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ABSTRACT: Efficient energy management is a cornerstone of advancing cognitive cities, where Al, IoT, and cloud
computing seamlessly integrate to meet escalating global energy demands. Within this context, the ability to forecast
electricity consumption with precision is vital, particularly in residential settings where usage patterns are highly vari-
able and complex. This study presents an innovative approach to energy consumption forecasting using a bidirectional
Long Short-Term Memory (LSTM) network. Leveraging a dataset containing over two million multivariate, time-series
observations collected from a single household over nearly four years, our model addresses the limitations of traditional
time-series forecasting methods, which often struggle with temporal dependencies and non-linear relationships. The
bidirectional LSTM architecture processes data in both forward and backward directions, capturing past and future
contexts at each time step, whereas existing unidirectional LSTMs consider only a single temporal direction. This
design, combined with dropout regularization, leads to a 20.6% reduction in RMSE and an 18.8% improvement in
MAE over conventional unidirectional LSTMs, demonstrating a substantial enhancement in prediction accuracy and
robustness. Compared to existing models—including SVM, Random Forest, MLP, ANN, and CNN—the proposed
model achieves the lowest MAE of 0.0831 and RMSE of 0.2213 during testing, significantly outperforming these
benchmarks. These results highlight the model’s superior ability to navigate the complexities of energy usage patterns,
reinforcing its potential application in Al-driven IoT and cloud-enabled energy management systems for cognitive
cities. By integrating advanced machine learning techniques with IoT and cloud infrastructure, this research contributes
to the development of intelligent, sustainable urban environments.

KEYWORDS: Deep learning; bidirectional LSTM; energy consumption forecasting; time-series analysis; predictive
modeling; machine learning in energy management
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1 Introduction

Accurate energy demand forecasting is crucial for effective power grid management, aiding utility
sectors in optimizing short-term (ST) load decisions. ST forecasting, which covers timeframes from one
hour to one week, plays a vital role in ensuring efficient energy distribution [1]. The energy consumption
calculation with fluctuation in various sectors is still a challenging task to be handled by the available energy
systems (ES) [2]. It reveals that EC all over the globe is swiftly rising. Hence, every nation attempts to employ
as low energy as feasible within their nation in disparate regions from buildings to ranches, from factory
procedures to automobiles [3].

Energy consumption arises from numerous sources including fossil fuels (coal, oil, natural gas),
renewable energy resources (solar, wind, hydrothermal, and geothermal power stations), and nuclear power
stations where each of them plays a vital role in addressing the energy demands. The variability exhibited
by each of the sources might affect the accuracy of the prediction. A time series analysis to calculate
the fluctuation in different meters is a potential task for any analytics model [4]. Forecasting acts as a
planning tool to analyze consumption, which is affected by various influencing factors such as weather
conditions, economic activities, and technological advancements [5]. Reliable forecasts enable policymakers
and industries to develop energy-efficient strategies, reduce waste, and transition towards sustainable energy
practices [6].

Electricity demand in cities rose proportionately to its increase in populace [7]; however, this demand
encounters an elevated ST difference because of the disposition of factory, business, and residentiary actions
in every particular subject. Additionally, accurate forecasting becomes a crucial task in a stable energy supply
where the load should be matched with the energy supply [8]. Centered upon these concerns, it remains
beneficial to proffer forecasting paradigms capable of prognosticating the energy demand (ED) of single
or multiple frameworks meant to reinforce public laws for the production and dispensation of electrical
energy (EE). Both the futurity supplying of EE and the present administration of electricity production and
dispensation in particular situations greatly need the finest forecasting instruments for portraying disparate
circumstances and reinforcing resolution, creating, and preparing in the urbanized preparation scope. To
detect the paradigm that perfectly suits the accessible data for giving dependable forecasts, it remains
essential to correlate disparate techniques, explain everyone’s benefits and drawbacks, and impartially select
the finest choice.

Machine Learning models are implemented in numerous fields due to their effectiveness. The models
work by mapping input data to a desired output and making accurate predictions. These models can
forecast Energy Consumption (EC) with high precision. Hence, they could be employed by governments to
implement energy-saving laws. As an example, machine learning paradigms could perform the time-series
analysis in calculating the energy consumption to ensure the reliability of the modern electricity grid [9].
They could also be employed to prognosticate the upcoming usage of disparate energy sources such as
electricity or natural gas.

