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ABSTRACT: Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch
processing machines (BPM). In this study, the parallel BPM scheduling problem with machine eligibility in fabric
dyeing is considered, and an adaptive cooperated shuffled frog-leaping algorithm (ACSFLA) is proposed to minimize
makespan and total tardiness simultaneously. ACSFLA determines the search times for each memeplex based on its
quality, with more searches in high-quality memeplexes. An adaptive cooperated and diversified search mechanism
is applied, dynamically adjusting search strategies for each memeplex based on their dominance relationships and
quality. During the cooperated search, ACSFLA uses a segmented and dynamic targeted search approach, while
in non-cooperated scenarios, the search focuses on local search around superior solutions to improve efficiency.
Furthermore, ACSFLA employs adaptive population division and partial population shuffling strategies. Through these
strategies, memeplexes with low evolutionary potential are selected for reconstruction in the next generation, while
those with high evolutionary potential are retained to continue their evolution. To evaluate the performance of ACSFLA,
comparative experiments were conducted using ACSFLA, SFLA, ASFLA, MOABC, and NSGA-CC in 90 instances. The
computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases, highlighting its
advantages in solving the parallel BPM scheduling problem with machine eligibility.

KEYWORDS: Batch processing machine; parallel machine scheduling; shuffled frog-leaping algorithm; fabric dyeing
process; machine eligibility

1 Introduction
Batch processing machine (BPM) has been widely applied in many real applications such as fabric dye-

ing [1], chemical production [2], tire manufacturing [3], steel smelting [4], semiconductor manufacturing [5].
BPMs are capable of simultaneously processing multiple jobs within a single batch, where all jobs in the batch
share the same start and end times. Scheduling problems involving BPM can be broadly divided into single
BPM scheduling [6,7], parallel BPM scheduling, and other BPM problems [8,9]. Parallel BPM scheduling, as
a representative type, is an extension of the parallel machine scheduling problem and has attracted extensive
research attention in recent years.

Table 1 summarizes relevant research. In Scenario 1, researchers use different algorithms to solve BPM-
related scheduling problems in various industries, aiming at different objectives. Scenario 2 focuses on the
shuffled frog-leaping algorithm (SFLA) and its applications in scheduling problems. Scenario 3 covers other
multi-objective scheduling problems solved by different algorithms. However, parallel BPM scheduling in
fabric dyeing still has many unsolved problems.
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Table 1: Summary of related studies

Scenario Reference Objectives Approaches

1

Zhang et al. [1] Makespan, total tardiness MO-ABC
Jing Wang et al. [10] Makespan AABC

Abedi et al. [11] Makespan, total tardiness NSGA-II and MOICA
Zhang et al. [12] Total service completion time IPSO
Zhou et al. [13] Makespan, total electricity cost MODDE
Xue et al. [14] Makespan MPGA

Arroyo et al. [15] Makespan IG

2

Cai et al. [16] TAI, makespan, TEC CSFLA
Kong et al. [17] Makespan SFLA-VNS
Yang et al. [18] Makespan GSFLA
Lei et al. [19] Makespan, number of tardy jobs MGSFLA

3

Li et al. [20] Maximum lateness, TC NSGA-CC
Wang et al. [21] Makespan, TEC CMOEA/I
Wang et al. [22] Makespan, TEC RLMA
Wu et al. [23] Makespan, energy consumption Evolutionary algorithm

The parallel BPM scheduling problem in fabric dyeing is crucial for real-world production. Efficient
BPM scheduling in fabric dyeing can shorten production time, reduce costs, and improve resource utiliza-
tion. However currently, this field faces several severe challenges. For example, job family compatibility
is a major hurdle. In fabric dyeing, jobs with different color-dyeing needs, such as those from different
job families, can’t be processed in the same batch. Also, machine eligibility matters. Each machine has its
capabilities, so not all machines can handle every job. These constraints make the problem more complex
than traditional models, and existing algorithms often can’t handle them well. Another challenge is the
difficulty of multi-objective optimization. Simultaneously minimizing makespan and total tardiness in fabric
dyeing parallel BPM scheduling is very hard. In actual production, achieving both objectives is crucial for
efficient operations and customer satisfaction. However, most current research only focuses on one of these
goals. For example, algorithms that prioritize reducing makespan often result in numerous jobs being tardy.

Because of the limitations of existing algorithms in dealing with the complex constraints and multi-
objective requirements of parallel BPM scheduling in fabric dyeing, a new algorithm is urgently needed.
A well-designed meta-heuristic can comprehensively explore the large solution space, considering both
practical constraints and multi-objective optimization.

The shuffled frog-leaping algorithm (SFLA), inspired by the foraging behavior of frogs, is a good
choice for developing a new algorithm. SFLA has unique advantages as it combines local search and global
information exchange effectively. In scheduling problems, local search helps it explore the area around
promising solutions to find better-optimized ones. Global information exchange enables sharing good
solutions across different parts of the solution space, preventing the algorithm from getting stuck in local
optima. SFLA has been applied to similar BPM-related scheduling problems and has achieved good results
through techniques like reinforcement learning, cooperation, and memeplex grouping. These successful
applications show its potential for the parallel BPM scheduling problem in fabric dyeing.
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This study focuses on the parallel BPM scheduling problem in fabric dyeing and aims to develop an
enhanced SFLA to minimize makespan and total tardiness at the same time. The main contributions are as
follows.

(1) The parallel BPM scheduling problem with machine eligibility refinement from the fabric dyeing
process is solved.

(2) An Adaptive Cooperated Shuffled Frog-Leaping Algorithm (ACSFLA) is proposed, featuring two key
strategies: an adaptive population division strategy, which ensures the uninterrupted evolution of high-
potential memeplexes, and a diversified search based on adaptive cooperation, which balances global
exploration and local exploitation according to dominance relationships.

