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ABSTRACT: Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,
dependency on the operator, and the variation of image quality. This paper presents the UltraSegNet architecture
that addresses these challenges through three key technical innovations: This work adds three things: (1) a changed
ResNet-50 backbone with sequential 3× 3 convolutions to keep fine anatomical details that are needed for finding
lesion boundaries; (2) a computationally efficient regional attention mechanism that works on high-resolution features
without using a transformer’s extra memory; and (3) an adaptive feature fusion strategy that changes local and global
features based on how the image is being used. Extensive evaluation on two distinct datasets demonstrates UltraSegNet’s
superior performance: On the BUSI dataset, it obtains a precision of 0.915, a recall of 0.908, and an F1 score of
0.911. In the UDAIT dataset, it achieves robust performance across the board, with a precision of 0.901 and recall of
0.894. Importantly, these improvements are achieved at clinically feasible computation times, taking 235 ms per image
on standard GPU hardware. Notably, UltraSegNet does amazingly well on difficult small lesions (less than 10 mm),
achieving a detection accuracy of 0.891. This is a huge improvement over traditional methods that have a hard time
with small-scale features, as standard models can only achieve 0.63–0.71 accuracy. This improvement in small lesion
detection is particularly crucial for early-stage breast cancer identification. Results from this work demonstrate that
UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy.
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1 Introduction
It is still the most important global health issue: in 2020, the World Health Organization registered

2.3 million new cases of breast cancer [1]. Despite tremendous progress in recent decades, breast cancer
remains one of the most common cancers for females and continues to account for 24.2% of all new cancer
cases [2,3]. Due to the continued high incidence and mortality of breast cancer, there is an urgent need
for the development of suitable early detection and diagnostic methods. The literature well establishes a
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correlation between early detection of breast cancer and better patient outcomes. The researcher in [4]
conducted a comprehensive study showing nearly 90% of 5-year survival with early-stage breast cancer,
compared to less than 30% with late-stage. Additionally, early detection allows for better survival rates and
a greater chance of less treatment, as most often treatment like this decreases the physical and psychological
burden of having cancer [4]. Currently, we perform breast cancer detection using a multi-modal approach
that includes mammography, magnetic resonance imaging (MRI), and ultrasound. The gold standard for
screening mammography has a sensitivity from 70% to 90% based on breast tissue density [5]. On top of
being a useful addition to mammography, ultrasound imaging has become a powerful way to find problems
in dense breast tissue. The researchers in [6] showed that the inclusion of ultrasound in mammography
on women with dense breasts led to an increase in cancer detection rate from 7.6 to 11.8 cancers per 1000
women, an important diagnostic improvement. Ultrasound imaging offers several advantages in breast
cancer detection:

1. Non-invasive nature: The advantage of ultrasound compared to biopsy is that ultrasound doesn’t involve
the removal of tissue for diagnosis.

2. Absence of ionizing radiation: By contrast, ultrasound is safer for repeated examination than
mammography.

3. Cost-effectiveness: MRI, however, is more expensive than ultrasound [7], so generally it is more
accessible.

4. This allows the immediate assessment of multiple angles and planes:

However, several factors constrain the efficacy of ultrasound in clinical practice.

1. Operator dependency: However, the quality and interpretation of ultrasound images are heavily
dependent on the operator’s skill and experience [8].

2. Variability in image interpretation: This may result in different radiologists interpreting the same image
differently, with possible inconsistencies in diagnosis [9].

3. Limited field of view: Ultrasound does only examine a relatively small area at a time, so it may miss
lesions in an unexamined region.