This paper proffers deep learning (DL) approaches for precisely forecasting EC in the RBs with the
RE model. For loading the space detected within the knowledge’s body, this study designs establish and
substantiates an HMAEC forecasting methodology (FM) centered upon a Bidirectional Long Short-Term
Memory-Recurrent Neural Network (BLSTM-RNN). The focuses of the chief apportionments made by this
established technique are as follows: Identifying research gaps in the importance of energy consumption
forecasting and its relevance in power grid administration involves understanding the existing literature and
pinpointing areas that require further investigation. While research in this area is extensive, several potential
research gaps exist. Research focusing on the implementation and evaluation of advanced forecasting
methods in real-world grid operations could provide valuable insights. The quality and availability of data
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play a crucial role in the accuracy of energy consumption forecasts. Research exploring the impact of
data quality issues, such as missing data, outliers, and measurement errors, on forecasting performance is
essential. Energy consumption forecasting inherently involves uncertainty due to factors such as weather
variations, economic fluctuations, and technological changes. Many existing forecasting models operate at
aggregated temporal and spatial resolutions, which may limit their ability to capture localized variations
and short-term dynamics in energy consumption. Energy consumption forecasting not only impacts grid
operations but also has broader socioeconomic and environmental implications. The contributions of the
article in power consumption forecasting are given below:

o A “real-world dataset” typically refers to a collection of data gathered from actual observations or
measurements in the physical or digital world, rather than being artificially generated or simulated.

»  Subsequently preprocessing for the extracted data is performed by using fuzzy C-Means clustering model
added to normalization also.

» By using bi-directional RNN with LSTM learning model training and validation for the given dataset
is performed.

o The obtained results were compared with the existing methods like MSE, MAE, and RMSE.

2 Literature Survey

EE remains very significant in terms of energy’s endurability and the environment. A study on modern
energy (ME) projects in South Africa highlights the role of Al-driven predictive analysis in optimizing
long-term energy management. This reinforces the advantage of bidirectional LSTM for power fluctuation
prediction. Unlike standard predictive strategies, which may struggle with dynamic energy variations, bidi-
rectional LSTM eftectively handles temporal dependencies, making it a more robust solution for managing
energy fluctuations in real-world applications [10]. The study [11] implements the LSTM model to perform
power demand forecasting based on the consumer’s utility. The study [12] assesses the P-V techniques to
analyze building energy (BE). Their analysis proved that the P-V technique using Auto-Enconder, along
with Neural Network, was employed extensively within the EDn. Their examination exhibited that the ANN
paradigm remained extremely famous for extracting energy-related features effectively. This is due to the
ability of ANN to learn fluctuating patterns in energy consumption and the generalization of the fluctuation
in real-world scenarios. The various factors affecting power consumption including weather conditions, time,
user behavior, etc can be captured well by the multi-layered structure and the feature extraction process of
ANN. The various error rate measures are considered for analyzing the stability of the model, and they have
resulted in better results compared to other existing models. The study [13] analyzes D-D techniques for
prognosticating building EC (BEC). This work concentrates on examining the prognosis scopes, the data
preprocessing (DP) methodologies, the machine learning prognosis paradigm, and the execution standards
employed for assessment. Considering the data dimension, the majority of the investigated works employed
a 1-month to 1-year database. The study [14] presents a deep learning approach that integrates Multilayer
Perceptron (MLP), Deep Neural Network (DNN), and LSTM to create an effective power usage factor for
optimizing energy efficiency. ResNet also performs superiorly in forecasting power consumption due to
its in-depth architecture, and it can solve the gradient descent problem through its residual connections.
The existing DNN model’s efficiency faces limitations in deeper analysis, whereas ResNet concentrates on
smoothening the gradient approach and improving the overall performance of the model. Next, a residual
NN was established to stimulate EC in disparate spatiotemporal solutions. Nevertheless, producing the
EC data out of a physics-related paradigm remains long drawn out and the weight of the hidden layers
(HLs) weight within ResNet could be excerpted for describing the comparisons betwixt utilization in
neighboring buildings. The study [15] implements a deep reinforcement learning model to analyze the
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continuous fluctuations in energy analysis that are experienced by the data centers. The study [16] examines
the Al paradigms’ execution in prognosticating measures. The experiential outcome exhibited that the dual
strategical analysis based on the nature of the data can be implemented for energy forecasting. The study
also summed up the idea that the implementation of AI models in building management and automation
systems (BMAS) could extract accurate data promptly. This study has also identified the challenges faced by
traditional unidirectional LSTM and transformers, which fail to analyze the dual effects of energy data, i.e.,
past and futuristic information of the current data. An ensemble analysis of LSTM and CNN gave a better
performance in analyzing the power consumption forecasting with small grids [17]. The kernel assignment
to the deep neural models such as Feed Forward Neural Network has reduced the MAE when compared to
other models [18]. By the assessment of the present knowledge status aforementioned, anyone could detect
a real requirement, a space within the present technique concerning attaining a precise LT hourly forecast
for the MHEC relating to enormous commercial center-kind electricity consumers (CCECs) devoid of
encountering an important fall in the FA, which generally includes happening after the initial 2 weeks. Hence,
by following this way, anyone could attain a dependable, precise FM, that fulfills the contractor’s requirements
assisting him in attaining durable economic, trade, and administrative commercial procedures. Compared to
convolutional neural networks (CNNs), which excel at spatial feature extraction but struggle with sequential
dependencies, Bi-LSTM is better suited for handling temporal complexities. Additionally, while architectures
like ResNet are effective in deep hierarchical learning, they may not be as specialized in modeling sequential
patterns as Bi-LSTM. Furthermore, compared to traditional models such as Support Vector Machines (SVM)
and Random Forest, Bi-LSTM demonstrates superior performance in capturing nonlinear dependencies
and long-range correlations in power consumption data. By leveraging dropout regularization and efficient
backpropagation, Bi-LSTM enhances prediction accuracy while reducing overfitting, making it an optimal
choice for energy consumption forecasting in smart grids and cognitive cities.

