nt( f ) = 17 − 30 log f (6)
10logNs ( f ) = 40 + 20 (s − 0.5) + 26log f − 60 log ( f + 0.03)
10logNs ( f ) = 40 + 20 (s − 0.5) + 26log f − 60log ( f + 0.03) (7)

10 log Nω( f ) = 50 + 7.5w
1
2 + 20 log f − 40 log( f + 0.4) (8)

10 log Nth( f ) = −15 + 20 log f 10 log Nth( f ) = −15 + 20 log f (9)

4 Routing Methods in UWSN

4.1 Classification of Routing Protocols
This section describes two types of routing protocols based on their localization requirements [7,8,16].

There are two protocols within each class: (1) protocols that consider node mobility and (2) protocols that do
not. There are two types of routing protocols: location-based and location-free. Fig. 1 illustrates how routing
protocols are classified for UWSNs, which are adapted and updated from [8].
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Figure 1: Classification routing protocols in UWSN

4.2 Location-Based Routing Protocols for UWSN
The location information of the sensor nodes is required to determine the routes between a source and

sink node in this routing protocol category [50,51]. Location-based routing protocols can also be classified
according to whether they consider the mobility of the nodes. Vector-based routing and cluster-based routing
are location-based routing protocols that consider node mobility.

4.3 Routing Protocols Based on Energy Awareness
In each node, the amount of energy consumed is determined by the communication mode and the

amount of processing load applied to the signal [12,38]. Three trivial factors determine a node’s energy
consumption. Considering the distance between nodes is vital since sending a signal to a node further away
from the source requires a more significant amount of energy. In addition, it is essential to consider the
node’s surroundings since harsher environmental conditions would require a considerable amount of energy
to transmit a signal. Finally, battery capacity should also be considered. For the sender, all these factors are
taken into consideration, and the following equation is derived:

Etx =
⎧⎪⎪⎨⎪⎪⎩

l ∈e l ec +l ∈ f s d2, d < d0

l ∈e l ec +l ∈ f s d4, d ≥ d0
(10)

In Eq. (10), l denotes the number of bits in each packet, and d refers to the distance separating the
transmitter from the receiver. In this context, d0 represents the minimum distance for data transmission,
∈e l ec represents the energy required for radio transmission. The parameter mp is the multi-path transmitter
amplifier coefficient and fs is the coefficient for free-space transmission. Unlike terrestrial WSNs, which
do not account for the acoustic signal’s distinct energy consumption characteristics, UWSNs have unique
energy models. An amplifier coefficient a ( f d) is used to compute the energy required for acoustic signal
transmission. In this scenario, the transmitter and receiver are separated by distance d, and the signal
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frequency is represented by f. Since acoustic signals consume less energy compared to radio signals, the
energy model designed for terrestrial WSNs is inadequate for UWSNs. UWSNs rely on both multi-path and
free-space models. The amplifier coefficient is expressed as a( f d), where the absorption coefficient is a(f),
the distance between the sender and receiver is d, and the acoustic signal frequency is f. The value of a(f) can
be estimated using Thorp’s empirical formula. For example, at a frequency of 1000 Hz [7]:

log a ( f ) = 0.011 f 2

1 + f 2 + 4.4 f 2

4100 + f 2 + 2.75 ∗ 10−5 f 2 + 0.003 (11)

This leads to the following calculation for energy consumption in UWSNs. The transmission of data
packets in an underwater environment can be expressed using the formula below, where d represents the
distance between two nodes, and f denotes the signal frequency:

Etx =
⎧⎪⎪⎨⎪⎪⎩

l ∈e l ec +l a ( f )d d2, d < d0

l ∈e l ec +l a ( f )d d4, d ≥ d0
(12)

As a result of receiving data packets, energy is required as follows:

Etx = l ∈e l ec (13)

In the network layer, sensors are linked to observers, facilitating data routing and enabling cooperative
sensing. To meet the desired levels of energy efficiency, scalability, stability, and convergence in UWSNs,
routing protocols must be carefully established. These protocols aim to ensure reliable, energy-efficient paths
for nodes while extending the overall network lifespan. Various factors impact the energy consumption of a
routing system, such as neighbor discovery, communication processes, and computational demands. Table 1
shows the protocol comparisons based on energy consumption [11,38,52–54].

Table 1: Protocol comparisons based on energy consumption

Classification Protocol Method Disadvantage Advantage

Reactive
protocols

CTP-SEEC Power control, mobile
sinks, and clustering

improve network
performance.

Clustering in sparse
networks increases

complexity and cost.

It works in
sparse and

dense
networks.

((U−ACH))2 Assess terrestrial routing
protocol performance in

UWSNs.

High deployment cost Enhance
performance

Proactive
protocol

SPRINT Achieving trade-off
between energy

consumption and
throughput

Computational complexity High
reliability

PA-EPS-
CASE

Proactive routing
identified the shortest path

to the sink.