Because of these problems, computer-aided diagnosis systems might be able to help make ultrasound-
based breast cancer detection more consistent and accurate. Recently, the increasing popularity of artificial
intelligence (AI), in particular, deep learning techniques, holds the promise of improving the accuracy
and consistency of breast ultrasound interpretation. One type of deep learning called convolutional neural
networks (CNNs) has been shown to be excellent at solving medical imaging problems [10,11]. However,
recent deep learning-based approaches have achieved considerable success in some of these ultrasound image
analysis challenges. Currently, available literature, however, contains a set of unresolved critical challenges.
Although reference [12] achieves 88.3% accuracy via a multitask learning framework, this performance
degrades substantially with changing image quality. An attention-based CNN architecture that achieves
89.5% accuracy has been suggested by [13], but its performance exhibited limited generalization across
devices of different ultrasound. However, the model by [14] is a transformer-based segmentation model
achieving 90.2% precision. A hybrid CNN transformer architecture, achieving 90.8% accuracy on the BUSI
dataset, was investigated by [15], but it failed with the complex tissue structures. A dual path network
proposed by [16] achieved 91.0% precision, but it proved very sensitive to speckle noise, an issue frequently
encountered in ultrasound imaging. This analysis of current approaches reveals two fundamental gaps:

• The trade-off between precision and recall is a main drawback of current automatic segmentation
systems. Although modern techniques such as 92.1% often suffer from reduced recall, with reports as
low as 85.3% they nevertheless attain great precision. This difference makes segmentation less reliable
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because a system with high precision but low recall might miss large amounts of the target data, giving
wrong results.

• Clinical ultrasonic image features vary greatly among equipment manufacturers, transducer frequencies,
gain settings, and operator approaches. Our methodical analysis shows that present deep learning mod-
els show performance fluctuations of 15%–28% depending on the ultrasonic system, which emphasizes
the requirement of stronger methods fit for various clinical settings.

This paper proposes UltraSegNet, a novel hybrid architecture for breast ultrasound image segmenta-
tions, to close the gaps. This study introduces a number of novel ideas that directly address these limitations.
The next part of the study changes the basic CNN structure by replacing the usual seven convolutional layers
with three successive three-by-three convolutions. This is done to better preserve fine-grained anatomical
details that are needed for accurate lesion boundary detection. Second, we propose a regional attention that
can process high-resolution features efficiently without incurring massive computation overheads, as is the
case in transformer architectures. This system cuts the feature map into overlapping areas and uses localized
self-attention to do both local and global context while still using as little computing power as possible. Third,
we create an adaptable feature fusion scheme with Squeeze and Excitation blocks added to the end of every
residual block. This scheme recomputes feature responses based on the information they contain.

Our key contributions can be summarized as follows:

• We provide a new regional attention mechanism that radically changes the processing of high-resolution
medical images. Instead of using traditional transformer methods, which have quadratic computational
complexity, our method splits feature maps into overlapping areas for better local-global context
modeling. This cuts memory needs while still allowing high-resolution feature processing needed for
precise lesion boundary detection.

• Specifically intended to preserve precise anatomical details in ultrasonic images, we present a modified
CNN encoder with sequential 3 × 3 convolutions substituting normal 7 × 7 filters. With just 20 ms extra
processing time, this architectural innovation provides a 3.4% improvement in Dice score and 4.1% in
IoU over normal configurations.

• Unlike earlier methods that only shine in one statistic, we show UltraSegNet’s remarkable ability to
balance precision (0.915) and recall (0.9908) by means of thorough examination on two different
datasets. In this therapeutically important area, UltraSegNet works very well on small lesions (<10 mm)
with a detection accuracy of 0.891, which is much better than standard methods (0.63–0.71).

The rest of this paper is organized as follows. The section “Related Work” provides an overview
of the evolution of breast ultrasound analysis. Section Proposed Methodology introduces our proposed
UltraSegNet architecture in detail, describing its innovative components including the modified CNN
encoder, specialized regional attention mechanism, and adaptive feature fusion strategy. Finally, we present
the design of our training protocol and loss function. In Section Experimental Results, we looked at how
well our proposed UltraSegNet model worked at separating parts of breast ultrasound images and what its
current flaws were. In Section Discussion, we talked about what our architectural changes mean. Finally, the
section conclusion summarizes our contributions and outlines promising directions for future research in
medical image segmentation.

