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ABSTRACT: Data security has become a growing priority due to the increasing frequency of cyber-attacks, neces-
sitating the development of more advanced encryption algorithms. This paper introduces Single Qubit Quantum
Logistic-Sine XYZ-Rotation Maps (SQQLSR), a quantum-based chaos map designed to generate one-dimensional
chaotic sequences with an ultra-wide parameter range. The proposed model leverages quantum superposition using
Hadamard gates and quantum rotations along the X, Y, and Z axes to enhance randomness. Extensive numerical
experiments validate the effectiveness of SQQLSR. The proposed method achieves a maximum Lyapunov exponent
(LE) of ≈55.265, surpassing traditional chaotic maps in unpredictability. The bifurcation analysis confirms a uniform
chaotic distribution, eliminating periodic windows and ensuring higher randomness. The system also generates an
expanded key space exceeding 1040, enhancing security against brute-force attacks. Additionally, SQQLSR is applied to
image encryption using a simple three-layer encryption scheme combining permutation and substitution techniques.
This approach is intentionally designed to highlight the impact of SQQLSR-generated chaotic sequences rather than
relying on a complex encryption algorithm. The encryption method achieves an average entropy of 7.9994, NPCR above
99.6%, and UACI within 32.8%–33.8%, confirming its strong randomness and sensitivity to minor modifications. The
robustness tests against noise, cropping, and JPEG compression demonstrate its resistance to statistical and differential
attacks. Additionally, the decryption process ensures perfect image reconstruction with an infinite PSNR value, proving
the algorithm’s reliability. These results highlight SQQLSR’s potential as a lightweight yet highly secure encryption
mechanism suitable for quantum cryptography and secure communications.

KEYWORDS: Single qubit quantum chaotic; quantum chaotic map; quantum image encryption; quantum logistic map;
quantum sine map

1 Introduction
In today’s modern world, the acceleration of data transmission has increased the demand for data

protection techniques. In addition, due to the rapid increase in both the volume and complexity of cyberat-
tacks [1,2], conventional encryption methods began to face more and more difficulties [3]. A new paradigm
of increasing attention is chaos-based cryptography, which possesses the properties of being sensitive to
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initial conditions, ergodicity, and unpredictability [4–6]. In general, chaos maps are categorized into one-
dimensional (1D), two-dimensional (2D), and high-dimensional (HD) maps [7–10]. HD chaotic maps,
such as hyperchaotic maps, have complex dynamics and more control parameters, thus providing a high
level of security in encryption applications [11]. However, implementing these maps often requires longer
computation time and more resources. To overcome this, compression and encryption can be combined
to reduce computational complexity while increasing encryption efficiency [12]. However, designing and
improving chaotic models can directly improve encryption performance.

The 1D chaotic maps have a simple structure, are easy to implement, and require minimal computational
resources, making them an attractive choice for many practical applications, including image encryption [13].
However, traditional 1D chaotic maps, such as Logistic Map and sine maps, have inherent limitations,
like uneven bifurcation distribution, periodic windows, and limited Lyapunov exponent (LE) range. These
limitations reduce the effectiveness of 1D maps for high-security scenarios and advanced applications such
as image encryption. Research [14] has created a cryptanalysis method to break the encryption of hill
and chaotic variants such as logistic, sine, and Chebyshev. Hence, the development of chaos methods
becomes urgent.

Several studies have developed 1D chaotic maps, such as Han’s [15] study, which proposed the Modified
Logistic Map to improve the sensitivity to initial conditions and expand the chaotic range of the Logistic Map.
Other 1D methods have also been proposed, such as Fractional 1D chaotic map [13] for high-speed image
encryption and 1D Sine Powered (1DSP) [16], which integrates two control parameters to produce a wider
range of chaos and higher complexity. The 1D Sine-Map-Coupling-Logistic-Map (1D-SMCLM) coupling
system was also developed by Hu et al. [17], which overcomes the shortcomings of small parameters in the
Sine Map and Logistic Map. In addition, an Improved Logistic Map (1D-ILM) and an Improved Quadratic
Map (1D-IQM) were also proposed by Khairullah et al. [18]. These developments reflect significant efforts to
improve the efficiency and security of 1D-based chaotic systems.

The advancement of quantum computing technology, such as Quantum Key Distribution (QKD),
has been widely developed in data communication. QKD can be distributed very securely, making it
difficult for attackers to steal. QKD has also been applied to protect key distribution in image encryption
[19–21], but quantum development for image encryption has not been widely developed. The way quantum
computing works by converting bits into qubits makes the randomness patterns produced by chaotic systems
stronger [22,23]. The superposition principle allows qubits to be in a linear combination of two or more states
simultaneously, providing the ability to increase randomness significantly [24,25]. Moreover, entanglement
between qubits strengthens the correlation between elements in a chaotic system even though they are
physically separated. Quantum rotation, mediated by rotation gates such as Hadamard and CNOT, provides
additional complexity in manipulating the system’s randomness.

Several studies have utilized quantum approaches to chaotic maps [26–28]. Rehman [29] integrated
quantum principles with sine-based chaos maps. Wang [30] proposed fast adaptive synchronization on
discrete logistic quantum chaos maps. Rajan et al. [31] also introduced an image encryption model that
combines quantum rotation and chaos maps. While Abd el-Latif et al. [32] used a quantum-inspired method
to integrate the properties of quantum walks and logistic-sine maps. The development of quantum chaos
is crucial because it can expand the control parameters that directly increase the key space, increase the
complexity of system dynamics, and overcome the periodicity weaknesses in traditional chaotic systems,
especially 1D ones.

This research objective is to introduce Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps
(SQQLSR), a powerful and simple 1D quantum chaos map. SQQLSR utilizes quantum principles to produce
more random and unpredictable 1D chaotic behavior. Quantum superposition is implemented through
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the Hadamard gate, which allows qubits to be in a linear combination of multiple states simultaneously,
expanding the space of possible system dynamics. In addition, three types of quantum rotations are used—
X, Y, and Z Rotations—each providing an additional dimension to manipulating randomness. Combining
these elements makes SQQLSR produce superior performance in terms of randomness and security. The
SQQLSR map is also tested and applied in a new image encryption framework, where the resulting chaotic
sequence is used for substitution and permutation processes. RGB images expand one chaotic sequence into
three sequences for red, green, and blue channels. A high floating point normalization technique is applied to
adjust the initial distribution range of the chaotic sequence, making it compatible with the number of image
layers without compromising the randomness quality of the system.

2 Literature Review

2.1 Traditional Chaotic Maps and Background
In traditional chaos maps such as Logistic Map and Sine Map, bifurcations are often concentrated in

certain regions, especially when the value of the control parameter (r) is close to the threshold for producing
complete chaos. The bifurcation graph of the Logistic Map shows that the chaotic pattern only occurs at
values of r ≈ [3.5, 4.0], while at other r ranges, the pattern is more regular or even stable, see Fig. 1a,b.