Overheating and greater
overhead

Void hole
avoidance

(Continued)
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Table 1 (continued)

Classification Protocol Method Disadvantage Advantage

Hybrid
protocol

multi-hop
ARQ

Use of hybrid
acknowledgement packet

for transmitting data

Increased delay Avoids delay

Extend the
lifetime of the

system

Varying and high
aggregate energy

consumption by relay
nodes, lack of local relay

selection process

Reduced packet
forwarding load on the
source, improved PDR

Extend the
lifetime

Clustering
protocol

EERU-CA Monitoring application High end-to-end delay CH has high
energy

CUWSN Better throughput The early death node Better
throughput

RCRP Utilizes a Markov
chain-based prediction in

opportunistic routing

Computational Resource
Intensive

Highly
energy-
efficient

Depth-based
protocol

EEDBR Application based on
packet suppression scheme

Low lifetime Reduced data
transfer rate

EECMR Uses multi-hop to perform
routing

High latency Less
complexity

EEEDBR Ideal nodes at medium
depth

Low Throughput Lifetime
increases

RL-based
protocol

QL-EEBDG-
ADN

Void avoidance using
adjacent nodes

Adds extra delay Ensures
packet

delivery
QL-EEBDG Balance energy

consumption of
aggregation nodes

Not suitable for sparse
network

Use of RL to
learn about

energy
consumption

EDORQ Combines Q-learning and
opportunistic routing to

improve energy conversion

High Computational Cost Reduced
delay

QDTR Reduce energy
consumption

Not suitable for a dense
network

Reduces
overhead

QLEAR Increase the lifetime of
nodes

Energy consumption Lifetime
increases

(Continued)
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Table 1 (continued)

Classification Protocol Method Disadvantage Advantage

Cooperative-
reliability-based

protocol

SEECR Reduce the computation
cost

Node movement not
accounted

Less E2E
delay

LEER Efficient delivery rate
using a layered network

Unbalanced energy
consumption

No
localization

needed
EECOR Find the best path using

less energy
High delay Find shortest

path
RER Increase reliability and

efficiency
Control overhead Reduced

delay

Bio-inspired
protocol

FFRP Reliable routing route High computational cost Improved
PDR

MFPR Energy-efficient and
reliable data transmission

Network dynamic issue Improved
link quality

4.4 Routing Protocols Based on Geographic Information
Position-based routing, also referred to as geographic routing, is considered an effective and scalable

method for data transmission. Unlike traditional routing approaches, it does not require the establishment
or maintenance of an end-to-end path to the destination, nor does it rely on routing messages to update
path states. Instead, the routing decisions are made locally at each hop, where the node closest to the
destination is selected as the next-hop forwarder. This process continues iteratively until the packet reaches
its final destination [7]. A hybrid approach that combines geographic routing with opportunistic routing
(OR) enhances data delivery efficiency and reduces energy consumption compared to conventional packet
retransmissions [11]. In opportunistic routing, all packets are sent to a list of pre-selected forwarding
neighbors ordered by suitability as the next-hop candidate. When the highest-priority node receives the
packet successfully, lower-priority nodes abort their scheduled transmissions. When no high-priority node
receives the packet, lower-priority nodes proceed and forward, ensuring reliable delivery. Opportunistic
routing is highly effective when conventional forwarding methods fail, and it offers an efficient alternative
for packet delivery. However, geo-opportunistic routing is susceptible to the communication void region
problem. A forwarder node is a void node if it does not have any neighboring nodes that are closer to the
destination. When packets arrive at such nodes, routing protocols must perform recovery processes to route
packets through empty regions or discard them to prevent unnecessary energy consumption. It is necessary
to solve this issue to guarantee the reliability and efficiency of geographic routing methods. Table 2 presents
a comparative analysis of routing protocols based on geographic information, highlighting their strengths
and limitations [8,55–58].
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Table 2: Comparison of routing protocols based on geographic information

Classification Protocol Idea Disadvantage Advantage

Depth-based

DBR Data is forwarded based on
depth info.

No void detection
mechanism

High delivery
ratio

LDBR Optimizes energy
consumption.

Low PDR Balanced
energy load

SORP Identify and avoid
communication voids.

Redundant retransmission of
data and high delay

Void detection

RSAR Reliable and stability-aware
routing using

energy-assigned nodes.

There is no void detection,
and uses a single sink

A stable
network and

balanced
energy

distribution
RD Balances energy

consumption using energy as
a metric for data forwarding.

High delay and energy
consumption

High PDR.

LETR Avoids void zones using
location error and load

balancing.

Low PDR and high energy
consumption

Longer node
lifespan.

Location-based

QLACO ML and ACO improving the
delivery ratio & delay time.

The role of AUV was not
clear.