2 Related Work
This section includes a complete review of the field’s development from its theoretical underpin-

nings to the most recent techniques and approaches, within the context of their interaction with distinct
methodological paradigms.
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2.1 Theoretical Foundations and Early Approaches
In the last 40 years, medical image segmentation technologies have gradually transformed from

traditional image processing methods based on experience to machine learning-based algorithms [17,18].
We build upon the fundamental mathematical and computational principles that form the foundation of this
field and influence modern methodologies. In the early 1980s and 1990s, important algorithmic frameworks
were laid out for image analysis, and then in the early 2000s, they entered the paradigm shift of processing
and analyzing medical images using machine learning approaches [19,20]. We need to keep learning about
these basic approaches because many of the new techniques are based on or build on these early ideas. This
will help us understand the new techniques better when we combine them with the newest deep learning
techniques to get strong and accurate segmented results [21–23].

The medical image segmentation has originated from classical image processing techniques based
on mathematical morphology and signal processing theory. Typically, early approaches revolve around
fundamentals in edge detection [24], watershed transformations [25], and active contour models [26]. They
have laid the groundwork for these core methods, incorporating critical principles that have paved the way
for more recent approaches. Early work on computational vision by [27,28] talked about edge detection
using zero crossing of the second derivative as a way to start learning about boundary detection in medical
imaging. The creation of region-growing algorithms [29] and split and merge techniques led to the first ways
to deal with medical images that show tissue that is all the same. Probabilistic reasoning was introduced into
image segmentation with the growth of statistical models, such as Markov Random Fields [30], and Bayesian
frameworks, which are quite useful for coping with ultrasound speckle noise.

As a huge paradigm shift, the trend grew toward machine learning in medical image analysis. Many
important advances in feature engineering happened during the transition period, such as the creation
of Gabor filters [31] and wavelet transforms [32], which are powerful ways to describe the properties
of images. The development of Support Vector Machines (SVM) [33], where Vapnik’s statistical learning
framework enabled robust tissue classification through optimal hyperplane separation in high-dimensional
feature spaces, and Random Forests [34] showed that learning-based methods could be useful for medical
image segmentation. This was followed in 2004 by the introduction of atlas-based segmentation [35], which
provided a framework for integrating prior anatomical knowledge into segmentation algorithms.

2.2 Deep Learning in Medical Imaging
The feature extraction represented a complete break from traditional handcrafted methods and transi-

tioned to data-driven approaches that are able to learn more complex representations automatically. Deep
learning has dramatically impacted medical imaging, and the specific impact in the usual diagnostic tasks is
perhaps unsurpassed [10]. Deep learning methods are able to discover relevant features from data without
relying too much on domain expertise and provide more generalizable, robust solutions for medical image
analysis, which is better than previous approaches [36].

Through this paradigm shift, both existing applications utilizing MRI data have benefited from
enhanced accuracy, opening up new avenues for medical image processing, analysis, and interpretation that
were previously unattainable with traditional approaches.

Over the last few years, numerous methods for breast cancer detection and segmentation have been
presented to operate on diverse imaging modalities. New developments in medical image segmentation have
looked at creative architectural ideas. Zhu et al. [37] showed a two-branch network that processes features
in parallel paths, with one path capturing local details and the other extracting global context. This was used
for ultrasonic image segmentation. Although this method shows promise, achieving a 0.897 Dice score on
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the BUSI dataset, it lacks a clear means to combine the complementing information from both branches.
The method employs a hybrid architecture that prioritizes regional attention. For MRI, Zhu et al. [38] also
showed how to fix the shape of the edges by improving multi-modality spatial information. This made it
easier to tell brain tumors apart.

Even though their method relied on features that are unique to MRI, like continuous tissue contrast
and the lack of speckle noise, it made a big difference in how accurate the boundaries of MRI data were. Our
study applies these boundary-enhancing ideas to the difficult ultrasonic domain by using special attention
mechanisms that can handle the speckle noise and acoustic shadows that are a part of ultrasonic imaging.
Despite the significant contributions made by these new techniques, they primarily focus on alternative
imaging modalities and employ fundamentally different architectural paradigms, thereby overlooking the
unique challenges associated with high-resolution feature processing in breast ultrasound images.

Incorporating transformer architectures into medical image segmentation marks a fundamental shift
away from existing CNN-based approaches. Vision Transformer (ViT) was successful in computer vision
tasks and also showed better long-range dependencies, which is needed for medical image analysis and sped
up this transition [39].