(3) The performance of ACSFLA is evaluated through experiments, which show that the new strategies
are effective and that ACSFLA offers significant advantages in solving the considered problem.

The rest of the paper is organized as follows. Section 2 describes the parallel BPM scheduling problem
defined by the fabric dyeing process. Section 3 introduces the SFLA. Section 4 presents the ACSFLA for the
considered problem in the fabric dyeing process. The computational experiments are shown in Section 5. In
the last section, conclusions are drawn, and potential topics for future research are discussed.

2 Problem Description
Zhang et al. [1] developed a Mixed-Integer Linear Programming (MILP) model for parallel BPM

scheduling based on a real fabric dyeing process, which is described as follows. There are n jobs J1, J2, ..., Jn
waiting to be processed by m parallel BPMs M1, M2, ..., Mm . For each job Ji , it has a weight of wi , a due date
of di , a set Θi of eligible machines where Θi ⊆ {M1 , M2, ..., Mm}, and belongs to the family f ai . Meanwhile,
each BPM Mi has a volume of vk , representing its weight capacity. The notations and descriptions for MILP
are listed in Table 2.

Table 2: Notations and descriptions

Notation Description Notation Description
a, b, i , j, g , h Indexes n The number of jobs

J Jobs m The number of BPMs
M Batch processing machine w The weight of job
d The due date of job f The family
Θ Eligible machine set v The volume of BPM
p Processing time s Pre-specified setup time

Cmax Makespan TT Total tardiness
[π1 , π2, . . . , πn] Scheduling string [θ1 , θ2, . . . , θn] Machine assignment string

All jobs are classified into F families according to the required dyeing color. Jobs within the same family
share the same processing time, with pg denoting the processing time of each job in family fg . Families are
not compatible with each other, meaning jobs from different families cannot be processed simultaneously in
a batch. Each bach Bh is composed of jobs from the same family. When forming a batch Bh on Mk with jobs
form fg , job Ji can be added to Bh if wi +∑ j∈Bh w j ≤ vk . Jobs in the same batch share start and end times,
with batch processing time equal to that of the job family. When a machine Mk switches from family fa to a
different family fb , a pre-specified setup time sab is needed for cleaning.

There are some constraints on jobs and machines:
Each BPM can only process one batch at a time.
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No job can be processed in distinct batches across multiple BPMs.
The processing cannot be interrupted.
All BPMs and jobs are accessible at all times.
Solving the BPMs scheduling problem requires addressing three sub-problems: (1) batch formation

determines which jobs are grouped to form each batch; (2) BPM assignment selects an Mk for each batch;
and (3) batch scheduling defines the processing sequence of all batches on each Mk .

Suppose that batches B1 , B2, ..., Buk are processed on Mk consecutively. The completion time Ci of job
Ji within these batches can be calculated as Eq. (1).

Ci = p fB1
+

h
∑
a=2

s fBa−1 fBa
+ p fBa

(1)

where fB1 represents the family of batch Ba , which equal to fai , i ∈ Ba .
The goal of the problem is to simultaneously minimize the maximum completion time and total

tardiness of all jobs, whilst satisfying all constraints. The makespan Cmax is defined as Eq. (2). The total
tardiness TT is defined as Eq. (3).

Minimize Cmax =max {Ci ∣i = 1, 2, ..., n} (2)

Minimize TT =
n
∑
i=1

max {Ci − di , 0} (3)

The MILP model proposed by Zhang et al. [1] can be directly applied once the total finishing time of all
machines is replaced by the maximum finishing time of all machines, which is equal to Cmax .

For the problem with Cmax and TT, x ≻ y means that x dominates y if Cmax(x) ≤ Cmax(y) and TT(x) ≤
TT(y), with either Cmax(x) < Cmax(y) or TT(x) < TT(y). If neither x ≻ y nor y ≻ x holds, then x and y
are non-dominated.

3 Introduction to SFLA
The SFLA [24] is a meta-heuristic based on the behavior of frogs. In SFLA, each solution represents

the position of a frog, and the population of possible solutions is modeled as a set of virtual frogs. After
generating the initial population P, the algorithm iteratively performs population division, memeplex search,
and population shuffling until the stopping criterion is satisfied.

Population division is shown below. All solutions are sorted in the descending order of fitness, suppose
that Fit1 ≥ Fit2 ≥ ... ≥ FitN , then assign xk , k = 1, 2, ..., N into memeplex k(mod s) + 1, s memeplexes
M1 ,M2, ...,Ms are finally obtained, where k(mod s) means the remainder of k/s and Fiti is the fitness of
solution xi .

The search process in memeplexMi is described below. xw is used as an optimization object, repeat
the following steps μ times: a new solution x′w is produced by Eq. (4) with xw and xb , if x′w is better than
xw , then replace xw with x′w ; otherwise, xw and gbest are used to generate a solution x′w becomes the new
x′w by Eq. (5); otherwise, replace xw with a random solution directly, where xw , xb and gbest are the worst
solution and best solution and best solution in memeplexMi and the best solution of P:

x′w = xw + rand × (xb − xw) , (4)
x′w = xw + rand × (gbest − xw) , (5)
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where rand is a random real number following uniform distribution in [0, 1].
A new population P is constructed by shuffling all evolved memeplexes.

4 The Proposed ACSFLA
In ACSFLA, both the quality of the memeplex and its evolution quality are considered to determine the

shuffling pool for partial population shuffling and the diverse search process of the memeplex. Meanwhile
cooperated search is conducted within the diversified search processes, which is determined by the degree
of dominance between the two memeplexes. The detailed steps of ACSFLA are shown below.