Figure 1: Bifurcation diagram of traditional chaotic map (a) Logistic map; (b) Sine map; (c) Tent map; (d) Piecewise-
linear chaotic map

The Tent Map bifurcation graph in Fig. 1c shows chaotic behavior starting from the control parameter
value r ≈ 1.0. Conversely, at a value of r < 1.0, the system shows stability, but. The PWLCM bifurcation
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graph (Fig. 1d) shows a more even chaos distribution than other traditional maps. This system begins
to show chaotic behavior at a value of r ≈ 0.05, with the full chaos region expanding significantly to
r ≈ 1.0. Furthermore, the PWLCM bifurcation returns to a stable trend, which shows that the PWLCM
parameter control range is still limited. This weakness impacts the efficiency of chaos maps in cryptographic
applications. The uneven bifurcation distribution limits the randomness that can be used, making the key
space narrower and the resulting key pattern more susceptible to prediction.

The Lyapunov exponent (LE) is an essential metric for assessing the sensitivity of a system to small
changes in initial conditions. Positive LE values indicate a better chaotic pattern. Conversely, low values mean
that the chaotic pattern is more predictable, thus reducing the strength of the encryption key. In traditional
chaotic maps such as Logistic and Sine Map, LE values tend to be low in the r range below 3.5, indicating
a less sensitive system nature. Only in the r ≈ [3.5, 4.0] range the LE value increase to positive, indicating
chaotic behavior, see Fig. 2a,b.

Figure 2: LE of traditional chaotic map (a) Logistic map; (b) Sine map; (c) Tent map; (d) Piecewise-linear chaotic map

The LE of the Tent Map (see Fig. 2c) shows a pattern different from that of the Logistic and Sine Map.
In the r ∈ [0, 1.0] range, the LE value tends to be negative, indicating stable and periodic system dynamics.
However, when r > 1.0, the LE value starts to be positive and increases consistently until it approaches 1.0
at r = 2.0. This indicates that the Tent Map has strong chaotic properties and is more stable in that interval,
with increased sensitivity to small changes in initial conditions. PWLCM shows a parabolic LE pattern in
the parameter range p ∈ [0, 1.0]. The highest LE value is around p = 0.5, reaching almost 0.7, indicating
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that PWLCM has strong chaotic properties in that parameter. On the other hand, the LE value approaches
zero at the ends of the range p ≈ 0 and p ≈ 1.0. More advanced chaotic methods, such as hybrid chaotic
maps [33], can increase LE ≈ 1.7, making the system more sensitive to small changes. Similarly, 1D Sine
Powered Map (1D-DSP) also achieves LE ≈ 1.7, while traditional chaotic generally have a value of LE ≈ 0.7
in the chaotic region.

Another important factor in chaotic systems is the range of control parameters. A more extensive
range of control parameters directly expands the available key space, which is one of the critical elements
in cryptographic security [33,34]. In traditional chaotic maps such as Logistic Map, the range of control
parameters is generally limited to the interval [0, 4]. Ullah et al. [34] proposed 1D Cosine Chaotic Equation
(1D-CCE) with a range of control parameters [0, 10], showing improved flexibility and randomness compared
to the Logistic Map. Another study [33] developed a hybrid chaotic map using three dynamic parameters,
where one parameter has a range of [0, 4], and the other two parameters have a range of [0, 2]. Although there
is an improvement over traditional maps, the limited range of parameters is still a constraint in expanding
the key space. Therefore, expanding the control parameters in 1D chaotic maps remains a significant need to
improve security, especially in the key space and complexity of chaotic systems.

2.2 Related Works
Traditional chaotic maps have been modified to improve deficiencies such as narrow bifurcation range,

low LE, and instability in specific parameter ranges. Modified Logistic Map [15] is designed to increase
sensitivity to initial conditions, expand the range of control parameters to [0, 10], and obtain complete
mapping xn ∈ [−2r, 2r], in addition the LE value is relatively more stable, namely ≈0.7 in the entire range.

Another development of 1D chaotic map is called sine powered chaotic map (1DSP) [16] such as research
using two control parameters, namely α > 1 and β ∈ [0, 1]. When the value of α = 4.4926, the LE value moves
up from ≈ 0.4 at β = 0 to approaching 1.5 when the value of β ≈ 0.1, then LE starts to drop to 0 when β ≈ 0.7,
LE drops drastically to ≈ −2 at β ≈ 0.8 and starts to rise again towards ≈ −0.2 when β = 1.0. On the other
hand, when tested with a value of β = 0.3306 for α ∈ [0, 9], there is a relatively stable upward movement of
LE from ≈ −2.25 hingga ≈ 1.5, although there is an unstable up and down movement of LE when α is between
0 and 1 from ≈ −2.25 to ≈ 0.

Another map, the Fractional 1D chaotic map [13], also uses two control parameters, namely α ∈ [0, 1]
and β ∈ [−0.5, 1 + α

2 ]. The bifurcation at α = 0.2 is wider and more spread out than at α = 0.5, but at some
values, namely β <≈ 0.2 when α = 0.2 and β <≈ 0.3 when α = 0.5, it shows uneven bifurcation, which means
the system dynamics are relatively stable.

Furthermore, a recent study [34] proposed 1-Dimensional Cosine Chaotic Equation (1D-CCE). CCE
has a wider range of control parameters, namely r ∈ [0, 10] with maximum LE values of CCE ≈ 4.999. The
bifurcation and LE graphs of CCE show extensive and dynamic chaotic behavior in the range [0, 1], although
there are small parts that have “blank windows” indicating stable dynamics [18].

The development of the 1D chaotic map models above has indeed succeeded in expanding the range of
chaos and increasing sensitivity to initial conditions. However, quantum chaotic maps have been developed
with a relatively limited parameter range and relatively unstable chaotic behavior. Study [35] is one of the
early studies that utilized quantum chaotic maps as pseudo-random number generators (PRNG). It is said
that a high level of non-periodicity was obtained based on the evaluation of the Scale Index Technique. In
addition, there are also dissipative quantum corrections, which provide additional dynamics.

Furthermore, Rehman [29] implemented quantum coding and 1-D Sine-based Chaotic Maps for image
encryption. Furthermore, Rajan et al. [31] combined classical chaotic maps, such as logistic-sine hybrid
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chaotic maps, with quantum chaotic maps to increase randomness and sensitivity to initial conditions. The
unique characteristics of qubits, such as entanglement and superposition, are exploited to expand the key
space and strengthen encryption security against classical and quantum threats. Unfortunately, this study
does not discuss the bifurcation diagram, Lyapunov exponent, and trajectory. However, there is a discussion
of the phase diagram, which shows very complex and unexpected dynamics, in addition to the claim of a
significant increase in the key space.