3 Methodology

This section outlines the methodology employed to develop and evaluate a bidirectional LSTM model
for forecasting household electricity consumption. The study utilizes a comprehensive dataset, detailing
the implementation process from data preprocessing to model evaluation. Fig. I represents the complete
workflow of the proposed methodology.

3.1 Data Collection and Preprocessing

The foundation of this study is a dataset consisting of 2,075,259 multivariate time-series observations,
meticulously recorded from a single household located near Paris, France. The data collection spanned
almost four years, from December 2006 to November 2010, providing a rich longitudinal study of household
electricity consumption. This dataset is not only extensive but also intricate, including a variety of electrical
measurements that provide a detailed snapshot of household energy use dynamics. The variables recorded
in this dataset include basic temporal markers—date and time—and several critical electricity consumption
metrics. Among these metrics are:

«  Global Active Power: The total active power consumed by the household at a given minute, measured
in kilowatts (kW). Active power is the productive power that performs work in the electrical system.

« Global Reactive Power: The total reactive power, measured in kilovolt-amperes reactive (kVAR). Unlike
active power, reactive power does not perform work, instead oscillating between the source and load. It
is essential for maintaining the voltage levels necessary for equipment operation.

« Voltage: The average voltage level observed during the minute, measured in volts (V). This measurement
is indicative of the quality and stability of the electricity supplied to the household.
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« Global Intensity: This represents the total current consumed by the household, measured in amperes
(A). It provides a direct measure of how intense the usage of electricity is at any given time.

« Sub-metering Values: These are readings from three separate sub-meters in the household, tracking
specific categories of electrical appliances or circuits separately.
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Figure 1: Workflow of proposed bidirectional LSTM model

Initial data integrity checks revealed that approximately 1.25% of the observations were incomplete,
presenting a potential challenge for any time-series analysis. Missing values can introduce bias or distort the
predictive modeling process, leading to inaccurate forecasts.
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In this study, missing values were handled by exclusion, meaning any timestamp containing incomplete
data was omitted from the dataset. This approach was chosen to maintain the robustness of the analytical
results, ensuring that only complete and accurate data was used for further processing and modeling. The
decision to omit rather than impute or replace missing data was based on the rationale that the high
granularity of the dataset (minute-level observations) and the relatively low percentage of missingness would
allow for this without compromising the dataset’s integrity or the continuity of the time series. Fig. 2 shows
the global active power distribution and its normal probability. The raw data collected provided timestamps
in separate date and time columns. To facilitate time-series analysis and modelling, these were combined into
a single date-time object for each observation. This transformation not only simplifies the dataset structure
but also enhances the model’s ability to understand and leverage the inherent temporal relationships in
the data. Table 1 presents Kurtosis and Skewness values for a normal distribution. These derived features
are pivotal for the subsequent analytical phases, providing the means to dissect the time series into more
manageable and interpretable components, each reflecting different aspects of temporal variability in power
usage. The resamples of power consumption are presented in Fig. 3.
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Figure 2: Power distribution and normal probability plot

Table 1: Kurtosis and skewness of normal distribution

Metric Value

Kurtosis of normal distribution 4.218671866132123
Skewness of normal distribution 1.7862320846320832
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Figure 3: Resampled power consumption on different timestamps

The entire process of collecting the data from the common platform can be obtained, stored, and
restored from the cloud. This can be achieved by leveraging cloud-based computational resources, which
ensure scalability and efficiency and perform real-time predictions. First, historical power consumption
data, along with relevant features such as weather conditions, time of day, and appliance usage, must be
preprocessed using cloud-based storage and data pipelines like AWS S3, Google Cloud Storage, or Azure
Blob Storage. This data is then cleaned, normalised, and transformed into sequences before being fed into
a BILSTM model, which is trained using cloud-based machine-learning frameworks such as TensorFlow
and PyTorch [19]. Once trained, the BILSTM model is evaluated using validation datasets and optimized
for performance through techniques such as dropout regularization and learning rate adjustments. After
achieving satisfactory accuracy, the model is saved in a serialized format (e.g., TensorFlow) and deployed
as a cloud-based API using services like AWS Lambda or Google Cloud Functions. For real-time power
consumption forecasting, the deployed model can be integrated with IoT devices, smart meters, and edge
computing nodes, ensuring seamless data flow and low-latency predictions.
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Given the wide range of values across different electrical measurements, normalization was imperative
to standardize the dataset, thereby optimizing the neural network model’s performance. The MinMaxS-
caler was employed to scale all numerical features, including electricity consumption metrics and newly
engineered time-based features, to a uniform range of 0 to 1. It is shown in Eq. (1).