In [40], the researchers introduced TransUNet, which is a big step forward in making it possible for a
regular transformer to use CNN features together for medical image segmentation. Detailed analysis also
shows that fundamental challenges are present while achieving 89.1% precision on breast ultrasound images.
The architecture uses a standard transformer encoder on image patches processed sequentially, which
performs quadratically in the number of image sizes. This leads to prohibitively large memory requirements,
exceeding 16 GB GPU RAM, for high-resolution ultrasound images (512 × 512 pixels). When you use patch-
based processing (16 × 16 patches), you lose fine-grained feature details that are needed to accurately define
the edge of the lesion.

To get around these problems, Swin Transformer [41] used shifted windows and hierarchical feature
processing and reported an accuracy of 89.8%. This approach avoids the quadratic computational complexity
seen in previous approaches. However, the shifted window mechanism introduces new challenges in
ultrasound imaging: Ultrasound tissue patterns are not always the same, and rigid partitioning of feature
maps doesn’t work well for these areas where there is speckle noise or acoustic shadows. In their work,
reference [42] showed how to use linear projection techniques to make attention mechanisms that worked
well and used 60% less memory than the base transformer architecture. However, their model only achieves
90.2% precision but shows inconsistent results on different ultrasound devices and scanning protocols. The
study shows that their linear approximation of attention patterns doesn’t work with these very subtle changes
in intensity. Instead, using lesion boundary edges works best. A study in 2022 by Wang et al. suggested a
Hybrid Transformer Network (HTN) that combines multi-head self-attention with deformable convolutions
to achieve a 90.5% accuracy rate. While this approach better handles varying lesion sizes, it introduces three
critical limitations:

1. Deals with Complex Optimization Requirements with Multiple Loss Terms.
2. Addresses Increased Training Instability That Often Requires Careful Hyperparameter Tuning.
3. Finally, Finds a Solution for the Computational Overhead of Deformable Convolution Operations That

Does Not Allow for Real-Time Processing.

Medical Vision Transformer (MedViT) was specifically designed for medical image analysis, proposed
by [43]. They achieve 90.8% precision with their architecture by utilizing their specialized medical image tok-
enization and hierarchical feature handling. However, their approach faces several challenges in ultrasound
imaging:
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1. The Schaum’s fixed tokenization strategy encounters difficulties with dynamic ultrasound image fea-
tures.

2. The hierarchical processing pipeline is not suitable for real-time clinical workflows due to the excessive
latency added.

3. The model experiences significant performance degradation when accessing images with varying
contrast levels.

The Optimal Trained Deep Learning Model (OTDLM) introduced by [14] is an improved breast
cancer segmentation and classification. The BUSI dataset has a segmentation accuracy of 91.5 percent and
a classification accuracy of 93.2 percent that can only be achieved by using adaptive feature extraction and
an optimized training strategy. The OTDLM architecture has a new, three-step optimization process that
changes the parameters for feature extraction based on the characteristics of the lesion. Detailed According
to a thorough analysis, OTDLM works well in controlled environments but needs a lot of computing
power (about 24 GB GPU memory) and doesn’t work as well when used with different ultrasound devices,
which makes it harder to use in real-life clinical situations. Reference [13] present an intelligent healthcare
framework that is adding sophistication to the field with an intelligent fusion between multiple deep learning
architectures. In parIn particular, their framework combines complementary feature extraction capabilities
in a hierarchical attention mechanism, achieving 90.8% segmentation accuracy and improving robustness
to image quality variations.proved optimization algorithm adaptively balancing local and global feature
extraction according to tissue characteristics is introduced in the framework. Though it achievAlthough it
producesod results, its fusion approach is too complex and leads to considerable computational overhead,
taking an average of 1.2 s to process each image, which is unacceptably long for practical use in real-
time routine clinical workflows. Furthermore, their proposed approach must first be pre-trained on large
datasets, which makes it difficult to adapt to different clinical settings. The limitations of most of the current
approaches that use transformers need an architecture that can find the right balance between the global
context modeling power of transformers and the limited computational efficiency needed in clinical settings.
A big gap in processing the special nature of ultrasound imaging, such as speckle noise, acoustic shadow, and
the varying contrast of the tissue in real time.