High delivery
ratio and
energy

efficient.
ESRVR Removing routing holes via

two-hop neighbor.
Few nodes handle packets,

depleting them faster.
Scalable and

void hole
detection.

VBF Virtual pipeline for packet
delivering.

Unbalanced energy
utilization.

Robust
transmission
and scalable.

GEDAR Depth-adjustment control by
recovering void nodes.

High end-to-end delay. Void avoidance

Pressure-based

HYDROCAST It avoids hidden terminal
problems and minimizes
co-channel interference.

Nodes closer to the sink get
exhausted faster

Less redundant
transmission

and void
detection

VAPR Specifies the next hop
through greedy forwarding

and constant beacons.

High energy cost Detects and
avoids void

regions
ACAR A method for selecting paths

and improving delivery rates
that employ ant colonies.

Added acceptance factors
complicate the computation

Less delay and
better lifetime

Adaptive based MA-RF ARP Utilises modulation to
enhance transmission

capability.

Incompatible with harsh
underwater conditions

Transmits both
acoustic and
RF signals

Sender-based

RDBF It fits the forwarding node to
improve delivery rates

Complex computation High delivery
date

RMTG Optimizes overhead by using
greedy forwarding and

knowledge of previous hops

Not suitable for sparse
network

Void
avoidance, less

overhead

(Continued)
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Table 2 (continued)

Classification Protocol Idea Disadvantage Advantage

Cluster-based

EERA-CA Energy efficiency pairing
clustering and nodes.

Node adds computation
complexity

Energy efficient

CMSE2R The use of clustering is paired
with the shortest path to

maximize energy efficiency.

High end-to-end delay Increases the
link quality

among nodes
MRP Eliminating localization by

layering.
Unbalanced Power

consumption.
Super nodes
remove delay
and localize.

DEKCS Use of K-Means for optimum
clustering.

Lack of QoS metrics Using energy
and distance

5 Proposed Algorithm
The proposed network architecture is designed to improve efficiency, scalability, and energy conserva-

tion in underwater sensor networks. By reducing waiting times between nodes, data transmission becomes
faster and more reliable, which is essential in underwater environments where communication is naturally
slow. Additionally, the system enables localized decision-making, allowing each node to analyze its past
interactions and adjust its behavior accordingly. This reduces reliance on a central controller, leading to a
more adaptive and resilient network. The decentralized approach also enhances scalability, as nodes can func-
tion independently without generating excessive control messages, which helps save bandwidth and energy.
By minimizing the need for constant coordination, the network remains stable, efficient, and capable of
supporting more nodes without performance bottlenecks. Overall, this architecture ensures high throughput,
energy efficiency, and scalability, making it well-suited for the challenges of underwater communication.

5.1 Network Model
The network model in this study is designed for a 3D underwater environment, with key assumptions

to ensure realistic and efficient operation. Nodes are randomly distributed to reflect practical underwater
deployments, and each node starts with predefined energy levels and communication ranges, ensuring a
uniform baseline for evaluating energy consumption over time. The model also incorporates standard data
transmission rules, including the effects of noise and signal attenuation, to simulate real-world underwater
communication challenges. To maintain consistency in performance evaluation, a standard dataset is used
to regulate data generation across the network, making results comparable to other studies. Node mobility
is kept minimal, simplifying the analysis by focusing on energy consumption and data transmission under
near-static conditions. Additionally, each node is equipped with a depth gauge module, allowing it to adjust
operations based on its vertical position in the 3D underwater space. These assumptions create a structured
and realistic framework for analyzing energy efficiency and communication effectiveness in underwater
sensor networks.

5.2 The System Model
This IPv6 distance vector routing protocol works at the physical layer using IEEE 802.15.4, making it

suitable for low-power, low-bandwidth sensor networks. Recent advances have improved communication
for these networks. This study introduces UWF-RPL, a modified RPL protocol for underwater environments,
supporting both stationary and limited-mobility nodes. Significant structural changes were made to adapt
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RPL for underwater use. Highlights key differences between the proposed UWF-RPL and standard RPL as
follows:

• Rank R(u, j): This metric defines the logical distance of node u, a member of the network set N (u ∈
N), from the root of the network graph J, as calculated by the RPL protocol’s objective function (OF).
The rank value R typically increases as the node moves further from the graph’s root. Depending on the
specific application, this rank can be determined by the node’s depth relative to the water surface or by
combining both step depth and node depth.

• Destination Oriented Directed Acyclic Graph (DODAG) Preferred Parent (DPP): Let u be a node within
the graph G, N(u) its set of one-hop neighbors, and DPP(u,j) a finite subset of N(u). For any neighbor
node v in N(u), v will be part of DPP(u,j) if it has the lowest rank relative to the root R(u, j) in the specified
DODAG j ∈ B. In the enhanced version of RPL, each node will have multiple preferred parents rather
than just one. Node u will select the best parent dynamically based on conditions when sending a packet,
ensuring more efficient and reliable data transmission.