4.1 Population Initialization and Adaptive Division
The solution representation and decoding process follow the approach [25], which is described as

follows. For the BPM scheduling problem with n jobs, m BPMs, and F families, use two-string representation.
A scheduling string [π1 , π2, . . . , πn] and a machine assignment string [θ1 , θ2, . . . , θn] for batches, where
πi ∈ {1, 2, . . . , n} and θi ∈ {1, 2, . . . , m}. The decoding process, based on the scheduling string sequence and
machine capacity constraints, repeatedly assigns jobs to batches on machines until all jobs are assigned.
Finally, the formed batches are processed on each machine in the first formed first processing rule.

The population initialization process generates an initial population P consists of N solutions, as follows:
N/2 solutions are randomly generated to ensure diversity, while the remaining N/2 solutions are produced
using a heuristic method [25].

ACSFLA introduces an adaptive population division strategy. This strategy can adjust the population
division targets based on P̄ generated in Section 4.3. The adaptive division process is as follows:

(1) If gen = 1, set P̄ = P, Γ = 1, 2, ..., s
(2) Let i = 1
(3) If i ∈ Γ, setMi be empty, then repeat the following steps N/s times: randomly select x , y ∈ P̄, if x ≻ y,

add x toMi ; if y ≻ x, add y toMi ; if both x ⊁ y and y ⊁ x, randomly select one of x , y to add intoMi
(4) i = i + 1, if i < s, then go to step(3).

The quality Mq of a memeplex quantifies its overall performance and is calculated as follows:

Mqi = ∑
x∈Mi

∣y ∈ P ∣ x ≻ y∣ (6)

After calculating the quality Mq for each memeplex, the s memeplexes are sorted in descending order
based on their Mq values, such thatM1 ,M2, . . . ,Ms satisfy the condition Mq1 > Mq2 > ⋅ ⋅ ⋅ > Mqs .

4.2 Adaptive Cooperated and Diversified Search
Unlike existing SFLA [26,27] and MGFLA [19], which apply the same process to all memeplexes or

uniformly conduct cooperated searches, ACSFLA dynamically determines whether memeplexes cooperate
based on their dominance relationship and adjust search strategies accordingly. This method emphasizes
the balance of exploration and exploitation, executing cooperation when there is a significant advantage,
to enhance solution quality and maintain population diversity. The diversified search processes are listed as
follows:

(1) For the best memeplexM1:
If C (M1 , Ms) ≥ γ2, execute the following steps:

(i) Let l = 1, τ = 0



1776 Comput Mater Contin. 2025;83(2)

(ii) If τ = 0, randomly choose a solution x ∈M1 and a solution y ∈Ms
(iii) Perform [10 − δgen

i ] times global search between x and y
(iv) Perform δgen

i times local search on x
(v) l = l + 1, if l < μ1/μ, go to step(ii).

Else if C (M1,Ms) < γ2, execute the following steps:
(i) Let j = 1 and decide a non-dominated solution xb ∈M1
(ii) Randomly choose a solution y ∈M1
(iii) Perform [10 − δgen

i ] times global search between xb and y
(iv) Perform δgen

i times local search on xb
(v) Perform δgen

i times local search on y
(vi) j = j + 1, if j < μ1, go to step(ii).

(2) For the worst memeplexMs :
If C (M1 , Ms) ≥ γ2, execute the following steps:

(i) Let l = 1, τ = 0 and decide a non-dominated solution xb ∈Ms
(ii) If τ = 0, randomly choose a solution y ∈M1
(iii) Perform [10 − δgen

i ] times global search between xb and y
(iv) Perform δgen

i times local search on xb
(v) l = l + 1, if l < μs/μ, go to step(ii).

Else if C (M1,Ms) < γ2, execute the following steps:
(i) Let j = 1 and decide a non-dominated solution xb ∈Ms
(ii) Randomly choose a solution y ∈M1
(iii) Perform [10 − δgen

i ] times global search between xb and y
(iv) Perform δgen

i times local search on xb
(v) j = j + 1, if j < μs , go to step(ii).

(3) For each memeplexMr , 1 < r < s, repeat the following steps μr times:
(i) Decide a non-dominated solution xb ∈Mr . Randomly choose a solution y1 ∈M1 and a solution

y2 ∈Ms
(ii) Perform [10 − δgen

i ] times global search between xb and y1

(iii) Perform [10 − δgen
i ] times global search between xb and y2

(iv) Perform δgen
i times local search on xb .

Metric C [28] is employed to describe the dominance relationship between two solution sets. Specifically,
C(A, B) represents the proportion of solutions in set B that are dominated by at least one solution in set
A. When C(A, B) = 0, it means that none of the solutions in set B are dominated by any solution in set A.
Conversely, C(A, B) = 1 indicates that set A completely dominates set B. μi (1 ≤ i ≤ s) indicates the search
times of the memeplexMi , which is decided on the quality Mqi . δgen

i is a dynamic factor that changes with
iterations. It determines whether the memeplex search in generation gen is inclined towards global search
or local search, based on the quality Mqi and evolution quality Mogen

i .
C(A, B), μi and δgen

i are computed as follows:

C (A, B) = ∣{b ∈ B ∶ ∃a ∈ A, a ≻ b}∣
∣B∣ (7)

μi = [5 ⋅
Mqi −Mqmin

Mqmax −Mqmin
+ 5] ⋅ μ (8)
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δgen
i =

⎡⎢⎢⎢⎢⎣
5 ⋅
⎛
⎝

Mqi −Mqmin

Mqmax −Mqmin
−

Mogen−1
i −Mogen−1

min

Mogen−1
max −Mogen−1

min

⎞
⎠

⎤⎥⎥⎥⎥⎦
+ 5 (9)

where μ is the basic search times.
There are 3 global search operators and 6 local search operators used in the search process. GS1 replaces

the machines between positions k1 and k2 in the machine assignment string of x with those from y. GS2
applies the order crossover to the scheduling strings of x and y. GS3 executes GS1 and GS2 sequentially. NS1
and NS2 are insertion operators for the scheduling and machine assignment strings. NS3 and NS4 are swap
operators for the scheduling and machine assignment strings. NS5 and NS6 are inversion operators for the
scheduling and machine assignment strings.