Newly created attention mechanisms and different transformers have made medical image segmenta-
tion more efficient while reducing the amount of extra work that needs to be done. The linear attention [44]
slows things down by using the softmax approximation to make the self-attention mechanism work better
overall. Criss-Cross Attention (CCNet) [45] improves how spatial features interact by looking at responsive
dependencies along both horizontal and vertical axes. This makes segmentation more accurate without using
a lot of computing power. Axial Attention [46] optimizes self-attention even more by factorizing the spatial
dimensions, enabling the model to capture the global context at much lower complexity. Yet, these methods
are still limited by ultrasound-specific characteristics, such as acoustic shadowing and speckle noise. Recent
advancements in transformer architectures have achieved promising performance in medical image analysis.
The suggested a number of effective attention mechanisms for ultrasound image segmentation, with the
promise of lowering the amount of work needed while still maintaining accuracy [12]. They found a solution
that delivered a 40% reduction in memory requirements compared to typical transformer architectures.
The researcher in [47] suggested new ways to get rid of speckle noise in medical ultrasound images using
adaptive attention techniques. They were able to make the best possible image quality improvements without
losing any important diagnostic information. Their work, in particular, took on the difficulties of changing
the density of tissue and acoustic shadows. The researcher in [48] introduced a hybrid transformer for
medical image segmentation. They showed that the careful combination of transformer parts into a U-Net
framework could ultimately increase performance in medical image segmentation. The hybrid transformer
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tackles the medical image segmentation problem by utilizing the strengths of CNNs and transformers, which
have become the popular approach in the medical imaging domain. These advancements pave the way
for hybrid architectural methods in medical image analysis, balancing performance with computational
resource constraints.

While existing approaches have made significant progress on the breast ultrasound image analysis
problem, they are still far from solving it. Due to the limitations of such datasets, which are the majority, as
most contain fewer than 1000 images, robust models that generalize across various clinical settings could not
be developed. While traditional CNN architectures suffer from loss of fine-grain details that are important
for accurate lesion boundary detection, and pure transformer approaches have difficulties handling large-
scale medical images, results indicate how to combine the complementary strengths of both models. Also,
there aren’t any architectures out there that can do local feature extraction, global context modeling,
and practical computation quickly enough for clinical settings. The proposed UltraSegNet architecture
specifically addresses these gaps through several key innovations: Additionally, this work suggests a CNN
encoder that has been changed to work better with medical images, a regional attention mechanism that is
designed to handle high-resolution features, which is something that current methods don’t do very well,
and an adaptive feature fusion strategy that combines local and global data. Our method uses two useful
datasets, BUSI and UDAIT, to test and integrate them. It works well in a variety of clinical situations and
doesn’t use a lot of computer power. Based on these reasons, this all-encompassing solution makes breast
ultrasound image segmentation more accurate and consistent, which is needed for a good clinical diagnosis.

3 Proposed Methodology
This section delineates an approach to breast ultrasound image segmentation, leveraging a hybrid

architecture that synergizes Convolutional Neural Networks (CNNs) and Transformers. Speckle noise, low
contrast, and the heterogeneous nature of breast tissue are just a few of the unique difficulties that ultrasound
imaging presents.

3.1 Data Collection and Preprocessing
This work conducted extensive experiments on two separate but related sets of breast ultrasound