• DODAG Root List (DRL): Every node v ∈ N(u) is required to broadcast DODAG Information Object
(DIO) packets, which must include information about the location of the DODAG root. Thus, each node
u in the network maintains a root location list, DRL(j), which stores the locations of DODAG roots. This
allows nodes to efficiently route data by referencing the root locations stored in their DRL.

• The parameters we aim to make fuzzy for the proposed system are outlined below:
• Depth or Vertical Distance: The vertical distance of each sensor node from the water surface plays a

critical role in determining communication efficiency and signal strength.
• Energy Consumption per Communication: The total energy consumed by each node during data

transmission influences the network’s overall energy efficiency and the node’s operational lifespan.
• RSSI/ETX Ratio per Link: The RSSI to ETX ratio for each link helps assess the link quality and reliability

between nodes.
• Packet Latency: The delay encountered during the transmission of each packet or the cumulative latency

from the source to the destination, which impacts the speed and efficiency of the data delivery process.

These parameters are crucial for optimizing underwater sensor networks, allowing the system to adapt
to dynamic conditions using fuzzy logic. This research employs a triangular cross-layer design, where
information is exchanged across different network layers to enhance performance. Given the constraints
of underwater environments, integrating RPL with the IEEE 802.15.4 MAC and Physical Layers is essential
for improving service quality, link reliability, and energy efficiency. By combining depth, RSSI, energy
consumption, and latency into a composite metric, our approach optimizes parent node selection, leading
to more efficient and reliable routing. Building on Reference [59], we adapted and refined its concepts
for underwater environments, addressing acoustic propagation, dynamic topology, and energy constraints.
While the original work focused on terrestrial networks, significant modifications were required for UWSNs.
We carefully selected parameters tailored to underwater conditions, ensuring improved routing perfor-
mance. Sections 5.1 and 5.2 detail the differences in selected metrics and their impact, demonstrating how
our approach diverges from Reference [60] to better suit underwater applications.

5.3 Metrics of Interest
This section reviews the key metrics in developing our OF and their impact. Our method improves

energy efficiency, selecting routes with low energy consumption to extend network lifespan, incorporating
the IEEE 802.15.4 PHY EC parameter. Reliability is ensured by prioritizing a high packet delivery ratio,
considering environmental challenges like interference and ocean conditions, and using RSSI and ETX for
assessment. Real-time delivery is crucial for applications like accident response and underwater drilling, so
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latency is included to ensure timely data transmission. The next section presents the mathematical analysis
of these metrics.

• Depth Measurement: Pressure gauges in the underwater sensor network measure the depth of each node
based on pressure per unit surface. Depth is calculated by the distance from the water surface, helping
nodes adjust their operations accordingly.

• Energy Consumption: A critical physical layer metric, energy consumption includes both network
communication and local CPU processing. The Network Simulator version 2.31 underwater motes
datasheet sets the energy range between 0 and 1000 J. Our method calculates total energy consumption
along the path to the DODAG root, incorporating both individual and multi-node energy use.

• Latency Metric: Based on the MAC (Layer 2) link, latency measures the total time needed for a packet to
travel from source to destination. It is a cumulative indicator, summing the delays across all nodes on the
path. NS2 does not natively measure RPL latency, so we define it based on DIO transmission time from
sender to destination. Extensive simulations determine an upper latency bound (n seconds), ensuring
realistic performance analysis. This formula is used to calculate the latency factor:

Latenc y (n) =
⎧⎪⎪⎨⎪⎪⎩

Latenc y (P) + Latenc yn→P

0, I f n is the root
(14)

In this case, n and P correspond to the node and its parent, respectively. Latency n→P indicates the time
delay between nodes n and their parents.

5.4 Fuzzification
This section describes the fuzzy logic architecture, including fuzzification, inference, and defuzzification

for selecting the preferred parent node. Our proposed Objective Function (OF) improves underwater RPL
performance by combining multiple metrics effectively. Fuzzy logic is a powerful method for integrating
different parameters into a single decision-making process. It takes four input metrics—depth, energy
consumption, latency, and RSSI/ETX ratio—and processes them to generate a single output: neighbor
quality. Fig. 2 illustrates the key steps in the UWF-RPL fuzzy logic design.

Figure 2: The quality of the neighbor output metric (Adapted from [59])
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5.4.1 Procedure for Fuzzification
In fuzzification, numerical input variables are allocated to fuzzy sets with some membership level.

A description of the fuzzification technique is provided in the following subsections, including the
identification of linguistic variables and membership functions for each metric.