X = Xmi
Xscaled = — = 4]

max — Xmin
where:

o  xis the original value,
e Xscaled i the normalized value,
e Xmin and X are the minimum and maximum values of the feature across the dataset.

This scaling not only aids in speeding up the convergence of the model during training but also prevents
any one feature from dominating the model’s learning process due to its scale.

Normalization is particularly important in the context of neural networks, as it ensures that the
gradient descent algorithm (Eq. (2)) used in training the models operate efficiently and effectively. Without
normalization, models can become biased or skewed towards variables with higher magnitudes, and training
can become inefficient, leading to longer convergence times or convergence to suboptimal solutions.

w=w-a-— (2)

where:

o w is the weight of the neural network,
o ais the learning rate,

. g—i is the gradient of the loss function L with respect to the weight w.

By meticulously preparing the dataset through these preprocessing steps, the study ensures that the
subsequent modeling not only efficiently but also effectively captures and reflects the underlying dynamics of
household electricity consumption, setting a strong foundation for accurate and robust predictive modeling.

3.2 Model Architecture

The architecture of a model plays a critical role in its success in task execution. This section details
the architecture of a sophisticated bidirectional Long Short-Term Memory (LSTM) model, designed specif-
ically for the task of forecasting electricity consumption at a household level. This model leverages the
sequential nature of time-series data to predict future values based on past observations, utilizing advanced
techniques such as bidirectional learning and dropout regularization to enhance its predictive accuracy
and generalization.

The model’s core comprises a bidirectional LSTM architecture, a choice driven by the need to capture
both past (backward) and future (forward) dependencies within the data. LSTM networks are a type of
recurrent neural network (RNN) specially designed to avoid the long-term dependency problem, allowing
them to remember information for extended periods [20]. The bidirectional variant of LSTMs goes a step
further by processing the data in two directions with two separate hidden layers, which are then fed forward
to the same output layer. This structure enables the model to have both backward and forward information
about the sequence at every time point, making it exceptionally well-suited for time-series forecasting where
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context from both directions is crucial for accurate predictions [21]. The mathematical equations associated
with the model are given in Eqs. (3) to (8).

fr=0 (W [hi, %]+ by) <
it =0 (Wi-[hin,x:] + b;) W
C: = tanh (W - [h—1, ;] + bc) ©
Ci=fi-Cia+ir-C ©
01 =0 (W, [h_1, %] + b,) 7
h; = o; - tanh (C;) ®
where:

e f1 i1, 0, are the forget, input, and output gates, respectively,

e C;isthe cell state, and h; is the hidden state,

o Wp, Wi, We, W, are the weight matrices, and by, b, bc, b, are the bias terms,
« o and tanh are activation functions (sigmoid and hyperbolic tangent).

The equations represent the key computations in a Long Short-Term Memory (LSTM) unit, which is a
fundamental building block of a bidirectional LSTM network. Each step processes an input sequence while
maintaining memory of past information. First, the forget gate (f;) decides how much of the previous cell
state (C;_;) should be retained by applying a sigmoid activation to a weighted combination of the previous
hidden state (h_;) and current input (x;). Next, the input gate (i;) determines how much new information
should be added, using another sigmoid activation. The candidate cell state (C;) generates a new potential
memory update using the tanh activation function. The new cell state (C;) is then computed by combining
the previous cell state (scaled by f;) with the newly generated candidate state (scaled by i;). The output gate
(0¢) determines the final hidden state (h;) by applying a sigmoid activation and then scaling the updated
cell state using tanh. This hidden state is then passed to the next time step for further processing. In a
bidirectional LSTM, these computations are performed both forward and backward, allowing the model to
capture dependencies from both past and future contexts, improving the accuracy of sequential predictions
such as power consumption forecasting. The initial bidirectional (Eq. (9)) LSTM layer is configured with
100 units. This layer serves as the primary feature extractor, capturing the temporal dependencies from
both directions. The choice of 100 units is aimed at providing a balance between model complexity and
computational efficiency, ensuring that the model can capture the necessary information from the data
without being excessively prone to overfitting or requiring prohibitive computational resources [21].

h];)i _ [hgorward’ hl?ackward] (9)

where:

o hforvard js the hidden state from the forward LSTM layer,
pbackward ¢ the hidden state from the backward LSTM layer,
« K% is the concatenated bidirectional hidden state.

Following the initial layer, a second bidirectional LSTM layer with 50 units further refines the features
extracted by the first layer. This layer helps in distilling the information to focus on the most relevant patterns
that are predictive of future electricity consumption. Reducing the number of units in successive layers is
a common practice in deep learning architectures aimed at progressively compressing the information to
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the most salient features [22]. To combat the risk of overfitting, especially significant in models dealing with
large and complex datasets, dropout regularization (Eq. (10)) is employed between the LSTM layers.

h, = h; - Bernoulli (p) (10)

where:

. hlt is the output after applying dropout to the hidden state A,
o Bernoulli(p) is a Bernoulli random variable with probability p, the dropout rate (e.g., p = 0.2).