Recent research introduces a distributed quantum logistic model in three dimensions (3D) [30],
utilizing the coupling parameter (κ) and the degree of quantum entanglement (γ) to expand the chaotic
dynamics. With this approach, a larger chaotic zone and higher complexity are achieved, as seen in the
bifurcation and phase diagrams. Quantum entanglement is key in increasing the sensitivity to initial
conditions and enriching the system’s dynamics. This is indeed different from the simpler 1D approach. Still,
based on bifurcation observations made at κ ∈ [3, 4] and γ = 3.5, 3.8, 4.0, but the bifurcation pattern in the
range κ ∈ [3, 3.5] is still relatively stable, as well as when tested at γ ∈ [2.75, 4] and κ = 3.7, 3.85, 4.0, there
is a stable bifurcation pattern at γ ∈ [2.75, 3]. This means that the dynamic, chaotic space is still relatively
limited, and this can also affect the key space. Therefore, further development related to the quantum chaotic
map still needs to be explored again to create a quantum chaotic formula with a wide, dynamic, simple, and
powerful key space range.

2.3 Motivation and Research Contribution
Traditional chaos maps face limitations such as uneven bifurcation distribution, low Lyapunov exponent

(LE), and narrow key space. The development of chaos maps has been carried out and has obtained positive
results, but considering the increasingly developing technology, the sophistication of chaos maps still needs
to be developed. Quantum technology is a leap of innovation and has the potential to develop chaos map
performance. The previously carried out quantum approach offers more complex dynamics, although it can
be more complex and still has limited chaos space. SQQLSR is designed to overcome this problem by utilizing
the principles of superposition and quantum rotation, resulting in a more even bifurcation distribution,
stable LE, and a more expansive dynamic key space. More detailed contributions of this research are:

1. Designing SQQLSR by simply using single qubits to reduce computational complexity.
2. The principles of superposition (Hadamard) and quantum rotation (X, Y, Z) are used to expand chaos

dynamics and increase sensitivity.
3. SQQLSR offers higher and stable LE and dynamic bifurcation distribution over an ultra-wide parame-

ter range.
4. Implementing and testing SQQLSR for image encryption.

3 Proposed Method

3.1 Design Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps
Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps (SQQLSR) is a quantum-based chaos map

design that utilizes the properties of quantum superposition and rotation to produce more complex and
unpredictable chaotic dynamics. Compared with classical chaos maps, SQQLSR provides significant advan-
tages regarding a more expansive key space, higher randomness, and better sensitivity to initial conditions.
It should be noted that the number of qubits in a quantum computing system significantly impacts
computational complexity. Each additional qubit increases the information storage capacity exponentially
and enlarges the state space that must be managed, thereby increasing operational complexity and resource
requirements [36,37]. Based on this theory, this research considers designing the system using a single qubit,
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making it simpler than multi-qubit based models but still sophisticated. This single-qubit design reduces
the computational complexity while maintaining strong chaotic properties. Efficiently exploiting quantum
superposition and rotation in a simpler framework makes near-term quantum hardware more feasible. The
unitary operator of SQQLSR can be written in Eq. (1).

USQ QLSR = H ⋅ RZ (θ) ⋅ RY (ϕ) ⋅ RX (γ) ⋅H (1)

where H is the Hadamard gate to prepare the initial and final superposition; RZ (θ) , RY (ϕ) , RX (γ) are
three types of rotation gates with defined scaling parameters (θ , ϕ, γ) which are described in more detail
in Eqs. (2)–(4), updated iteratively to regulate the rotation dynamics.

θ = r ⋅ xn ⋅ (1 − xn) ⋅ scal e + i ⋅ iv (2)
ϕ = α ⋅ sin (π ⋅ xn) ⋅ scal e + r ⋅ iv (3)

γ = r ⋅ iv + π
3

(4)

where r is the control parameter being varied; i is the i-th iteration; xn is the chaos value at the n-th iteration;
scal e = 25,000 is the scale factor to increase the precision of the chaos value; iv = 0.002 for the variation
per iteration to provide dynamic shift; α = 2.0 as a factor controlling the contribution of the sine map to
the rotation γ to add a fixed offset for dynamic stability. Fig. 3 illustrates the circuit design plotted with the
Pennylane Quantum simulator.

Figure 3: Quantum circuit design of SQQLSR

Based on the circuit plot in Fig. 3, the more detailed workings of the proposed quantum circuit are as
follows:

1. Initial Hadamard gate: prepares the qubit in the initial superposition state, allowing the qubit to be in a
linear combination of its basis states ( ∣0⟩ , ∣1⟩)

2. The first rotation about the Z-axis (RZ (θ)) is performed based on the scaled logistic map.
3. The second rotation about the Y-axis (RY (ϕ)) is performed based on the sine map to provide

additional dynamics.
4. The third rotation about the X-axis (RX (γ)) is performed to maintain dynamic stability and provide

additional offsets.
5. The End Hadamard Gate is used to bring the qubit back to the superposition basis to maximize quantum

interference that reflects the overall dynamics of the system.
6. Pauli-Z measurement ⟨Z⟩ is the expectation of the Pauli-Z operator, which gives the chaos value at the

current iteration, which becomes the input for the next iteration.

3.2 Proposed Image Encryption Method Using SQQLSR
The SQQLSR is used as a chaotic sequence generator as the primary key (S1) of image encryption. This

part has been explained in Section 3.1. The encryption design is relatively simple to show a more natural
performance of SQQLSR. Fig. 4 illustrates the proposed image encryption method, while the more detailed
steps are explained as follows:
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Figure 4: Proposed encryption scheme

3.2.1 Initialization and Key Generation
1. A plain image (I) with size m × n × o is processed using the SHA-512 hashing method, resulting in a

hash vector converted into a numeric ASCII value. From the ASCII hashing (h) results, get the initial
seed (x0) based on the standard deviation of the hash value (x0 = σ (h)). To maintain the stability of
the system, x0 is divided gradually until its value is less than one, using Eq. (5). We also calculated the
normalized parameter ki based on the initial seed using Eq. (6).

while x0 > 1, x0 =
x0

10
(5)

ki =
1 − x0

100
(6)

2. The chaotic sequence S1 generated by SQQLSR using the initial seed x0, then create a chaotic sequence
S2 by normalizing S1 based on ki . The normalization process is calculated by Eq. (7).

S2 =
S1 −min (S1)

max (S1) −min (S1)
+ ki (7)

where S1 is the original SQQLSR chaotic sequence; ki is the adjustment parameter of image hashing,
max (S1) and min (S1) each is the minimum and maximum value of S1.