data to thoroughly test the performance of our proposed UltraSegNet model and its applicability in other
situations. The researchers strategically selected these datasets to diversify their characteristics, as they
cover a wide range of clinical scenarios, imaging conditions, and pathological presentations. The Breast
Ultrasound Images (BUSI) dataset [49] is publicly available and can be accessed at https://data.mendeley.
com/datasets/wmy84gzngw/1 (accessed on 12 February 2025). This comprehensive collection contains 780
high-resolution grayscale images from 600 patients aged 25 to 75 years. The sample images of Dataset 1
(BUSI) used in this paper are displayed in Fig. 1. One of the reasons that this dataset is so valuable is that it has
a favorable distribution of normal tissue, benign lesions, and malignant masses, where each image is fixed
at a similar resolution of about 500 × 500 pixels. The BUSI dataset’s standard acquisition protocol ensures
the preservation of various images from the same patient. This is necessary for clinical ultrasound studies.
In this study, we add the UDAIT dataset [50] to the BUSI dataset. It has 163 clinically validated ultrasound
images that were taken with a state-of-the-art Siemens ACUSON scanner at the UDAIT Diagnostic Center
of the Parc Tauli Corporation in Sabadell, Spain. This dataset is publicly available and can be accessed at
https://zenodo.org/record/545928 (accessed on 12 February 2025). Sample images of Dataset 2 (UDAIT)
are shown in Fig. 2. The dataset consists of 110 benign and 53 malignant breast masses, each represented
by one image and focused pathological views. The UDAIT collection is a particularly rich benchmark
to evaluate our model’s performance. These datasets, in their strategic combination, give the following

https://data.mendeley.com/datasets/wmy84gzngw/1.
https://zenodo.org/record/545928.
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significant advantages for our study. First, the wide variety of patient demographics, lesion types, and imaging
conditions provide a very strong assessment of how robust our model’s generalization capabilities are. Also,
the different acquisition protocols and instruments used in the datasets let us test how well the models can
handle the technical changes that happen in a clinical setting. We also include both academic research data
(BUSI) and clinical diagnostic images (UDAIT) to represent both controlled research conditions and real-
world clinical scenarios. The variety of abnormalities seen in both sets of data makes it possible to fully test
our model’s ability to tell the difference between normal, benign, and malignant tissue features. To maximize
both datasets, this work created a rigorous preprocessing pipeline that can solve common challenges for
ultrasound image analysis. In this pipeline, note that the image dimensions are standardized, and the intensity
values are normalized, with speckle noise carefully handled while maintaining essential diagnostic features.
We specifically developed the preprocessing steps to ensure the integrity of clinically relevant information
while facilitating fast model training and evaluation.

Figure 1: Images from BUSI covering (a) normal tissue, (b) benign lesion and (c) malignant lesion. The breasts with
varying characteristics and challenges for interpretation in breast ultrasound are demonstrated by each image

Figure 2: Examples from the UDAIT dataset illustrating (a) benign and (b) malignant masses. Images demonstrate the
high-quality clinical acquisition standard using the Siemens ACUSON scanner

3.2 Preprocessing Pipeline
Ultrasound imaging’s preprocessing pipeline consists of four heavy hitters, all attempting to attack

particular challenges with ultrasound data. The key is to maintain clinically meaningful information while
improving the image quality and being robust over subsequent classification and analysis.
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3.2.1 Speckle Noise Reduction
Since coherent sound wave reflections are one of the main causes of speckle noise, ultrasound imaging

has many limitations. To deal with this, this work uses a Non-Local Means (NLM) denoising algorithm
that has previously been demonstrated to reduce noise while preserving structural information in images.
An optimization of the NLM algorithm was done for ultrasound images by using the particularities of this
modality to better accommodate its filtering parameters. The NLM filter is mathematically expressed as:

NL[v](i) = ∑
j∈I

w(i , j)v( j), (1)

where w(i , j) is the weight function, i and j are pixel indices and v is the noisy image. In other words,
this weight is determined by how similar are the neighbourhoods around pixel i and j. Using nonlocal
comparisons, the algorithm significantly reduces noise without obstructing key features in ultrasound
images, a critical aspect for precise analysis.

3.2.2 Contrast Enhancement
Effective contrast enhancement techniques are critical in order to make ultrasound images more

interpretable, due to the inherent low contrast of ultrasound images. In particular, this research uses a
modified Contrast Limited Adaptive Histogram Equalization (CLAHE) based on ultrasound imagery. The
CLAHE is meant to improve contrast in certain areas while reducing noise enhancement to protect clinical
interpretations. The transformation function used in CLAHE is defined as:

f (i , j) = round(cdf( f (i , j)) − cdfmin

cdfmax − cdfmin
× (L − 1)) . (2)

The pixel intensity coordinate (i , j), f (i , j), L is the number of gray levels and cdf is the cumulative
distribution function of the image intensity values. The adaptiveness of CLAHE enables it to effectively boost
contrast in the locally varying regions of the image, while rendering the structures more discernable without
introducing spurious artifacts.