Overfitting occurs when a model learns not only the underlying pattern but also the noise in the training
data to an extent that it negatively impacts the model’s performance on new, unseen data. By randomly
omitting subsets of features (units in this case) during training (at a rate of 0.2 or 20% in this model), dropout
forces the network to learn more robust features that are useful in conjunction with many different random
subsets of the other neurons. This approach not only improves the generalization capabilities of the model but
also contributes to a more robust learning process as it prevents the network from relying too much on any
single feature. To determine the optimal dropout rate, a grid search is often conducted over a predefined range
(e.g., 0.1to 0.5), evaluating model performance based on validation loss and key metrics such as RMSE and
MAE. Additionally, empirical evaluation involves testing different dropout rates on a held-out validation set
and analyzing their impact on model stability and convergence. Cross-validation techniques further ensure
that the chosen dropout rate generalizes well across different subsets of data.

The architecture concludes with a dense output layer (Eq. (11)) that has a single unit. This layer’s purpose
is straightforward yet critical: to consolidate the features learned by the LSTM layers into a final prediction
of global active power consumption for the subsequent time step.

Ypred = Wout : hT + bout (11)

where:
¥ prea 18 the predicted electricity consumption at the next time step,
Wout is the weight matrix for the output layer,
hr is the final hidden state from the bidirectional LSTM,
b,y is the bias term for the output layer.

The output unit provides a continuous value, representing the model’s prediction of power usage, which
is crucial for decision-making in energy management systems. The use of a single unit for output reflects
the model’s final goal of predicting a single, continuous variable, which aligns with the typical structure of
regression tasks in machine learning [23].

This architecture represents a well-considered approach to handling the complexities of time-series
forecasting in the context of household electricity consumption. The use of a bidirectional LSTM allows
the model not only to leverage the inherent sequential nature of the data but also to encapsulate the
contextual relationships that a unidirectional approach might miss. Moreover, the incorporation of dropout
regularization ensures that the model remains generalizable and robust against overfitting, making it well-
suited for deployment in real-world scenarios where the model must perform well across varied and unseen
data. This model architecture thus provides a strong foundation for the accurate and effective forecasting of
electricity consumption, an essential step toward more efficient and sustainable energy management.
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3.3 Model Training and Validation

Training and validation are critical phases in the development of any predictive model. They ensure that
the model learns the underlying patterns of the training data and that it can generalize well to new, unseen
data. This section details the processes of data splitting, training, and the selection of hyperparameters in
the context of developing a bidirectional LSTM model for forecasting household electricity consumption.
The data set used in this study contains over two million multivariate time-series observations from a single
household, tracked over nearly four years. To prepare this dataset for training and validation, it was split
into two subsets: training (80%) and testing (20%). This division ensures that most of the data is available
for the model to learn from, while still reserving a substantial portion for testing its predictive power. The
split was conducted based on time, meaning that the first 80% of the dataset in chronological order was used
for training, and the remaining 20% was used for testing. This method preserves the temporal sequence of
observations, which is crucial for time-series analysis, ensuring that the training set only contains data from
earlier in the timeline and the testing set only from later. This approach avoids the risk of data leakage, where
future information could inadvertently be used to train the model, which would give misleadingly optimistic
performance metrics.

The training process of the LSTM model was meticulously designed to optimize its performance. The
Adam optimizer (Eq. (12)-(16)), known for its effectiveness in handling sparse gradients on noisy problems,
was chosen to minimize the mean squared error (MSE) (Eq. (17)) between the predicted and actual values
of electricity consumption. MSE is a common loss function for regression tasks, emphasizing larger errors
and ensuring that the model pays proportionately more attention to significant mispredictions.

my = Pimey + (1—P1) VoL (0;) (12)

ve = Bavic + (1-B2) (VoL (8:))* (13)

— mg

my = 1_—$t (14)
1

7i = l_v’ﬁt (15)
2

0111 = B — ——7m; (16)

Vit €
where:

o my and v, are the first and second moments of the gradients,

o S and f3; are the decay rates for the moment estimates (usually set to 0.9 and 0.999, respectively),
o VyL(0;) is the gradient of the loss function with respect to the model parameters,

o 7 isthelearning rate,

« ¢isasmall constant to avoid division by zero.

1 . .
MSE = N ZZI (yfl)red - yérue)z] (17)
where:

o N is the number of data points,
. y;re 4 is the predicted value of electricity consumption for the i-th observation,
« y!_ . istheactual value for the i-th observation.