3. After obtaining two chaotic sequences S1 and S2, converted to integer form to simplify the substitution
process, using Eq. (8).

S1_int =mod (S1 ⋅ 108, 256)
S2_int =mod (S2 ⋅ 108, 256) (8)
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3.2.2 Encryption Stages
1. Stage 1: In this stage involves a sort permutation operation to shuffle the positions of image pixels. This

step introduces a high level of randomness to the spatial distribution of pixel intensities, effectively
obscuring the original image structure. The chaotic sequence S1, generated using the proposed SQQLSR,
serves as the basis for determining the new order of the pixels. The sorting index, denoted as sortIndex,
is computed using Eq. (9).

sortIndex = argsort(S1) (9)

here, argsort(S1) generates an array of indices that sorts the elements of S1 in ascending order. These
indices are then used to rearrange the pixels of the original image Imno . Next, Imno . is reshaped into a
one-dimensional vector Iz , where z = m × n × o and z is the index of the vector. The pixel intensities in
Iz are then permuted based on sortIndex to produce the first-stage encrypted image E1z using Eq. (10).

E1z = sortIndex(Iz) (10)

2. Stage 2: XOR Substitution is performed by XOR operation between the first stage encrypted image E1z
and chaotic sequence S2_int, see Eq. (11). This operation adds a layer of complexity by bitwise changing
the pixel values.

E2z = E1z ⊕ S2_int (11)

3. Stage 3: The final stage is modulus substitution, where the chaotic sequence S1_int is used to add a third
layer of encryption to the encrypted image E2m , see Eq. (12).

E3z =mod (E2z − S1_int , 256) (12)

4. The E3z the encrypted image is reconstructed to its original dimensions (m × n × o) using the reshape
function to be visualized as a final encrypted image E3mno .

3.2.3 Decryption Stages
1. Read the final encrypted image E3mno , then reconstruct it into a one-dimensional vector form E3z . Then

perform the three stages decryption process using the reverse flow of the encryption stages as steps 2
until 4.

2. Stage 1: Perform modulus Substitution Inversion on E3z and S1_int, to get a vector D2z , using Eq. (13).

D2z =mod (E3z + S1_int , 256) (13)

3. Stage 2: Perform XOR substitution inversion on D2z with S2_int to obtain vector D1z , using Eq. (14).

D1z = D2z ⊕ S2_int (14)

4. Stage 3: Restore the pixel position of D1z based on the inverse of the permutation index to obtain I′z
using Eq. (15).

I′z = sortIndex(D1z) (15)

5. After three stages decryption, reconstructed I′z to its original dimensions (m × n) using the reshape
function to get as a final decrypted image I′mno .
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4 Results and Discussion
This section presents the results and analysis of the SQQLSR model, evaluated through comprehensive

simulations. The experiments were conducted in a Python environment using Google Colab, utilizing the
PennyLane quantum simulator to implement and test the chaotic properties of SQQLSR. The implementa-
tion leveraged PennyLane for quantum circuit simulations, NumPy for numerical computations, Matplotlib
for visualization, and Pandas for data handling. OpenCV and PIL libraries were also employed for image
preprocessing, encryption, and visualization. The proposed quantum chaotic system was examined using
bifurcation diagrams, Lyapunov exponent analysis, trajectory plots, and phase-space representations to
validate its capability to generate highly complex and unpredictable dynamics.

Section 4.1 provides an in-depth analysis of SQQLSR, including its parameter sensitivity, chaotic
range, and key performance metrics, demonstrating its advantages over traditional chaotic maps. Mean-
while, Section 4.2 implements SQQLSR for image encryption, applying a simple three-layer scheme
combining permutation and substitution techniques. This approach is intentionally designed to isolate and
highlight the impact of SQQLSR on encryption performance rather than relying on a complex encryp-
tion algorithm. By focusing on the chaotic sequence generated by SQQLSR, the evaluation emphasizes
its effectiveness in enhancing diffusion and confusion, ensuring robust security against statistical and
differential attacks.

4.1 Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps (SQQLSR)
In this section, the results of the SQQLSR test are measured and analyzed using bifurcation diagrams,

LE, and chaos trajectories. In addition, this section also aims to validate the hypothesis that the selection
of parameters such as scaling factor, iteration variation, and rotation offset can expand the range of control
parameters, increase sensitivity to initial conditions, and strengthen chaotic dynamics. In SQQLSR, apart
from the parameter r, its value is specified. This aims to simplify the implementation process of SQQLSR.
Although other parameters can also be changed, if necessary, there may be changes in the range of the
parameter r. Figs. 5–7 show the results of the bifurcation diagram, LE, and its trajectories, respectively.

The simulation results of SQQLSR show excellent capability in generating complex and unpredictable
chaotic dynamics. The bifurcation diagram (Fig. 5) shows a uniform distribution of variable x in the range
[−1, 1] without “blank windows” for Fig. 5a–c, indicating that SQQLSR successfully overcomes the weakness
of the stability of traditional chaos maps. However, “blank windows” begin to appear in Fig. 5d, so our
test is limited to 1024 although there is still a possibility of increasing it. This value has provided much
greater flexibility than previous methods, ensuring the stability of chaotic dynamics without switching to the
periodic zone.

Based on the observation in Fig. 6, the LE value shows a relatively stable increase along with a significant
increase compared to the traditional chaos map at ≈0.7 and even better than advanced chaos maps such as
CCE. The maximum LE value reaches 55.26503239483661, which is achieved at r ≈ 1024. This value is much
higher than the average LE value. The chaotic trajectory graphs in Fig. 7 show a completely random and
non-repeating pattern. At r ≈ 1024, it appears that the range is lower than the other three graphs. However,
the resulting pattern appears to reflect complex chaotic dynamics. This pattern is consistent with the even
distribution of bifurcation diagrams, confirming that SQQLSR can maintain randomness without stability
zones even at high iterations.
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Figure 5: Bifurcation diagram of SQQLSR (a) r ∈ [0, 1000]; (b) r ∈ [0, 106]; (c) r ∈ [0, 1012]; (d) r ∈ [0, 1024]

Figure 6: Lyapunov exponent of SQQLSR (a) r ∈ [0, 1000] max LE = 6.767303907168853; (b) r ∈ [0, 106] max LE =
13.646327485383424; (c) r ∈ [0, 1012]max LE = 27.532701815165996; (d) r ∈ [0, 1024]max LE = 55.26503239483661
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Figure 7: Trajectory diagram of SQQLSR (a) r = 994.9748743718594; (b) r = 969849.2462311557; (c) r =
1000000000000.0; (d) r = 1000000000000000000000000.0

The chaotic attractor diagram in Fig. 8 also confirms the superior chaotic dynamics of SQQLSR. The
diagram presents a dense, non-repeating point distribution highlighting the system’s ability to explore a
wide range of state spaces. In Fig. 8a–c, the attractor maintains its density and complexity while avoiding
periodic regions, thus ensuring robust and unpredictable dynamics. At r ≈ 1024, the attractor begins to show
slight clustering in certain regions, as seen in Fig. 8d. This indicates that while the system maintains chaotic
behavior, the very high parameter range can slightly reduce the uniformity of the state space coverage.
Nevertheless, the attractor remains much more stable and wide-ranging compared to traditional chaotic
systems, confirming the superiority of SQQLSR in extending chaotic dynamics.