5.4.2 Homogenization or Normalization of Variables
In Fuzzy systems, rather than numbers, the values of the linguistic variable are words. There are three

fuzzy sets for each input metric in the UWF-RPL’s OF, while eight are for each output variable. In addition, the
following details are provided. Fuzzifying the X input variable. The fuzzy sets of metrics input metrics have
five linguistic names, “Very Low”, “Low”, “Medium”, “High”, and “Very High”. Table 3 presents the fuzzy sets
along with their ranges, besides the membership function of this metric. Enhancing the quality of neighbor
output variables by fuzzing. There are eight fuzzy sets of linguistic names for the quality of neighbor output.

Table 3: A linguistic variable and fuzzy set of RSSI input metrics

Fuzzy set Fuzzy set range (ms) Membership function
Very low 0–20 0.2

Low 10–30 0.4
Medium 40–60 0.6

High 50–70 0.8
Very high 80–100 1

These metrics are in Tables 4 and 5 as fuzzy sets, their ranges, and their membership functions.

Table 4: Quality output metrics based on linguistic variables and fuzzy sets

Fuzzy set Fuzzy set range (ms) Membership function
Very low 0–20 Triangle fuzzy function

Low 10–30 Triangle fuzzy function
Medium 40–60 Triangle fuzzy function

High 50–70 Triangle fuzzy function
Very high 80–100 Triangle fuzzy function

5.4.3 The Membership Functions
A fuzzy set is visually represented using a membership function, which assigns values between 0 and 1

to indicate the degree of belonging. The choice of a membership function depends on several factors, such
as trial-and-error simulations, previous research, specific application needs, and device datasheets. Since
trapezoidal functions are widely used in fuzzy logic, we selected them as input metrics for our design [59].
Aside from the Trapezoidal process, two special functions, R- and L-functions, are derived from it [60–62].
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Table 5: The number of fuzzy states of each parameter relative to levels

Rule The number of possible states Definition and fuzzy states
1 DnS1 × CES1 × ET X/RSSIS1 × LnS1

The depth of each node from the water surface for
two fuzzy values: DnS1 and DnS2

Energy consumption rate per node connection in
two fuzzy values: CES1 and CES2

ETX and RSSI rates indicate the quality of the link
and the number of effective attempts to access the

media in two fuzzy values: ET X/RSSIS1 and
ET X/RSSIS2

The amount of communication delay between the
node and the target for two fuzzy values: LnS1 and

LnS2
The number of possible states: 2n = 24 = 16

2 DnS1 × CES1 × ET X/RSSIS1 × LnS2
3 DnS1 × CES1 × ET X/RSSIS2 × LnS1
4 DnS1 × CES1 × ET X/RSSIS2 × LnS2
5 DnS1 × CES2 × ET X/RSSIS1 × LnS1
6 DnS1 × CES2 × ET X/RSSIS1 × LnS2
7 DnS1 × CES2 × ET X/RSSIS2 × LnS1
8 DnS1 × CES2 × ET X/RSSIS2 × LnS2
9 DnS2 × CES1 × ET X/RSSIS1 × LnS1
10 DnS2 × CES1 × ET X/RSSIS1 × LnS2
11 DnS2 × CES1 × ET X/RSSIS2 × LnS1
12 DnS2 × CES1 × ET X/RSSIS2 × LnS2
13 DnS2 × CES2 × ET X/RSSIS1 × LnS1
14 DnS2 × CES2 × ET X/RSSIS1 × LnS2
15 DnS2 × CES2 × ET X/RSSIS2 × LnS1
16 DnS2 × CES2 × ET X/RSSIS2 × LnS2

5.4.4 System of Fuzzy Inferences
These subsections explain the procedures for evaluating rules based on fuzzy sets and aggregating rules

using the Mamdani inference system and how rules are evaluated in Section 5.4.5. In the following, we
introduce the rule evaluation. (A fuzzy logic rule is constructed at this stage using IF-THEN conditions (i.e.,
rules of the form “If condition, then result”). According to the UWF-RPL’s OF, the number of generated rules
depends on the number of input metrics and fuzzy sets associated with each metric).

5.4.5 Fuzzy Base Rules
In the fuzzy system, we have applied the Mamdani leveling method, ensuring that each specific situation

is assigned a corresponding fuzzy value for that level. While some results may appear similar due to the
closeness of levels, combining all factors in the fuzzy output effectively resolves these similarity percentages,
ensuring distinct and accurate outcomes (Table 6).

Table 6: Summary of rules table and fuzzy leveling in the UWF-RPL method

Rule No. Input metric Quality output

Param 1 Param 2 Param 3 Param 4
1 VL VH VL VL Excellent

. . . . . . . . . . . . . . . . . .

. . . L L L L Very good

. . . . . . . . . . . . . . . . . .

. . . M M M M Medium

. . . . . . . . . . . . . . . . . .