In the global search between x and y, randomly select a global search operator GSi (i ∈ 1, 2, 3) to generate
a new solution xnew . If xnew ≻ x, then set x = xnew and τ = 1; if xnew ≻ y, set y = xnew ; if both xnew ⊁ x and
xnew ⊁ y, update Ω with xnew .

In the local search on x, randomly choose a local search operators NSi (i ∈ 1, 2, 3, 4, 5, 6) to generate a
new solution xnew . If xnew ≻ x, x = xnew , τ = 1, otherwise update Ω with xnew .

Initially, Ω consists of N/s randomly chosen solutions from the initial population Pop, and it is updated
with the solution x in the following way: non-dominated sorting is performed on Ω after adding x into it.
Then, the solution with the largest rankx and smallest crowding distance is removed from Ω.

4.3 Partial Population Shuffling
Partial Population Shuffling is a key step in ACSFLA, aimed at dynamically constructing the division

pool P̄. The process evaluates the evolutionary quality Mo of each memeplex. Memeplexes with low
evolutionary potential are selected to P̄ for reconstruction in the next iteration. Memeplexes with high
evolutionary potential are retained to continue their evolution. The partial population shuffling process is as
follows:

(1) Let i = 1, Γ and P̄ be empty
(2) Compute Mogen

i
(3) If Mogen

i < γ1 and Mogen
i −Mogen−1

i < 0, add i to Γ and addMi to P̄
(4) i = i + 1, if i < s, then go to step(2).

where Mogen−1
i indicates the evolution quality of the memeplexMi in the latest generation. The set Γ stores

the indices of memeplexes added to P̄, which are used in the next iteration to decide if memeplex need to be
reconstructed. Mogen

i is calculated as follows:

Mogen
i =

λgen
i
μi

(10)

where λgen
i represents the updated times ofMi during the memeplex search. Each time the optimization

object ofMi is replaced with a new solution, λgen
i = λgen

i + 1. μi is the search times ofMi .

4.4 Algorithm Description
ACSFLA is described in Algorithm 1.



1778 Comput Mater Contin. 2025;83(2)

Algorithm 1: ACSFLA
1: Initialize gen ← 1, generate initial population P with N solutions, and initialize Ω
2: while termination condition is not met do
3: Execute adaptive population division on P̄
4: Sort memeplexes based on their quality
5: Perform adaptive cooperated and diversified search process
6: Compute Mogen

i
7: Perform partial population shuffling to update P̄
8: Increment generation counter gen ← gen + 1
9: end while
10: Stop the search

Unlike previous SFLA, ACSFLA incorporates several features that improve optimization performance.
First, it determines the search times for each memeplex based on its quality, efficiently focusing on high-
quality memeplexes and minimizing effort on low-quality ones. Second, it decides whether to perform a
cooperated search by evaluating dominance relationships, maintaining population diversity, and avoiding
premature convergence. Third, during the cooperated search, the algorithm uses a segmented and dynamic
targeted search strategy, while in non-cooperated scenarios, it focuses on local search around higher-quality
solutions to improve efficiency and explore promising regions more effectively. Finally, adaptive population
division and partial shuffling select low-quality memeplexes for reconstruction in the next generation. These
features balance exploration and exploitation, sustain diversity, and improve search efficiency. Fig. 1 shows
the flowchart of ACSFLA.

Begin

gen=1,
population initialization

adapative population division

adaptive cooperated
and diversified search

Ogen computation

Yes

No
termination condition is met?

End

partical population
shuffling

gen = gen+1

Figure 1: Flowchart of ACSFLA
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5 Computational Experiments
Extensive experiments are conducted to test the performances of ACSFLA for the BPM scheduling

problems in the fabric dyeing process. Experiments are implemented by using Matlab R2021a and run on
16 G RAM 3.1 GHz CPU PC.

5.1 Test Instances, Metrics and Comparative Algorithms
A total of 90 test instances are utilized, which is provided by Zhang et al. [1]. The related data are shown

below. (n, F) ∈ {(100, 6), (100, 9), (200, 9), (200, 12), (300, 12), (300, 15)}, m ∈ {5, 7, 9}, Pg ∈ [10, 30], sab ∈
[2, 5], sab=sba − 1, a > b, wi ∈ [5, 60], di = ε × 5n

m
, ε ∈ [0.5, 1.5], vk = 30 + 10k. There are 18 instance combina-

tions, each of which is presented as n × F ×m. Then randomly produces five instances for each combination.
MetricC [28] is used to compare the approximate Pareto optimal sets generated by different algorithms.

The calculation formula for metric C has already been provided in Eq. (7) above.
The metric ρ [29] presents the ratio of ∣{x ∈ Ω l ∣x ∈ Ω∗ }∣ to ∣Ω∗∣, where Ω l denotes the non-dominated

set obtained by Algorithm l , and Ω∗ refers to the reference set, which consists of all non-dominated solutions
in the union of non-dominated sets produced by all algorithms.

IGD [30] is used to calculate the distance of the non-dominated set Ω l relative to a reference set Ω∗.

IGD(Ωl , Ω∗) = 1
∣Ω∗∣ ∑x εΩ∗

min
yεΩ∗

d(x , y) (11)

where d(x , y) is the distance between a solution x and a reference solution y in the normalized objec-
tive space.