The phase space diagrams of SQQLSR presented in Fig. 9 demonstrate strong chaotic behavior across an
ultra-wide range of the control parameter r. The distribution of points remains highly irregular and densely
populated, with no apparent periodic structures, indicating a robust chaotic system suitable for cryptographic
applications. As r increases from [0, 1000] to [0, 1012], the phase space maintains a homogeneous and fully
dispersed pattern, signifying stable chaotic dynamics without degenerating into periodicity. At r ∈ [0, 1024], a
subtle structural change is observed in the phase space, suggesting an evolution in the chaotic behavior as the
system operates in extreme parameter conditions. However, despite this variation, the chaotic distribution
remains widely spread and relatively non-repetitive, ensuring that the randomness, diffusion properties, and
sensitivity to initial conditions remain intact. This further confirms that SQQLSR maintains its strong chaotic
characteristics and security potential.
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Figure 8: Chaotic attractor of SQQLSR (a) r = 994.9748743718594; (b) r = 969849.2462311557; (c) r =
1000000000000.0; (d) r = 1000000000000000000000000.0

Figure 9: Phase space diagram of SQQLSR (a) r ∈ [0, 1000]; (b) r ∈ [0, 106]; (c) r ∈ [0, 1012]; (d) r ∈ [0, 1024]
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The carefully designed parameter selection also supports this success. To determine optimal values,
we conducted multiple experimental trials to evaluate the sensitivity of each parameter to chaotic behavior.
In the graphs above, we used 1000 iterations (i) after testing different values to ensure stability. A scaling
factor (scal e) of 25,000 was necessary to enhance precision and maintain significant chaotic dynamics in the
quantum domain. A higher scal e improves the resolution of chaotic behavior but can introduce numerical
instability, whereas a lower scal e may weaken chaos, making the system more predictable. An iteration
variation (iv) of 0.002 was chosen after observing its impact on bifurcation smoothness and overall system
stability, where a large iv causes abrupt changes in chaotic states, while a smaller iv may reduce diversity in the
system’s evolution. The rotation offset (π/3) on RX was found to be optimal in maintaining rotational stability;
increasing it may introduce excessive transformation in state-space rotation while reducing it could lead to
a weaker chaotic effect. Similarly, α = 2.0 was selected to strengthen the contribution of the sine map, as a
larger α amplifies the sine component in system dynamics, while a smaller value reduces its influence, making
the system more dependent on other chaotic factors. Due to the high sensitivity of these parameters, careful
tuning was essential, and the ultra-wide r further ensured large-scale chaos exploration. A larger r expands
the key space but may introduce numerical instability, while a smaller r limits the system’s unpredictability.
These optimizations collectively make SQQLSR superior to both classical and previous quantum methods
by balancing sensitivity, chaos enhancement, and numerical stability. Next, Table 1 explains the comparative
performance of LE values, bifurcation range, range of r, and SQQLSR key spaces compared to other
traditional chaos methods.

Table 1: Comparison of SQQLR and other chaotic method

Method Max LE Bifurcation range Range of r Keyspace
Logistic map ≈ 1.5 [0, 1] [0, 4] ≈ 4 × 1016

Sine map ≈ 0.7 [0, 1] [0, 4] ≈ 4 × 1016

Tent map ≈ 0.7 [0, 1] [0, 2] ≈ 2 × 1016

PWLCM ≈ 0.7 [0, 1] [0, 2] ≈ 2 × 1016

1D-CCE [34] ≈ 4.999 [0, 1] [0, 10] ≈ 1017

SQQLSR ≈ 55.265 [−1, 1] [0, 1024] ≈ 1040

Table 1 highlights the superiority of SQQLSR over traditional chaotic maps in key aspects such as
Lyapunov exponent (LE), bifurcation range, and key space size. SQQLSR exhibits a significantly higher LE
(≈55.265), indicating extreme sensitivity to initial conditions compared to classical methods, which typically
have LE ≤ 1.5. Its bifurcation range [−1, 1] is broader than conventional maps, suggesting enhanced chaotic
behavior. Moreover, its key space (≈1040) is orders of magnitude larger than classical methods, reinforcing
its robustness against brute-force attacks. Overall, SQQLSR offers significant advantages regarding large key
space, unpredictable randomness, and high sensitivity to initial conditions, making it a strong candidate for
developing quantum-based security technologies.

4.2 Implementation SQQLSR for Image Encryption
In this section, we test SQQLSR with r = 969849.2462311557, this value was chosen because it has

obtained a relatively very high LE value compared to traditional chaos and is relatively an intermediate
value. The test was carried out on a standard image dataset with dimensions of 512 × 512 with a depth of
24 bits, presented in Fig. 10. All images can be downloaded from [38]. Furthermore, Fig. 11 also presents the
encrypted image and its histogram. The results presented in Fig. 11 show good encryption results in terms
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of visual results and histograms. However, visual assessment is a subjective assessment. Several standard
matrices are used to measure image quality, presented in Sections 4.2.1–4.2.8.

Figure 10: Standard image used (a) 4.2.03 Baboon; (b) 4.2.05; (c) 4.2.07 Peppers; (d–f) Corresponde Histogram

Figure 11: (Continued)
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Figure 11: Encryption results (a) 4.2.03 Baboon; (b) 4.2.05; (c) 4.2.07 Peppers; (d–f) Corresponde Histogram

4.2.1 Chi-Square Analysis
In the context of chi-square analysis on images with a dimension of 512 × 512 pixels, it is important

to understand that the ideal chi-square value results from a uniform distribution of pixel intensities after
encryption. For grayscale images, the ideal distribution is that each intensity level has the same frequency.
With a total of 512 × 512 = 262,144 pixels evenly distributed among 256 intensity levels, the ideal frequency
(i f ) for each intensity level is 1024. Chi-square is calculated to evaluate the extent to which the actual
distribution of pixel intensities approaches the ideal distribution, see Eq. (16).