(Continued)
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Table 6 (continued)

Rule No. Input metric Quality output

Param 1 Param 2 Param 3 Param 4
. . . H H H H Bad
. . . . . . . . . . . . . . . . . .
125 VH VL VH VH Awful

5.4.6 Membership Fuzzy
Our research uses the Mamdani inference system for fuzzy logic decision-making, combining rule

outputs through fuzzy aggregation. We apply “AND” (Minimum) and “OR” (Maximum) operators to
determine how rules are integrated into the final decision. The “Maximum” operator prioritizes the most
influential rule, ensuring accurate outcomes. In our design, five out of eleven possible rules are triggered
to determine the “Average” fuzzy output quality. A formula calculates this quality based on the number
of activated rules and their contributions. This flexible approach allows the system to adapt dynamically,
improving decision-making even when only a subset of rules is applied, enhancing overall fuzzy logic
performance.

Average =Max

⎛
⎜⎜⎜⎜
⎝

Min (Far Dn, CE , ET X&RSSI, and long Ln) ,
Min (Near Dn, CE , ET X&RSSI, and Short Ln)
Min (Close Dn, CE , ET X&RSSI, and long Ln) ,

Min (Near Dn, CE , ET X&RSSI, and Average Ln) ,

⎞
⎟⎟⎟⎟
⎠

(15)

5.4.7 Defuzzification Process
Optimizing the fitness function is necessary to improve the efficiency of the network and reduce

congestion.

NCn = (
16
∑
i=1

Ui ×w j)/(
16
∑
i=1

Ui) (16)

Fitness Function ( fi) =Max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

min
(∑16

i=1
((w1 × Di) + (w2 × CEi)+

(w3 × ET X&RSSi) + (w4 × Lni)
)

∑16
i=1 Ui

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(17)

where i is the number of fuzzy rules ranging from 1 to 16 (based on Table 5). And w1, w2, w3, w4 are the
weights of each state on the algorithm and fuzzy calculations.

5.4.8 Selecting Parent
This section explains how UWF-RPL constructs a DODAG allowing nodes to choose a preferred parent

for data transmission. The DODAG root (sink node) collects network data and distributes DIO messages to
inform nodes about the network structure. Nodes within range process this information and decide whether
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to join the DODAG based on its attributes. Each RPL instance can contain multiple DODAGs, each with
a unique identifier assigned by the root as an 8-bit value. A node can join only one DODAG per instance,
but all DODAGs in the same instance use the same Objective Function (OF). The DODAG root also assigns
IPv6 addresses for identification. When a new DODAG version is created, the version number is updated at
the root (Fig. 3).

Figure 3: The process of node’s parent selection

An increase in the DODAG version number signals a global repair process at the root, releasing a
new version to fix loop detection and link failures. Local repairs try to resolve issues without rebuilding
the entire DODAG, but if unsuccessful, global repair is needed. Each DODAG version is identified by a
unique ID, consisting of the RPL instance identifier, DODAG identifier, and version number. The root sends
a DIO message to neighbors, which verify its authenticity using the DODAG version and parent ID before
adding the sender to their parent list. Network stability improves when DIO message frequency decreases,
but in unstable conditions, the interval is minimized, maximizing DIO transmissions. The DIO message
contains an OCP (Objective Code Point), a 16-bit identifier for selecting the appropriate Objective Function
(OF). Existing OFs use single or multiple criteria, while our research introduces a new OF based on fuzzy
logic. The fuzzification step determines membership functions for each input, forming the basis of our fuzzy
logic design.

5.5 Queue Management Phase
In the second phase of the proposed protocol, after the network graph is formed and data is transferred

to the root, the network state changes due to bottlenecks, traffic fluctuations, and queue status. The standard
RPL method lacks mechanisms to manage node direction, control congestion, or prevent queue overflow.
To address this, our approach estimates and prevents bottlenecks at parent nodes, particularly those near
the sink. Our method monitors incoming and outgoing packets at parent nodes, modeling this process
using Eq. (18). When a queue reaches a critical threshold, the parent notifies child nodes via a beacon,
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the smallest control message. Based on this signal, child nodes can either continue sending data, pause
transmission or resume once congestion reduces.

A third option is switching to a new parent, but this increases network overhead. If a node itself is
congested, its children must adjust their sending rates instead. The queue indicator, calculated using Eq. (18),
helps manage this process efficiently.

QueueState =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( λΔt
μΔt
) ≤ 1

( λΔt
μΔt
) > 1

(18)

In this context, λΔt represents the rate at which packets enter the node’s queue, while μΔt signifies the
rate at which packets leave the queue. In the first scenario, when the entry rate is lower than the exit rate, the
probability of congestion is low. In the second scenario, the likelihood of congestion increases when the entry
rate exceeds the exit rate. The difference between these rates, λΔt − μΔt, plays a critical role in determining
the node’s behavior. If the difference between the entry and exit rates is smaller than the remaining slots in the
queue, the node will refrain from sending a beacon message. However, if the difference exceeds the number of
available slots in the queue, the node will send a beacon to reduce incoming traffic by half. Should the queue
overflow again, the node will broadcast another beacon to its neighboring nodes, requesting an additional
50% reduction in traffic. This stepwise reduction typically results in a total traffic decrease of around 75%, as
illustrated in Fig. 4.