Three comparative algorithms are chosen. Zhang et al. [1] presented MOABC for parallel BPM schedul-
ing in the fabric dyeing process and MOABC is directly used in this study. Lei et al. [25] proposed ASFLA, an
adaptive SFLA-based algorithm, that integrating dynamic population division and adaptive search processes.
Li et al. [20] provided an NSGA-CC, which is formed by using NSGA-II [31] framework, incorporating a
hierarchical clustering-based environmental selection strategy. An SFLA is also applied to show the effect of
new strategies of ACSFLA, deleting the adaptive population and diversified cooperated search.

5.2 Parameter Settings
ACSFLA has following parameters: N, s, μ, γ1, γ2 and stopping condition. Regarding the stopping

condition, ACSFLA demonstrates good convergence when the CPU time reaches 0.05 × n ×m seconds CPU
time. Moreover, all comparative algorithms also converge effectively within this CPU time. Therefore, 0.05 ×
n ×m seconds CPU time is set as the stopping condition for all algorithms.

Taguchi method [32] is used to decide the settings for other parameters by using instance 25, which
belongs to combination 100 × 9 × 7. Table 3 shows the levels of each parameter, in which five four levels are
set for each parameter.

Table 3: Parameters and their levels

Factor level

Parameters 1 2 3 4
N 30 60 90 120
s 3 6 9 12

(Continued)
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Table 3 (continued)

Factor level

Parameters 1 2 3 4
μ 3 6 9 12
γ1 0.01 0.02 0.03 0.04
γ2 0.6 0.7 0.8 0.9

Fig. 2 shows the results of ρ and S/N ratio, which is defined as −10 × log10 (ρ2). It can be found
from Fig. 2 that ACSFLA with the following combination: N = 120, s = 6, μ = 6, γ1 = 0.03 and γ2 = 0.7 can
obtain better results than ACSFLA with other parameter combinations, so choose the above parameter
settings.

Figure 2: Main effect plot for means and S/N ratios

SFLA has N = 150, s = 5, μ = 60, and the above stopping condition. With respect to ASFLA, MOABC,
NSGA-CC, Lei et al. [25], Zhang et al. [1] and Li et al. [20] provided their parameter settings. These settings
except the stopping condition are directly used in this study. The experimental results show that these settings
of each comparative algorithm are still effective, so they are kept.

5.3 Results and Discussion
ACSFLA, ASFLA, and three comparative algorithms are used. Each algorithm randomly runs 10 times

for each instance. Tables 4–7 describe the corresponding results of five algorithms, in which AC, S, A, M,
N indicate ACSFLA, SFLA, ASFLA, MOABC, NSGA-CC. Fig. 3 gives a mean plot with 95% confidence
interval. Fig. 4 shows distributions of non-dominated solutions produced by each algorithm.
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Table 4: Computational results of five algorithms on metric ρ

Comb No. AC S A M N Comb No. AC S A M N
100 × 6 × 5 1 1.000 0.000 0.000 0.000 0.000 200 × 12 × 5 46 1.000 0.000 0.000 0.000 0.000

2 1.000 0.000 0.000 0.000 0.000 47 1.000 0.000 0.000 0.000 0.000
3 1.000 0.000 0.000 0.000 0.000 48 1.000 0.000 0.000 0.000 0.000
4 1.000 0.000 0.000 0.000 0.000 49 1.000 0.000 0.000 0.000 0.000
5 1.000 0.000 0.000 0.000 0.000 50 1.000 0.000 0.000 0.000 0.000

100 × 6 × 7 6 1.000 0.000 0.000 0.000 0.000 200 × 12 × 7 51 1.000 0.000 0.000 0.000 0.000
7 0.667 0.000 0.333 0.000 0.000 52 0.625 0.000 0.000 0.375 0.000
8 1.000 0.000 0.000 0.000 0.000 53 1.000 0.000 0.000 0.000 0.000
9 0.700 0.000 0.300 0.000 0.000 54 1.000 0.000 0.000 0.000 0.000
10 1.000 0.000 0.000 0.000 0.000 55 1.000 0.000 0.000 0.000 0.000

100 × 6 × 9 11 1.000 0.000 0.000 0.000 0.000 200 × 12 × 9 56 0.750 0.000 0.000 0.250 0.000
12 1.000 0.000 0.000 0.000 0.000 57 0.714 0.000 0.000 0.286 0.000
13 1.000 0.000 0.000 0.000 0.000 58 0.714 0.000 0.286 0.000 0.000
14 1.000 0.000 0.000 0.000 0.000 59 1.000 0.000 0.000 0.000 0.000
15 0.357 0.000 0.429 0.000 0.214 60 1.000 0.000 0.000 0.000 0.000

100 × 9 × 5 16 1.000 0.000 0.000 0.000 0.000 300 × 12 × 5 61 0.000 0.200 0.800 0.000 0.000
17 0.500 0.500 0.000 0.000 0.000 62 0.167 0.000 0.333 0.167 0.333
18 1.000 0.000 0.000 0.000 0.000 63 1.000 0.000 0.000 0.000 0.000
19 1.000 0.000 0.000 0.000 0.000 64 0.000 0.000 0.500 0.000 0.500
20 1.000 0.000 0.000 0.000 0.000 65 0.143 0.000 0.857 0.000 0.000

100 × 9 × 7 21 1.000 0.000 0.000 0.000 0.000 300 × 12 × 7 66 0.000 0.000 0.571 0.000 0.429
22 1.000 0.000 0.000 0.000 0.000 67 1.000 0.000 0.000 0.000 0.000
23 0.600 0.000 0.300 0.000 0.100 68 0.000 0.000 0.000 0.667 0.333
24 1.000 0.000 0.000 0.000 0.000 69 1.000 0.000 0.000 0.000 0.000
25 0.750 0.000 0.000 0.250 0.000 70 0.700 0.000 0.000 0.300 0.000