Early stopping was implemented as a regularization technique to halt the training process if the model’s
performance on the validation set did not improve for several consecutive epochs. This technique helps in
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preventing overtraining—where the model becomes overly complex, fitting not only the underlying pattern
but also the noise in the training data, which can degrade its performance on new data. Selecting the
appropriate hyperparameters is fundamental to the success of a machine learning model. Hyperparameters
are the adjustable parameters that control the model training process. For this LSTM model, several key
hyperparameters were optimized through a series of preliminary experiments:

Batch Size determines the number of training examples utilized to calculate the gradient during
training. A suitable batch size ensures that each training epoch is a representative sample of the overall
dataset, balancing computational efficiency against the quality of the model’s learning process in our study
we used a batch size of 1240.

Number of Epochs refers to the number of times the entire training dataset is passed forward and
backward through the model. The optimal number of epochs balances sufficient training to capture the
complex dependencies in the data without veering into overfitting and thus we used 20 epochs.

These hyperparameters were tuned to minimize the validation loss, thereby ensuring that the model is
neither underfitting nor overfitting. The optimal values were found through a combination of grid search
and manual tuning, based on the model’s performance on the validation set. Through careful data manage-
ment, training procedure design, and hyperparameter optimization, this phase of the project solidifies the
foundation for a robust predictive model. This meticulous approach ensures that the model is well-prepared
to handle real-world data, providing reliable and accurate forecasts of household electricity consumption.

3.4 Model Evaluation

Training and validation are critical phases in the development of any predictive model. The evaluation
of the predictive model forms a fundamental component of the methodology, ensuring that the model’s
predictive performance is both reliable and applicable to practical scenarios. For this study, the Bidirectional
Long Short-Term Memory (BLSTM) model was selected to forecast electric power consumption, with its
performance assessed using two primary metrics: Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE).

Mean Absolute Error (MAE): This metric quantifies the average magnitude of the errors in a set of
predictions, without direction. It measures accuracy for continuous variables and is particularly useful in
scenarios where the target variable ranges across broad magnitudes. It is shown in Eq. (18).

L &N i
MAE = N Zi:l ‘ypred - ytrue‘ (18)

Root Mean Squared Error (RMSE): RMSE calculates the square root of the average squared differences
between predicted and actual observations. It offers a measure of the magnitude of error, giving a sense of
how large errors can be expected from the model on average, thus emphasizing larger errors more than MAE
due to its squaring of the residual errors. It is shown in Eq. (19).

1 &N i i 2
RMSE = \/N Zizl (ypred - ytrue) (19)

These metrics are crucial for quantifying the model’s ability to perform accurate predictions and are
standard in the field for evaluating regression models, particularly in time-series forecasting. Post-training,
visual tools such as line plots comparing actual vs. predicted values and loss plots over epochs are utilized to
assess model performance and convergence visually. These visual assessments help in identifying any patterns
of underfitting or overfitting and in evaluating the general trend-following ability of the model.
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3.5 Statistical Tests

Statistical tests play a crucial role in the validation of the assumptions underlying the forecasting model’s
performance. For this study involving electric power consumption, several statistical tests were conducted
to ensure the robustness and validity of the findings from the Bidirectional Long Short-Term Memory
(BLSTM) model.

Test for Normality: Given the regression nature of the task, testing for normality in the distribution
of residuals from the model predictions provides insights into the appropriateness of the model. A normal
distribution of residuals often validates the use of certain parametric tests and confidence intervals. The
Shapiro-Wilk test was chosen due to its sensitivity to deviations from normality. It is shown in Eq. (20).

n 2
W = (Zi:l aixi) (20)

Z?:l (xi - })2
where:

o a; are the constants obtained from the expected order statistics of the normal distribution,
o  x; are the ordered sample data points,
o X is the sample mean.

Dickey-Fuller Test: Stationarity is a critical aspect of time-series data, which implies that the statistical
properties such as mean, variance, and covariance of the data are constant over time. The Dickey-Fuller
test, a type of unit root test, was employed to test the null hypothesis that a unit root is present in a time
series sample. Rejecting the null hypothesis suggests that the time series is stationary, which is an assumption
required for some time-series forecasting models. It is shown in Eq. (21).

-1
T= . (21)
SE(¢)
where:

A

o ¢ is the estimated coefficient from the autoregressive model,
« SE ((I)) is the standard error of the estimated coefficient.

The application of these statistical tests ensures that the model’s assumptions are verified, offering confi-
dence in the predictive capabilities and generalizations of the BLSTM model. Such rigorous testing is essential
for affirming the model’s validity and reliability in forecasting electric power consumption accurately.