3.2.3 Intensity Normalization
Intensive variations in ultrasound image intensity can prevent automated analysis. This work addresses

this by applying z-score normalization, meaning that the proposed work center the pixel intensity values
around a mean zero and scales them out to their standard deviation. The normalization is expressed as:

Inorm =
I − μ

σ
, (3)

where the original image intensity, μ represents the mean intensity and σ is the standard deviation. The fact
that this normalization technique improves image comparability between different acquisitions and reduces
variation in intensity also stabilizes the training process of deep learning models.

3.2.4 Data Augmentation
This work’s developed a suite of on the fly data augmentation techniques to increase its generalizability

and robustness. The implementations are meant to mimic the natural variability seen in ultrasound imaging
while keeping the anatomical integrity of the image. The augmentations applied to include:
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• Random Rotations: Each image is randomly rotated by an angle θ, sampled from a uniform distribution
θ ∼ U (−15○, 15○). This helps the model become invariant to minor orientation changes.

• Horizontal Flipping: Images are flipped horizontally with probability p = 0.5. A mechanistic explanation
for this augmentation is the inherent bilateral symmetry for anatomical structures.

• Elastic Deformations: In this research, generated dense deformation fields u(x) were sampled from a
Gaussian distribution that introduces elastic deformations to the images. It simulates best the noise, or
distortion, that would result from patient movement or probe positioning.

The proposed work used ablation studies on the BUSI dataset to show that our proposed preprocessing
pipeline works. The Peak Signal-to-Noise Ratio (PSNR) went up by 47% when the NLM denoising algorithm
was used. This cut the speckle noise from 23.8 to 35.2 dB. This study found that this noise reduction directly
improved segmentation performance by increasing precision from 86.3% to 89.1%. Better feature addition
was helped by the CLAHE contrast enhancement, which raised the average local contrast ratio from 0.42
to 0.68. This made segmentation accuracy 2.4% better overall. This study looks at how our approach to
normalizing intensity cuts down on differences in intensity between images by 65% (standard deviation
reduction) and how to improve training convergence with 30% fewer epochs. These steps before segmenta-
tion improved the final accuracy by 5.2% compared to segmentation using raw ultrasound images. This shows
how important they are for strong segmentation performance. This study used five-fold cross-validation to
show that the results were statistically significant. To avoid overfitting, the preprocessing parameters were
optimized on a validation subset. In difficult cases with small lesions and different tissue patterns, sequential
application of these preprocessing steps worked best. This is because raw image segmentation usually doesn’t
work well in these situations.

3.3 UltraSegNet Architecture
This paper suggested an architecture called UltraSegNet to deal with problems like low contrast, speckle

noise, and the appearance of different textures in ultrasound images. The main idea behind UltraSegNet is
to get both local and global contextual information from the ultrasound images. In order to achieve this
goal, UltraSegNet combines the strengths of both Convolutional Neural Networks (CNNs) and Transformer
models, so the architecture can use both. The design of UltraSegNet consists of three primary components:
a CNN-based encoder, a transformer module, and a CNN-based decoder. All the components have their
intended purpose in the pipeline, helping the network utilize its feature-extracting, long-range dependence
modeling ability, and reconstruct high-resolution segmentation masks:

• Serves as the first component of the architecture.
• Takes ultrasound images as input.
• Learns hierarchical image features.
• Uses localized receptive fields for precise feature extraction.

However, regular CNNs have trouble showing long-range dependencies, which are necessary to under-
stand the global context and relationships in medical images. To overcome this limitation, UltraSegNet uses a
Transformer module as the second core part. The transformer module can model long-range dependencies,
for example by using self-attention mechanisms. This lets it learn the complicated connections between
different areas of the ultrasound image. With the combination of CNNs and Transformers, UltraSegNet
successfully strikes a balance between retaining the local information and preserving the global context.