100 × 9 × 9 26 0.933 0.000 0.000 0.000 0.067 300 × 12 × 9 71 0.600 0.000 0.000 0.400 0.000
27 1.000 0.000 0.000 0.000 0.000 72 0.455 0.000 0.182 0.364 0.000
28 1.000 0.000 0.000 0.000 0.000 73 1.000 0.000 0.000 0.000 0.000
29 1.000 0.000 0.000 0.0 0.000 74 0.444 0.000 0.000 0.444 0.111
30 1.000 0.000 0.000 0.000 0.000 75 1.000 0.000 0.000 0.000 0.000

200 × 9 × 5 31 1.000 0.000 0.000 0.000 0.000 300 × 15 × 5 76 0.625 0.000 0.375 0.000 0.000
32 0.667 0.000 0.333 0.000 0.000 77 1.000 0.000 0.000 0.000 0.000
33 1.000 0.000 0.000 0.000 0.000 78 1.000 0.000 0.000 0.000 0.000
34 1.000 0.000 0.000 0.000 0.000 79 1.000 0.000 0.000 0.000 0.000
35 1.000 0.000 0.000 0.000 0.000 80 1.000 0.000 0.000 0.000 0.000

200 × 9 × 7 36 1.000 0.000 0.000 0.000 0.000 300 × 15 × 7 81 1.000 0.000 0.000 0.000 0.000
37 1.000 0.000 0.000 0.000 0.000 82 1.000 0.000 0.000 0.000 0.000
38 1.000 0.000 0.000 0.000 0.000 83 1.000 0.000 0.000 0.000 0.000
39 1.000 0.000 0.000 0.000 0.000 84 1.000 0.000 0.000 0.000 0.000
40 1.000 0.000 0.000 0.000 0.000 85 1.000 0.000 0.000 0.000 0.000

200 × 9 × 9 41 0.846 0.000 0.000 0.000 0.154 300 × 15 × 9 86 0.857 0.000 0.143 0.000 0.000
42 1.000 0.000 0.000 0.000 0.000 87 1.000 0.000 0.000 0.000 0.000
43 1.000 0.000 0.000 0.000 0.000 88 0.667 0.000 0.167 0.167 0.000
44 0.500 0.000 0.000 0.000 0.500 89 0.200 0.000 0.000 0.000 0.800
45 0.250 0.000 0.375 0.375 0.000 90 0.714 0.000 0.000 0.000 0.286

Note: The bold entries represent the data where ACSFLA outperforms other algorithms.
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Table 5: Computational results of five algorithms on metric IGD

Comb No. AC S A M N Comb No. AC S A M N
100 × 6 × 5 1 0.000 1.204 0.848 0.865 1.026 200 × 12 × 5 46 0.000 0.723 0.424 0.566 0.312

2 0.000 0.730 0.452 0.783 0.680 47 0.000 0.683 0.350 0.487 0.346
3 0.000 0.611 0.761 1.095 0.643 48 0.000 0.922 0.452 0.901 0.601
4 0.000 0.582 0.469 0.762 0.500 49 0.000 0.706 0.302 0.786 0.559
5 0.000 1.072 0.668 0.837 0.776 50 0.000 1.034 0.246 0.514 0.387

100 × 6 × 7 6 0.000 0.816 0.208 0.646 0.476 200 × 12 × 7 51 0.000 0.605 0.738 0.405 0.426
7 0.018 0.833 0.082 0.519 0.177 52 0.070 0.436 0.314 0.117 0.396
8 0.000 0.838 0.124 0.478 0.268 53 0.000 0.701 0.168 0.338 0.516
9 0.065 0.374 0.076 0.496 0.151 54 0.000 0.408 0.243 0.489 0.547
10 0.000 1.048 0.350 0.903 0.515 55 0.000 0.734 0.487 0.454 0.789

100 × 6 × 9 11 0.000 0.437 0.653 0.424 0.304 200 × 12 × 9 56 0.115 0.746 0.150 0.154 0.304
12 0.000 0.766 0.716 0.597 0.356 57 0.128 1.132 0.634 0.254 0.447
13 0.000 0.538 0.261 0.695 0.302 58 0.439 0.400 0.195 0.026 0.217
14 0.000 0.603 0.799 0.520 0.510 59 0.724 0.236 0.208 0.132 0.626
15 0.210 0.387 0.189 0.593 0.230 60 0.554 0.842 0.210 0.000 0.391

100 × 9 × 5 16 0.000 0.635 0.266 0.408 0.424 300 × 12 × 5 61 0.201 0.292 0.068 0.288 0.206
17 0.218 0.184 0.421 0.610 0.378 62 0.203 0.284 0.229 0.237 0.148
18 0.000 0.696 0.607 0.767 0.582 63 0.344 0.540 0.000 0.662 0.502
19 0.000 0.738 0.682 0.880 0.547 64 0.269 0.536 0.196 0.513 0.196
20 0.000 1.080 0.955 1.161 0.889 65 0.221 0.916 0.052 0.396 0.178

100 × 9 × 7 21 0.000 0.453 0.275 0.353 0.504 300 × 12 × 7 66 0.157 0.174 0.120 0.117 0.094
22 0.000 0.637 0.068 0.594 0.532 67 0.000 0.382 0.447 0.656 0.189
23 0.206 0.286 0.210 0.460 0.296 68 0.317 0.425 0.596 0.122 0.227
24 0.000 0.447 0.224 0.548 0.462 69 0.000 0.888 0.185 0.476 0.319
25 0.055 0.344 0.462 0.184 0.451 70 0.141 0.492 0.271 0.032 0.342