X2 =
256
∑
i=1

(a fi − i f )2

i f
(16)

where a f is the actual frequency for intensity level i, i f is 1024 in this case.
To evaluate whether the results are ideal, it is necessary to compare the calculated chi-square value with

the critical value at a certain significance level. If the degrees of freedom are 255 and the significance level
is 0.05, then the critical chi-square value is around 293.25. If the calculated chi-square value is smaller than
this critical value, then the intensity distribution can be considered statistically uniform.

The chi-square calculation results in Table 2 show that all are below the critical value. This indicates that
the pixel intensity has been distributed evenly, approaching the characteristics of a uniform distribution. In
other words, the encryption algorithm has successfully hidden the original pattern of the image, ensuring
security against statistical analysis.

Table 2: Chi-square results

Image Red Green Blue Average
4.2.03 Baboon 246.537 243.332 245.545 245.1380
4.2.05 Airplane 252.978 241.822 208.972 234.5906
4.2.07 Peppers 255.381 241.449 232.048 242.9593

4.2.2 Entropy Analysis
Entropy is an important metric to measure the randomness of the pixel intensity distribution in an

encrypted image. The maximum entropy for an 8-bit digital image is calculated using Shannon information
theory and is expressed in Eq. (17).
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H (X) = −
255
∑
i=0

pi log2 (pi) (17)

where pi is the probability of occurrence of the i-th intensity. The entropy value approaches the theoretical
maximum value of 8 bits for an image with a uniform pixel distribution. The closer the entropy value is to
8, the more random the pixel distribution is, which reflects the effectiveness of the encryption algorithm in
hiding the original image pattern.

The entropy values for global entropy calculations are presented in Table 3. The average entropy values
across all color channels show high consistency, ranging from 7.9993 to 7.9994, which signifies a nearly ideal
randomness level.

Table 3: Global entropy results

Image Red Green Blue Average
4.2.03 Baboon 7.9993 7.9993 7.9994 7.99933
4.2.05 Airplane 7.9993 7.9994 7.9994 7.99937
4.2.07 Peppers 7.9994 7.9993 7.9993 7.99933

The results in Table 3 indicate that the global entropy values approach the theoretical maximum,
meaning that the pixel intensity distribution is highly randomized, making it challenging to extract any
meaningful patterns.

To further assess the randomness across different image regions, a local Shannon entropy test was
conducted using 120 randomly selected blocks, each containing 1936 pixels. This configuration was carefully
adjusted based on the methodology outlined in [39]. The local entropy was computed for each block, and
the min, max, and mean local entropy values were reported to evaluate localized randomness within the
encrypted images comprehensively.

The local entropy values presented in Table 4 confirm a high level of randomness across different regions
of the encrypted images. The mean entropy values for the red, green, and blue channels consistently range
between 7.9014 and 7.9038, indicating a nearly uniform pixel intensity distribution across different color
channels. The minimum entropy values exhibit slight variations, with the lowest recorded entropy being
7.8771 (Red-Airplane), while the maximum entropy values remain within a narrow range, peaking at 7.9295
(Blue-Airplane). These variations demonstrate localized differences in randomness, which are inherent in
encryption processes but remain within an acceptable range. The consistency of minimum and maximum
entropy values across different channels reinforces the robustness of the encryption scheme, ensuring that
no discernible pattern exists within the encrypted images. This study provides a more detailed randomness
assessment by complementing global entropy analysis with local entropy evaluation, further validating the
encryption method’s resilience against statistical attacks.

Table 4: Local entropy results

Image Red Green Blue

Mean Min Max Mean Min Max Mean Min Max
4.2.03 Baboon 7.9022 7.8843 7.9241 7.9029 7.8823 7.9252 7.9038 7.8846 7.9268

(Continued)
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Table 4 (continued)

Image Red Green Blue

Mean Min Max Mean Min Max Mean Min Max
4.2.05 Airplane 7.9014 7.8771 7.9299 7.9035 7.8851 7.9211 7.9027 7.8759 7.9295
4.2.07 Peppers 7.9036 7.8876 7.9205 7.9038 7.8768 7.9287 7.9018 7.8780 7.9162

4.2.3 Correlation of Adjacent Pixel Analysis
Adjacent pixel correlation analysis is one of the important methods to evaluate the efficiency of

encryption algorithms in eliminating the relationship between neighboring pixels. In the original image,
adjacent pixels, either horizontally, vertically, or diagonally, tend to correlate highly due to consistent visual
patterns. However, the correlation should be close to zero in an ideal encrypted image, indicating that the
relationship between pixels has been wholly randomized [40]. The calculation of the correlation coefficient
is done by randomly selecting 100,000 pairs of adjacent pixels from the image in three directions: horizontal
(H), vertical (V), and diagonal (D). The correlation coefficient is calculated using Eq. (18).

ρ = cov (X , Y)√
var(X) ⋅ var(Y)

(18)

where X and Y are the intensities of adjacent pixels; cov (X , Y) is the covariance between X and Y ; var(X)
and var(Y) are the variances of X and Y , respectively. It is important to note that ρ values close to zero
indicate a weak or no correlation, while values close to 1 or −1 indicate a strong correlation.

In the encrypted image, the correlation values in all three directions (H, V, and D) for each color channel
are very close to zero, as shown in Table 5. The pixel correlation in the original image, shown in Fig. 12,
appears to have a high value because it has a diagonal pattern of pixel intensity distribution. In contrast, the
results in Fig. 13 for the encrypted image show an almost random intensity distribution without any clear
pattern because all points are evenly distributed. These results highlight the algorithm’s efficiency in creating
a random intensity distribution, where the original visual relationships are entirely randomized, making
them unrecognizable.

4.2.4 Differential Analysis
Differential analysis, including the measurement of the Number of Pixels Change Rate (NPCR) and

Unified Average Changing Intensity (UACI), is used to assess the sensitivity of the encryption algorithm to
small changes in the original image, such as modifying a single pixel. NPCR on a grayscale image can be
calculated by Eq. (19), while UACI is calculated by Eq. (20).