Figure 4: The process of Queue management

6 Evaluation and Comparison
In this section, we expand our evaluation to include comparisons of the UWF-RPL method with

traditional RPL, the Distance and Energy constrained K-means Clustering Scheme (DEKCS) method from
2022, and the newly integrated Reliable Cluster Based Routing Protocol (RCRP) from 2024. Our simulations,
conducted in NS version 2.31 with the Aquasim package, adjust the basic RPL model for the underwater
environment by shifting from magnetic to acoustic channels and revising all network layers for optimal
underwater functionality. The UWF-RPL method enhances the basic RPL’s Objective Function to improve
parent selection criteria, while RCRP introduces a cluster-based and opportunistic routing strategy, tailored
to manage the dynamic nature and energy constraints of underwater networks. Our analysis focuses on key
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performance metrics such as network convergence time, the number of surviving nodes, packet delivery
ratio, delay per hop, energy consumption, and network overhead, providing a comprehensive view of each
method’s effectiveness in the simulated underwater conditions (Table 7).

Table 7: Simulation conditions and parameters

Parameters Value Parameters Value
Network topology Random position Frequency 30.5 kHz
Deployment area 1000 × 1000 × 500 m3 Channel Underwater channel

Initial node energy One kJ Maximum bandwidth 30 kbps
Initial sink energy 50 kJ Packet size 50 bytes
Number of nodes 180** DIO packet size 4 bytes
Nodes mobility Limited under one m/s DAO packet size 4 bytes
Mobility model Random mobility DAO-Ack packet size 4 bytes

Cost of long transmission 1.3 W DIS packet size 4 bytes
Cost of short
transmission

0.8 W Packet generation rate λ = 0.5∼0.83 pkt/s

Cost of reception 0.7 W Memory size 12 MB
Idle power 0.008 W Sink position Surface (500 × 500 × 0)

Data aggregation power 0.22 W Antenna Omni-directional
The communication

range of ASN
150 m Simulation time 500

Acoustic transmission
range(sink)

400 m Iterations 10

Number of channels 11 (30.511, 30.518, 30.525, 30.532, 30.539, 30.546, 30.560, 30.553, 30.567,
30.574, 30.581) kHz*

*Bellhop calculates the path loss between each node in each location. **This implementation incorporates full-stack
underwater modeling and advanced routing in NS2, limited to the maximum manageable nodes due to its sequential
processing and lack of multi-threading.

6.1 Network Convergence Time Test
This test lasts when the network is formed; in other words, the network graph is created, and the nodes

are ready to send packets to the well. To perform this test, we considered the network traffic and data
production rate at two values of 30 and 50 packets per minute to measure efficiency in the quiet and busy
traffic environment. The convergence time criteria will change during the simulation time because network
nodes may be lost, and local repairs are required. In the UWF-RPL network, fuzzy calculations are performed
in each node and periodically sent to the neighbors by the DIO message in the RPL structure.

As a result, no additional overhead is imposed on the network. To calculate this time, cumulatively
sampled in time units every 25 s, the duration of local and global convergence is aggregated in the network.
As expected, the UWF-RPL method in this test has performed better than the other two methods point-wise
and, finally, on average. Fig. 5 shows the timing diagram of local and global convergences. In this test, due to
the instability of RPL, DEKCS, and RCRP methods, a difference of about 10%–23% is observed. The higher
the number of instabilities on the network, the worse the results will be. Fig. 6 shows the average graph of
this convergence time for three protocols in two modes with transmission densities of 30 and 50 packets
per minute.
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Figure 5: Convergence time of network nodes in 500 s and with two traffics of 30 and 50 pkt/m

Figure 6: The average convergence time of network nodes with two traffic rates of 30 and 50 pkt/m

6.2 Testing the Number of Live Network Nodes
In the underwater sensor network, it is evident that the aggregation and exchange of packets consume

energy with the passage of time and the activity of network nodes. If a node has exhausted its battery energy,
it is removed from the network. Nodes consume energy for each of their internal and network activities
(Fig. 7). Even though the network nodes may not be necessary at the edges of the graph when they appear
as routers or aggregators, their death can harm the system’s performance.

Figure 7: Number of live network nodes during 500 s simulations
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Therefore, we can expect to see a postponement of the death time of the nodes as the energy
consumption rate is distributed throughout the network. Based on a fuzzy OF, the UWF-RPL method selects
the next step in the network based on the fuzzy value of the neighboring node. If the node does not have
the desired value, it is separated from the parent list of children by agreement and acts as a leaf node until
its neighbors have reached the same level. As part of the OF of this case, the network nodes need to interact
more in this process, and the control overhead is considerably less than the control overhead incurred by the
early death of network nodes or messages from parentless children.