100 × 9 × 9 26 0.008 0.074 0.198 0.348 0.122 300 × 12 × 9 71 0.240 0.424 0.373 0.168 0.229
27 0.000 0.339 0.225 0.805 0.498 72 0.312 0.319 0.275 0.044 0.247
28 0.000 0.682 0.552 0.657 0.256 73 0.000 0.851 0.553 0.539 0.294
29 0.000 0.389 0.569 0.682 0.620 74 0.083 0.534 0.122 0.109 0.175
30 0.000 0.566 0.401 0.789 0.420 75 0.000 0.780 0.467 0.593 0.416

200 × 9 × 5 31 0.000 0.576 0.417 0.812 0.690 300 × 15 × 5 76 0.072 0.347 0.217 0.276 0.245
32 0.053 0.461 0.096 0.428 0.578 77 0.000 0.793 0.361 0.702 0.741
33 0.000 0.792 0.469 0.507 0.533 78 0.000 1.098 0.643 0.762 0.742
34 0.000 0.501 0.518 0.407 0.542 79 0.000 0.577 0.337 0.491 0.482
35 0.000 0.515 0.530 0.824 0.550 80 0.000 0.700 0.198 0.712 0.603

200 × 9 × 7 36 0.000 0.652 0.302 0.512 0.557 300 × 15 × 7 81 0.000 0.737 0.648 0.679 0.559
37 0.000 0.641 0.522 0.590 0.681 82 0.000 0.900 0.560 0.569 0.359
38 0.000 0.681 0.242 0.171 0.420 83 0.000 0.748 0.383 0.669 0.515
39 0.000 0.816 0.474 0.842 0.349 84 0.000 0.614 0.433 0.521 0.510
40 0.000 0.542 0.561 0.706 0.554 85 0.000 0.405 0.482 0.512 0.405

200 × 9 × 9 41 0.073 0.583 0.474 0.509 0.272 300 × 15 × 9 86 0.030 0.472 0.228 0.313 0.344
42 0.000 0.734 0.407 0.973 0.607 87 0.000 0.692 0.693 0.647 0.425
43 0.000 0.739 0.260 0.806 0.428 88 0.094 0.390 0.248 0.227 0.133
44 0.365 0.722 0.366 0.557 0.161 89 0.434 0.393 0.445 0.324 0.035
45 0.249 0.333 0.185 0.098 0.256 90 0.131 0.497 0.264 0.293 0.111

Note: The bold entries represent the data where ACSFLA outperforms other algorithms.
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Table 6: Computational results of five algorithms on metric C part1

Comb No. C (AC,
S)

C (S,
AC)

C (AC,
A)

C (A,
AC)

C (AC,
M)

C (M,
AC)

C (AC,
N)

C (N,
AC)

100 × 6 × 5 1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
3 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
4 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
5 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

100 × 6 × 7 6 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
7 1.000 0.000 0.000 0.200 1.000 0.000 1.000 0.000
8 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
9 1.000 0.000 0.250 0.000 1.000 0.000 0.750 0.000
10 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

100 × 6 × 9 11 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
12 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
13 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
14 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
15 1.000 0.000 0.000 0.000 1.000 0.000 0.556 0.000

100 × 9 × 5 16 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
17 0.500 0.833 0.000 0.000 1.000 0.000 1.000 0.000
18 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
19 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
20 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

100 × 9 × 7 21 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
22 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
23 1.000 0.000 0.250 0.000 1.000 0.000 0.000 0.000
24 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
25 1.000 0.000 1.000 0.000 0.950 0.000 1.000 0.000

100 × 9 × 9 26 1.000 0.000 1.000 0.000 1.000 0.000 0.500 0.000
27 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
28 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
29 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
30 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

200 × 9 × 5 31 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
32 1.000 0.000 0.500 0.000 1.000 0.000 1.000 0.000
33 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
34 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
35 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

200 × 9 × 7 36 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
37 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
38 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
39 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
40 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

(Continued)
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Table 6 (continued)

Comb No. C (AC,
S)

C (S,
AC)

C (AC,
A)

C (A,
AC)

C (AC,
M)

C (M,
AC)

C (AC,
N)

C (N,
AC)

200 × 9 × 9 41 1.000 0.000 1.000 0.000 1.000 0.000 0.600 0.000
42 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
43 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
44 1.000 0.000 1.000 0.000 1.000 0.000 0.833 0.000
45 1.000 0.000 0.571 0.000 0.733 0.000 1.000 0.000

Note: The bold entries represent the data where ACSFLA outperforms other algorithms.

Table 7: Computational results of five algorithms on metric C part2

Comb No. C (AC,
S)

C (S,
AC)

C (AC,
A)

C (A,
AC)

C (AC,
M)

C (M,
AC)

C (AC,
N)

C (N,
AC)

200 × 12 × 5 46 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
47 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
48 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
49 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
50 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

200 × 12 × 7 51 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
52 1.000 0.000 1.000 0.000 0.750 0.000 1.000 0.000
53 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
54 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
55 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

200 × 12 × 9 56 1.000 0.000 1.000 0.000 0.500 0.000 1.000 0.000
57 1.000 0.000 1.000 0.000 0.111 0.000 1.000 0.000
58 0.667 0.833 0.000 1.000 0.000 1.000 0.000 1.000
59 0.667 1.000 0.000 1.000 0.000 1.000 0.000 0.667
60 1.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000

300 × 12 × 5 61 0.750 0.000 0.000 1.000 0.583 0.000 0.333 0.333
62 1.000 0.000 0.000 0.667 0.778 0.000 0.333 0.000
63 1.000 0.000 0.000 1.000 1.000 0.000 0.600 0.000
64 1.000 0.000 0.000 1.000 0.917 0.000 0.000 1.000
65 1.000 0.000 0.000 0.667 1.000 0.000 0.500 0.333