NPCR =
∑M

i=1∑N
j=1 D (i , j)

M × N
× 100% (19)

UACI = 1
M × N

M
∑
i=1

N
∑
j=1

∣C1 (i , j) − C2 (i , j)∣
255

× 100% (20)

where D (i , j) is a binary matrix defined as D (i , j) =
⎧⎪⎪⎨⎪⎪⎩

1 if C1 (i , j) ≠ C2 (i , j)
0 if C1 (i , j) = C2 (i , j)

; M and N is the image

dimension; C1 (i , j) and C2 (i , j) is the pixel intensity at the position (i , j), for the encrypted image before
and after a 1-bit change of a pixel.
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Table 5: Correlation of adjacent pixel analysis results

Image Direction Red Green Blue
4.2.03 Baboon D 0.00127 −0.00284 0.00296

H 0.00347 0.00130 0.00001
V −0.00293 0.00023 0.00075

4.2.05 Airplane D 0.00354 −0.00165 −0.00393
H 0.00168 0.00191 −0.00201
V −0.00289 −0.00651 −0.00198

4.2.07 Peppers D 0.00223 0.00315 −0.00003
H 0.00052 0.00112 0.00005
V −0.00359 0.00302 0.00155

Figure 12: Plot of correlation analysis of original baboon image (column 1) red channel; (column 2) green channel;
(column 3) blue channel
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Figure 13: Plot of correlation analysis of encrypted baboon image (column 1) red channel; (column 2) green channel;
(column 3) blue channel

The ideal value for NPCR comes from the assumption of a uniform random distribution, calculated
from the probability that a pixel value changes after a slight change in the original image, which is ≈ 1 − 1

28 ≈
99.61%. The standard deviation of NPCR is usually tiny because the large total pixels reduce the influence
of statistical noise. For an image with a size of 512 × 512 with a deviation of ±0.05%, the ideal NPCR range
is 99.56% ≤ NPCR ≤ 99.66%. While the ideal UACI is ≈ 33.3% with an ideal deviation of ±0.5%, the ideal
range of UACI is 32.8% ≤ UACI ≤ 33.8%.

The differential analysis results in Table 6 show that the NPCR values for all test images are within the
ideal range. This confirms that the algorithm is susceptible to small changes in the original image, such as
one-pixel modification, so the original pattern is difficult to recognize after encryption. Table 7 also shows
the UACI results for all test images, with average values ranging from 33.2250% to 33.5503%. This value is
within the ideal range of 32.8%–33.8%, indicating that the change in pixel intensity between two encrypted
images due to slight modifications to the original image is close to a perfectly random distribution.
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Table 6: NPCR results

Image Red Green Blue Average
4.2.03 Baboon 99.567 99.582 99.653 99.6007
4.2.05 Airplane 99.658 99.653 99.594 99.6350
4.2.07 Peppers 99.603 99.625 99.565 99.5977

Table 7: UACI results

Image Red Green Blue Average
4.2.03 Baboon 33.425 33.579 33.647 33.5503
4.2.05 Airplane 33.443 33.506 33.494 33.4810
4.2.07 Peppers 33.214 33.424 33.037 33.2250

4.2.5 Keyspace Analysis
A key space assessment is an important factor in determining the security provision of an encryption

algorithm when subjected to brute force attacks. The larger key space guarantees that the algorithm will have
a high level of resistance to exhaustive key-guessing attacks. In the proposed encryption algorithm, SQQLSR
is used to produce chaotic sequences that assist in the key generation together with some key parameters
that considerably broaden the key space as follows:

1. The initial seed is obtained from hashing the original image using the SHA-512 method. The hashing
process produces a numerical vector of 512 bits (h) with 2512 possible combinations. Subsequently, x0 s is
calculated as the standard deviation of the hash values (σ(h))and normalized to ensure x0 < 1 through
iteration (Eq. (5)). This process guarantees the uniqueness of the seed for each image and maintains
system stability.

2. The adjustment parameter is calculated using Eq. (6), which introduces an additional layer of random-
ness based on the value of <1. Since the original image directly influences <1, ki ensures each image
generates a different key, enhancing security against correlation attacks.

3. The control parameter r varies between 0 and 1024, providing broad flexibility in the chaotic dynamics.
This ultra-wide range significantly expands the key space compared to classical chaotic maps, which
typically have much narrower parameter ranges, such as [0, 4] or [0, 10].

4. The chaotic sequence SQQLSR generated by SQQLSR is normalized to produce S2 (Eq. (7)). This
normalization ensures that the chaotic values are distributed within a stable range. Subsequently, S1 and
S2 are converted into integer forms using a modulo operation (Eq. (8)), adding a layer of randomness
essential for substitution processes in encryption.

In conclusion, the estimated key space of the proposed algorithm incorporates contributions from
several factors. First, the SHA-512 function provides a key space of 2512. Second, the control parameter r, with
a value range between 0 and 1024 and floating-point precision (1016), offers a key space of approximately 1040,
providing additional flexibility. By combining all these factors, the total key space of the proposed algorithm
reaches 2512 × 1040.
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4.2.6 Robustness Test
The robustness test is important in estimating the strength of cryptographic schemes against the totality

of data attacks such as cropping/loss, noise addition, and compression. These tests imitate practical situations
where the encrypted data is incomplete or is of lower quality than the intended one due to the loss sustained
during transmission or storage. In this case, some areas of the encrypted image have been cut or masked
to zero, emulating data loss. Following this, the strength of the decryption technique has been examined
by inspecting the image built from the decryption process. As depicted in Fig. 14, two trimming forms
were evaluated, namely, 200 × 200 and 400 × 400 cropping losses. The resilience being displayed connotes
an extensive retention mechanism, and the algorithm can disperse the key information across the whole
area of the image so that losing some data locally will not be detrimental to the utilization of the image.
Noticeable degradation occurred with larger cropping sizes, demonstrating the limitations of extreme data
loss. However, the object’s shape in the image can still be recognized visually.

Figure 14: Robustness test under crop/loss attack (a) Encrypted image with loss 200 × 200 pixels; (b) Decrypted image
after loss 200 × 200 pixels; (c) Encrypted image with loss 400 × 400 pixels; (d) Decrypted image after loss 400 × 400
pixels

In this case, the second robustness measure introduced salt and pepper noises of intensity equal to 0.05
and 0.1 to the already encrypted image. This form of noise model roughly simulates pixel errors that might
happen to a pixel during its transmission or storage. The results, shown in Fig. 15, prove that the algorithm
under consideration can properly process noisy data. The encryption algorithm has good noise immunity
and can handle severe random damage. This strength also comes from the algorithm’s parametrization, which
is highly sensitive, and the use of non-linear chaotic mapping, which guarantees that the encryption does
not depend on neighborhood pixel values.