4 Results and Discussion

The extensive analysis of the “Individual Household Electric Power Consumption” dataset, which
contains over 2 million instances spanning from December 2006 to November 2010, has yielded significant
insights into household power consumption patterns and their implications for energy management and
efficiency strategies. This study utilized various statistical and machine learning techniques, focusing on
the variable ‘Global_active_power, to understand consumption dynamics and predict future trends. Initial
data processing involved handling missing values and transforming date-time information to integrate the
temporal dimensions better into the analysis. Subsequent feature engineering enhanced the dataset’s utility
for time series forecasting by extracting and incorporating temporal granularities such as year, quarter,
month, day, and weekday versus weekend categorizations. Statistical tests were pivotal in understanding the
data’s distribution. The average power distribution is shown in Fig. 4. The Normality test indicated a non-
Gaussian distribution (p < 0.05), suggesting the need for data transformation or adopting non-parametric
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methods for further analysis. The data exhibited positive skewness and high kurtosis, indicating that peak
power consumption was not typical behavior but rather an infrequent, extreme event. Visual explorations,

including violin plots and time series plots of resampled data, highlighted significant variances in power
consumption over different timescales.
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Figure 4: Global active power distribution

Notably, seasonal and intra-day patterns suggested higher consumption during specific periods, likely
correlating with occupant behavior and environmental factors. These insights are crucial for devising time-
of-use energy billing and efficiency interventions. The model’s loss is shown in Fig. 5.

The model’s performance was evaluated using the Mean Absolute Error (MAE) and the Root Mean
Squared Error (RMSE), yielding the following results:

o Train MAE: 0.097982
e Train RMSE: 0.267640
o Test MAE: 0.083100

o Test RMSE: 0.221286

Fig. 6 represents the values obtained by the proposed model.

We have also made the comparison of the proposed model with existing state-of-art techniques,
including SVM, Random Forest, MLP, ANN, and KNN, where the proposed model has outperformed all
the other existing ones in terms of accuracy, specificity, sensitivity, reduction in MAE and, RMSE. The
normalized value obtained was projected in Table 2 as given below:
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Model Loss Over Epochs
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Figure 6: Model’s error metrics
Table 2: Comparison of performance metrics
Algorithm Accuracy (%) Specificity (%) Sensitivity (%) MAE RMSE
SVM 86.2 84.7 87.9 0.37 0.69
Random forest 88.6 86.1 90.3 0.29 0.56
MLP 88.9 87.2 90.5 0.26 0.48

(Continued)



2922 Comput Mater Contin. 2025;83(2)

Table 2 (continued)

Algorithm Accuracy (%) Specificity (%) Sensitivity (%) MAE RMSE
CNN 90.3 89.2 92.7 0.21 0.42
ANN 92.5 90.6 95.3 0.19 0.39
Bidirectional LSTM 97.3 95.8 99.4 0.08 0.22