300 × 12 × 7 66 0.667 0.667 0.000 1.000 0.375 0.333 0.250 0.333
67 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
68 1.000 0.000 1.000 0.000 0.250 1.000 0.600 0.000
69 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
70 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

300 × 12 × 9 71 1.000 0.000 1.000 0.000 0.882 0.000 1.000 0.000
72 1.000 0.000 0.500 0.000 0.533 0.000 0.750 0.000
73 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
74 1.000 0.000 0.167 0.000 0.474 0.200 0.800 0.000

(Continued)
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Table 7 (continued)

Comb No. C (AC,
S)

C (S,
AC)

C (AC,
A)

C (A,
AC)

C (AC,
M)

C (M,
AC)

C (AC,
N)

C (N,
AC)

75 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
300 × 15 × 5 76 1.000 0.000 0.000 0.167 0.556 0.000 1.000 0.000

77 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
78 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
79 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
80 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

300 × 15 × 7 81 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
82 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
83 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
84 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
85 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

300 × 15 × 9 86 1.000 0.000 0.000 0.000 0.714 0.000 0.909 0.000
87 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
88 1.000 0.000 0.667 0.000 0.889 0.000 1.000 0.000
89 1.000 0.000 1.000 0.000 0.929 0.000 0.556 0.000
90 1.000 0.000 1.000 0.000 0.889 0.000 0.667 0.000

Note: The bold entries represent the data where ACSFLA outperforms other algorithms.

Figure 3: Mean plot with 95% confidence interval

ACSFLA demonstrates clear superiority in terms of the ρ metric. As shown in Table 4, ACSFLA achieves
higher ρ values than the other algorithms in 79 of 90 instances, achieving a ρ value of 1 in 60 instances.
This indicates that all the non-dominated solutions produced by ACSFLA are also non-dominated in the
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combined reference set Ω, demonstrating that ACSFLA not only generates high-quality solutions but also
outperforms the other algorithms. The average ρ value for ACSFLA is 0.82, with a standard deviation of 0.29,
reflecting consistent high performance. Furthermore, when ACSFLA is compared with other algorithms
using a t-test, the p-values are all far smaller than 0.05, highlighting its significant advantage.

Figurer 4: Distribution of non-dominated solutions

ACSFLA also demonstrates superior performance in terms of the IGD metric. Table 5 shows that
ACSFLA achieves smaller IGD values than SFLA in 88 instances, ASFLA in 78 instances, MOABC in 83
instances, and NSGA-CC in 82 instances. These results highlight ACSFLA’s superior ability to approximate
the ideal reference set Ω and its better convergence ability toward the Pareto front. The average IGD value
for ACSFLA is 0.076, with a standard deviation of 0.14, indicating consistent performance. The maximum
IGD value achieved is 0.724, demonstrating that ACSFLA maintains a competitive edge in most cases.
Furthermore, when ACSFLA is compared with other algorithms using a t-test, the p-values are all far smaller
than 0.05, confirming its significant advantage in terms of convergence and solution quality.

In terms of the C metric, ACSFLA shows a significant advantage over other algorithms. As presented
in Tables 6 and 7, ACSFLA achieves smaller C(S , AC) values than C(AC , S) in 89 of 90 instances, smaller
C(A, AC) than C(AC , A) in 79 instances, smaller C(M , AC) than C(AC , M) in 86 instances, and smaller
C(N , AC) than C(AC , N) in 85 instances. Specifically, ACSFLA reaches C(AC , S) = 1 in 85 instances,
C(A, AC) = 1 in 69 instances, C(AC , M) = 1 in 68 instances, and C(AC , N) = 1 in 69 instances. The average
values for C(AC , S), C(AC , A), C(AC , M), and C(AC , N) are 0.98, 0.79, 0.89, and 0.87, respectively, with
standard deviations of 0.08, 0.38, 0.24, and 0.27. This indicates that the non-dominated solutions generated
by ACSFLA are stronger than other solutions from other algorithms.

The above result analyses show that ACSFLA obtains better results than its three comparative algo-
rithms. Initialization is done by the heuristic method, Mo and Mq are used for adaptive population division.
Executing adaptive cooperated and diversified memeplex search based on the dominance relationship
between memeplexes. As a result, the exploration capability is intensified and high diversity is maintained.
Thus, ASFLA is a very competitive method for solving parallel BPM scheduling in the fabric dyeing process.
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6 Conclusion and Future Topics
In this paper, we have effectively resolved the parallel BPM scheduling problem with machine eligibility

in fabric dyeing processes using the newly developed adaptive cooperated shuffled frog-leaping algorithm
(ACSFLA). ACSFLA incorporates innovative strategies based on the quality Mq and evolutionary quality Mo
of memeplexes, along with the dominance relationships C between them. By eliminating global population
shuffling and conducting targeted shuffling within the division pool for selected memeplexes, ACSFLA
significantly enhances algorithm efficiency. Extensive experiments have demonstrated the effectiveness of
ACSFLA’s new strategies, with the algorithm outperforming comparative algorithms from the literature in
minimizing makespan and total tardiness, thus highlighting its substantial advantages in solving this specific
scheduling problem.

For future research directions in parallel BPM scheduling for fabric dyeing, several promising paths
could be explored. Incorporating energy consumption as an additional objective might be a key step toward
achieving more energy-efficient processes. This could involve devising algorithms considering the power
consumption patterns of machines and job sequences to minimize energy use during dyeing. Developing new
neighborhood search methods could be an effective way to enhance search efficiency, enabling the algorithm
to find better solutions in a shorter time. Applying reinforcement learning techniques may also hold great
potential in making the scheduling more intelligent and adaptable to dynamic production situations. The
key features of the algorithm include adaptive population division, as well as an adaptive cooperated and
diversified search strategy.
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