Lastly, JPEG compression with quality settings of Q = 75 and Q = 50 were used in assessing the
algorithm’s performance concerning lossy compression. These values are intended to imitate actual situations
in which images must be compressed to minimize the use of space in storage or bandwidth. As shown
in Fig. 16, the algorithm performs well with lossy compression such as JPEG. The uninformation diffusion
seems to be aided by the chaotic mapping within the image, which enables successful decryption even after
a considerable amount of quality has been sacrificed.
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Figure 15: Robustness test under noise additional attack (a) Encrypted image under salt & pepper 0.05; (b) Decrypted
image after salt & pepper 0.05; (c) Encrypted image under salt & pepper 0.1; (d) Decrypted image after loss salt & pepper
0.1

Figure 16: Robustness test under JPEG compression attack (a) Compressed using Q = 75; (b) Decrypted image after
JPEG compression Q = 75; (c) Compressed using Q = 50; (d) Decrypted image after JPEG compression Q = 50

4.2.7 Decryption and Key Sensitivity Analysis
The ability of an encryption algorithm to perfectly decrypt an image is a key indicator of the reliability of

the method used. Key sensitivity analysis is also important to evaluate the algorithm’s security against small
changes in the key or initial parameters. Fig. 17 shows that decryption with the correct key (Fig. 17b) results
in a fully recovered image, while a tiny change in the initial seed (−0.00000001) results in an unrecognizable
image (Fig. 17a). This confirms the high sensitivity of the algorithm to the key, thus preventing brute-force
attacks or correlation-based key guessing. The decryption process with the correct key shows the peak
signal-to-noise ratio (PSNR) value reaching infinity, proving that data integrity is maintained without any
information loss. Thus, the SQQLSR algorithm offers high security through key sensitivity and guarantees
perfect decryption when the correct key is used, making it highly reliable for image encryption applications.

4.2.8 Comparison with Related Work
Performance comparisons are performed using the same dataset as published papers. This allows for

a fair and direct comparison of the effectiveness of the proposed encryption methods. In this study, the
encryption method is designed with a simple approach so that the performance of SQQLSR can be seen more
dominantly. This approach is deliberately carried out to focus on evaluating the randomness and complexity
produced by SQQLSR so that in the future, this method is still open to further development that is more
integrated with complex encryption systems. In Table 8, the comparison results using Peppers images show
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that the NPCR value for the proposed method is very competitive with existing methods, even higher for
some color channels, such as the green channel (99.625%). The UACI value of this method is slightly lower
than some references but is still within the ideal range (32.8%–33.8%), indicating adequate sensitivity to small
changes in the original image. Meanwhile, the proposed method appears relatively superior based on entropy
and pixel correlation analysis.

Figure 17: Decryption result (a) using a slight modification of initial seed (−0.00000001); (b) using the correct key

Table 8: Comparison of peppers image

Image Ch NPCR UACI Entropy Correlation direction

Horizontal Vertical Diagonal
Ref. [41] R 99.6090 33.4641 7.9993 −0.0323 0.0025 −0.0051

G 99.6102 33.4580 7.9993 0.0408 −0.0020 −0.0001
B 99.6093 33.4833 7.9993 0.0742 0.0772 0.0737

Ref. [42] R 99.6043 33.4037 7.9971 −0.0052 −0.0001 −0.0013
G 99.6022 33.4538 7.9973 −0.0045 0.0008 −0.0015
B 99.6123 33.3678 7.9967 −0.0028 −0.0019 0.0001

Proposed R 99.6030 33.214 7.9994 0.0005 −0.0036 0.0022
G 99.6250 33.424 7.9993 0.0011 0.0030 0.0031
B 99.5650 33.037 7.9993 0.0000 0.0015 −0.0000

In Table 9, we re-encrypt the baboon image and convert it to a grayscale image. The proposed method
shows the highest NPCR result (99.621%), surpassing most other methods. The UACI value is also very
competitive (33.434%), indicating that this method successfully produces significant intensity changes
between pixels in the encrypted image. The entropy of the encrypted image also shows the most superior
value. While the adjacent correlation also has outstanding results, competing with Ref. [32].
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Table 9: Comparison of grayscale baboon image

Image NPCR UACI Entropy Correlation direction

Horizontal Vertical Diagonal
Ref. [43] 98.341 31.505 7.9849 – – –
Ref. [27] 99.702 33.134 7.9982 0.0055 −0.0317 0.0017
Ref. [29] 99.674 33.536 7.9991 – – –
Ref. [32] 99.614 – 7.9973 −0.0050 0.0001 0.0006
Proposed 99.621 33.434 7.9993 0.0034 −0.0000 −0.0020

Although the encryption method is relatively simple, the results are very competitive compared to
previous methods. The proposed method performs better in some aspects, such as NPCR and entropy. This
shows that SQQLSR has great potential for further development, not only as a randomness generator but
also as a core part of more complex encryption methods in the future.

5 Conclusions
The proposed SQQLSR significantly advances 1D chaotic systems by integrating quantum principles

such as superposition using Hadamard and quantum rotations. This study highlights how SQQLSR achieves
ultra-wide chaotic dynamics, characterized by a broad bifurcation range without periodic windows, excep-
tional Lyapunov Exponent values reaching up to ≈55.265, and a significantly expanded keyspace. The
ultra-wide range of the r control parameter alone provides a key space of up to 1040, which is an incredible
achievement in a chaotic system. These properties collectively ensure enhanced randomness, sensitivity
to initial conditions, and resistance against brute-force attacks, making SQQLSR a robust and versatile
chaotic map.

While the study includes image encryption as a proof-of-concept, the encryption method was delib-
erately kept simple to focus on showcasing SQQLSR’s core capabilities. The evaluations, including metrics
like NPCR, UACI, entropy, and robustness, demonstrate that even with this simplified approach, the
system delivers competitive and, in some cases, superior performance compared to existing methods.
These results affirm SQQLSR’s potential as a foundational component for advanced cryptographic and
security applications.

Although this study primarily focuses on image encryption, SQQLSR holds strong potential for broader
cryptographic applications, particularly in lightweight encryption for IoT devices, secure communication
protocols, and real-time key generation for quantum-based security frameworks. The ability of SQQLSR
to operate on a single qubit while maintaining strong chaotic properties makes it an attractive choice for
resource-constrained environments where computational efficiency is a critical factor. Additionally, the
inherent unpredictability of SQQLSR’s chaotic dynamics can be leveraged for key expansion techniques,
secure authentication mechanisms, and random number generation, making it a viable candidate for
next-generation security frameworks.

Given that our study uses Pennylane quantum simulators, we acknowledge that practical implemen-
tation on real quantum hardware presents additional challenges, such as gate fidelity, decoherence, and
execution time constraints. Addressing these challenges will be a key focus of future research, where we plan
to evaluate SQQLSR’s performance on actual quantum processors and explore optimizations for hardware-
specific noise resilience and efficient gate decompositions. Moreover, in-depth cryptanalysis is necessary to
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assess SQQLSR’s resistance to quantum attacks and side-channel vulnerabilities, ensuring its robustness in
real-world cryptographic implementations.

In conclusion, SQQLSR lays the groundwork for future research into integrating quantum chaotic
systems with more sophisticated cryptographic frameworks. Its adaptability and strong performance make
it a promising tool for enhancing security in various domains, paving the way for further innovations in
quantum and chaos-based technologies.
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