The findings of this study underscore several critical aspects and practical applications that can drive
energy management and policy improvements. The identification of peak and low energy usage times
provides valuable insights for developing more efficient energy use strategies, leading to potential cost savings
and reduced environmental impact. The study also demonstrates the predictive accuracy of the LSTM model,
highlighting its promise for applications in smart grid management and demand-response systems. Further-
more, the insights gained could inform policymakers in designing targeted energy conservation programs
and optimizing electricity grid operations. The observed non-normal distribution of power consumption
indicates variability influenced by external factors, such as weather conditions and occupant behaviors,
emphasizing the importance of developing robust and adaptive models capable of accommodating sudden
changes in energy usage patterns. This variability has direct implications for energy forecasting models,
as traditional models that assume normality may struggle to capture the full range of fluctuations. Conse-
quently, specialized pre-processing techniques, such as outlier detection, transformation methods (e.g., log or
Box-Cox transformation), or clustering approaches, may be necessary to model the underlying distribution
better. These findings contribute to a deeper understanding of household electricity consumption and pave
the way for more effective energy management solutions. These metrics underscore the model’s effectiveness
in capturing the underlying patterns and dynamics of the time series data, albeit with room for improvement
in reducing the error margins, especially in the training phase. While the study offers a comprehensive
analysis of household electricity consumption, it has certain limitations that present opportunities for future
research to enhance its scope and utility. One limitation is the simplicity of the modeling approach, as
exploring more complex or hybrid models—such as ensemble methods or deep learning architectures—
could significantly improve forecasting accuracy by better capturing intricate patterns in the data. Another
area for improvement lies in feature expansion; integrating additional predictors like weather conditions,
household occupancy data, and appliance-specific energy consumption could provide a more robust and
granular understanding of electricity usage dynamics. Fig. 7 represents the actual vs predicted power for
the data.
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Figure 7: Actual vs. predicted global active power distribution chart
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Computational efficiency and latency are critical considerations when using bi-directional LSTM
(Bi-LSTM) for real-time power consumption analysis. Several strategies can be employed to reduce com-
putational overhead in bidirectional LSTM models. One approach is to use a smaller hidden layer size or
fewer LSTM layers, which directly reduces the number of parameters and computations. Pruning techniques
can also be applied to remove redundant weights while maintaining model performance. Additionally,
quantization—reducing the precision of model weights—can lower memory usage and speed up inference.
While Bi-LSTMs excel at capturing temporal dependencies in sequential data, their bidirectional nature
doubles the computational complexity compared to standard LSTMs, as both forward and backward passes
must be processed before producing an output. This increased complexity leads to higher inference latency,
making real-time deployment more challenging, especially in edge-computing environments with limited
resources. The model’s efficiency depends on factors such as hardware acceleration (e.g., GPUs, TPUs), opti-
mized implementations (e.g., TensorRT, ONNX), and sequence length truncation to minimize unnecessary
computations. Techniques like quantization, pruning, and knowledge distillation can help reduce the model
size and inference time without significantly sacrificing accuracy. Furthermore, real-time forecasting requires
balancing model accuracy with speed, potentially integrating Bi-LSTM with lightweight models such as
GRUs or attention mechanisms to improve responsiveness. Parallel processing and batch inference can also
enhance throughput in high-frequency power monitoring applications [24]. Ultimately, optimizing Bi-LSTM
for real-time scenarios requires careful consideration of trade-offs between computational demands and
forecasting precision to ensure practical, low-latency deployment. Furthermore, the current model is not
optimized for real-time forecasting, which significantly limits its practical applicability in critical scenarios
such as dynamic pricing and load balancing in modern power systems. Real-time forecasting demands low-
latency predictions with high accuracy to respond swiftly to fluctuations in energy demand and supply.
However, the Bi-directional LSTM model, while effective in capturing complex temporal dependencies,
introduces computational overhead due to its sequential nature and dual-direction processing, making it less
suitable for real-time applications without further optimization. In dynamic pricing, energy rates fluctuate
based on demand, requiring instant analysis and forecasting to adjust pricing structures accordingly, which
the current model may struggle to achieve due to its inference time. Similarly, load balancing in smart
grids relies on real-time predictions to distribute power efficiently, prevent overloads, and maintain grid
stability, necessitating a forecasting model with minimal lag. To enhance real-time performance, techniques
such as model quantization, pruning, hardware acceleration using GPUs or TPUs, and hybrid approaches
that combine Bi-LSTM with faster models like GRUs or attention-based transformers should be explored.
Additionally, optimizing data pipelines for streaming input rather than batch processing can further reduce
latency, making the model more responsive and practical for real-time deployment in modern energy
management systems. To enhance the generalizability of the Bi-directional LSTM model trained on the
“Individual Household Electric Power Consumption” dataset to larger, more diverse datasets or different
geographic locations, several key adaptations are necessary. First, incorporating additional datasets from
various regions, climates, and socio-economic conditions will help the model learn broader consumption
patterns beyond a single household or location. Data augmentation techniques, such as generating synthetic
variations of power consumption patterns based on seasonality, appliance usage diversity, and grid reliability,
can further enrich the training dataset. Transfer learning can also be leveraged by fine-tuning the pre-trained
model on new datasets while retaining learned temporal dependencies. Developing a framework for real-
time predictions could enable utilities and households to respond proactively to fluctuations in electricity
demand, enhancing the efficiency and sustainability of energy systems. Addressing these limitations would
not only improve the predictive power of the model but also broaden its applicability in real-world
energy management and policy-making contexts. This research has demonstrated the value of advanced
statistical and machine learning tools in understanding household electricity consumption. The insights
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gained not only contribute to the academic field of energy analytics but also have practical implications
for energy management, policy-making, and sustainable practices. Future studies will likely build on these
foundations, exploring more sophisticated models and broader datasets further to refine our understanding
and management of energy consumption.

5 Conclusion

In this study, we analyzed over two million data points from a household electric power consumption
dataset, spanning nearly four years to decode energy usage patterns and forecast future consumption using a
Bidirectional Long Short-Term Memory (BLSTM) network. Our extensive data preprocessing, exploratory
analysis, and feature engineering revealed key temporal influences on power usage across different scales—
daily, weekly, and seasonal. The BLSTM model demonstrated strong forecasting capabilities with a Mean
Absolute Error (MAE) of 0.083 and a Root Mean Squared Error (RMSE) of 0.221 on the test dataset, confirm-
ing its effectiveness in capturing complex consumption patterns. These findings are crucial for advancing
smart grid technologies and optimizing demand-response systems, potentially reducing operational costs
and enhancing grid stability. The predictive prowess of the BLSTM underscores the significant potential
of machine learning in energy management, allowing for dynamic load management and facilitating the
integration of renewable energy sources. To further improve forecasting performance, future research could
explore hybrid architectures such as CNN-LSTM for automatic feature extraction, Transformer-LSTM
models for enhanced sequential pattern recognition, and GRU-LSTM models for computational efficiency.
Additionally, given the potential for real-time implementation, optimization techniques such as model
pruning, quantization, and hardware acceleration (e.g., leveraging GPUs or TPUs) should be investigated
to reduce computational overhead and enhance deployment efficiency. Furthermore, incorporating external
variables such as fluctuating weather conditions and changes in occupant behavior could improve model
adaptability. We also plan to validate our future models using diversified datasets to ensure generalizability
and robustness in various energy consumption scenarios.
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