6.3 Packet Delivery Rate Test
Another important factor in wireless networks’ qualitative and quantitative assessment is their ability

to deliver network packets to their destinations. The number of attempts to transfer and the percentage of
successful transfers are considered in this test. This criterion directly relates to route control, flow rate, and
the number of active routes in front of network trace nodes. It is possible to achieve a higher delivery rate
when network flows are more distributed. It is important to note that the shortest path is sometimes the best.
In our UWF-RPL fuzzy method, delay measures, ETX rate, and RSSI are critical players in reducing collisions
and packet failures. In the UWF-RPL method, a combination of these metrics and queue management has
been included in the decisions of the nodes to select the parent.

Simulation results show that the UWF-RPL method achieves packet delivery rates of 91%–73% in low-
density networks and 86%–64% in high-density networks. On average, the UWF-RPL approach maintains an
84% delivery rate for low traffic and 76% for high traffic. In comparison, the base RPL method achieves 68%
and 60%, the DEKCS method reaches 78% and 73%, and the RPRC method attains 81% and 70%, respectively
(Fig. 8).

Figure 8: The delivery rate is low and high-traffic environments during 500 s simulation

6.4 Delay per Hop Test
Network latency is defined by the average end-to-end packet transmission delay time. Therefore, the

network’s delay parameter depends on the number of steps a packet takes to reach its destination. According
to the definition of overall delay caused by processing, it is queuing, transmission, and propagation.

The more steps between the source and destination of a packet, the more cumulative the end-to-end
delay rate increases. On the other hand, due to the funnel effect in the network, the packet delay rate in the
lower layers close to the leaves is lower due to the lack of density and crowding, and the closer we get to the
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root, the more likely the collision and funnel effect will be. This test measured the average end-to-end delay
rate of network packets in steps between 1 and 4 (Figs. 9–11).

Figure 9: Evaluation of UWF-RPL network for the traffic of 30 packets per minute

Figure 10: Evaluation of UWF-RPL network for the traffic of 50 packets per minute

Figure 11: The average delay concerning the number of steps per traffic of 30 and 50 packets per minute

6.5 Network Energy Consumption Test
In underwater sensor networks, node batteries cannot be recharged, making energy consumption a

critical factor. A slower decline in energy indicates better energy management by the protocol. This test
examines the relationship between remaining nodes and time, as network lifetime depends on how long
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individual nodes remain active. The network’s lifetime is measured until the first node dies. In static sink
networks, nodes near the sink drain energy faster due to higher relay workloads, eventually disconnecting
the sink—a process called sink encirclement. Since recharging or replacing nodes is nearly impossible,
monitoring network lifespan is essential. This test tracks the decrease in live nodes over rounds, considering
node position and remaining energy to assess stability and energy consumption trends as per Figs. 12 and 13.

Figure 12: Network energy consumption rate in 500 s of simulation

Figure 13: The total energy consumed after 500 s of simulation

6.6 Overhead Control Packets
This parameter evaluates how well UWF-RPL establishes a path and delivers packets from the source to

the destination. In simulations, UWF-RPL and the baseline method were compared by analyzing the number
of sent and received packets, measuring the protocol’s ability to safely transmit data. To transfer these packets,
control messages such as DIO, DAO, and Destination Advertisement Object Acknowledgement (DAO-Ack)
are required. While UWF-RPL still uses these messages, their content and transmission frequency have been
optimized, reducing control packet overhead. Since network node distribution is random in simulations,
results vary across runs. However, UWF-RPL consistently outperforms the baseline method, as shown
in Fig. 14.
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Figure 14: Chart of control message rate in 500 s of simulation

7 Conclusion
The proposed UWF-RPL protocol employs a multi-metric, fuzzy-based parent-selection process and an

adaptive queue-management strategy to tackle major constraints in underwater wireless sensor networks,
such as high propagation delays, bandwidth limitations, and stringent energy requirements. By incorporating
depth, residual energy, link quality (RSSI/ETX), and latency into its decision-making mechanism, UWF-RPL
optimally balances data forwarding across the network, reduces queue overflow, and extends the operational
lifetime of sensor nodes. The result justifies the possibility of improving RPL, DEKCS, and RCRP in packet
delivery, convergence time, and energy consumption to ensure efficient and robust network performance.
Our future research will focus on integrating machine learning methods, in particular deep reinforcement
learning to enhance routing decisions and predict bottlenecks. Researchers can also study new underwater
sensing technologies with multimode sensing capabilities e.g., hybrid acoustic-optical nodes to enhance
data capture fidelity and reduce overhead in communication. Finally, real-world testing of UWF-RPL at a
large scale and synchronization with autonomous underwater vehicles would provide further evidence of its
resilience and scalability and make the protocol practical for several underwater applications.
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