The third part of the CNN-based decoder is to get segmented output by slowly putting together the
segmented output from the enriched feature representations. To preserve high-frequency details, the decoder
incorporates skip connections from the encoder; and to achieve precise segmentation, this work performed
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multi-scale feature fusion. The architecture also uses attention mechanisms in skip connections to decide
how much relevant spatial information should be used to focus on a certain object pattern during the
decoding stages.

Overall, the presented UltraSegNet is a hybrid solution that fills the niche between vintage CNN models
and trending Transformer models. We designed the architecture to integrate these components together,
enhancing the accuracy of segmenting challenging ultrasound images. The proposed architecture is shown
in Fig. 3, along with the information flow between the encoder, the Transformer module, and the decoder.

Figure 3: The diagram of the UltraSegNet architecture

3.3.1 CNN Encoder
A changed version of ResNet-50 [51] is used to make the UltraSegNet encoder. ResNet-50 was a powerful

and well-known type of hierarchical feature extraction. When deciding on our backbone network, the
proposed work chose ResNet-50 due to its advantage of the architecture for the medical image analysis.
ResNet-50 has residual connections that help gradients flow better throughout deep networks and thus
preserve subtle tissue boundary information on ultrasound images. The structure of ResNet-50 fits par-
ticularly well to ultrasound image analysis, where fine feature preservation at multiple scales is required.
The residual learning framework naturally keeps the tradeoff between reusing features and saving memory,
which is very important in clinical situations. The first of these modifications is the swap of the initial 7 × 7
convolutional layers with three consecutive 3 × 3 convolutions. They are adjusting to make sure that they
capture finer-scale details in the ultrasound imagery. Small kernel sizes of 3× 3 convolutions make it easier
to tell the difference between textures and small anatomical features, which is useful for medical imaging
tasks. The key idea here is that kernels should be allowed to prevent the loss of subtle but clinically important
features that can be missed by larger kernels.We added Squeeze-and-Excitation (SE) blocks [52] after each
residual block in this study to make the feature extraction process even better. The SE blocks change the
channel-wise feature responses on the fly so that the network can combine the most useful features and
hide the less useful ones. This selective emphasis is crucial for medical image analysis, as noise or irrelevant
presentation can lead to misclassification. We fundamentally adapt the SE-ResNet-based parent model and
our proposed UltraSegNet encoder for medical ultrasound image analysis. Our modifications utilize residual
connections and channel attention, specifically tailored to address the unique characteristics of ultrasound
imaging. The choice of initial feature extraction layers fundamentally distinguishes our approach. The SE-
ResNet standard uses a single 7 × 7 convolutional layer and max pooling, which work well for natural images
but might make it hard to see small details in medical images. Instead, our UltraSegNet encoder is made up
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of three convolutional layers that are stacked on top of each other. This makes it possible to extract more
subtle features, which is very important for finding faint organ boundaries and anatomical structures in
ultrasound images. However, with this modification, the model can very efficiently capture fine-scale details.
The UltraSegNet encoder highlights its modifications and architectural details as shown in Fig. 4. The two
architectures differ significantly in how they integrate the Squeeze-and-Excitation (SE) blocks. SE-ResNet
uses the standard SE blocks only for channel attention; on the other hand, the proposed work used a modified
version of the block for medical imaging cases. The suggested model includes SE blocks that can adjust their
settings to focus on features that are important for a few ultrasound image characteristics. Our modified SE
block expresses itself mathematically as follows:

FSE(x) = σ(W2δ(W1Fav g(x))) ⋅ x + Fresidual(x), (4)

where Fresidual(x) represents our specialized residual connection that preserves medical imaging-
specific features.

Figure 4: The UltraSegNet encoder architecture with modified ResNet-50

Our method also includes a multi-scale feature extractor that can get hierarchical features (E1, E2, E3,
E4) that are specifically designed for ultrasound image analysis. SE ResNet, on the other hand, supports
a more general-purpose feature hierarchy, which makes it easier to work with anatomical scales that are
common in medical imaging and often vary a lot. We define the multi-scale feature extraction process as
follows:

Ei = FSE(Fconvi(Ei−1)) + Fski p(Ei−1). (5)

3.3.2 Transformer Module
UltraSegNet consists of the Transformer module as its core component for extracting long-range

dependencies and global context from feature maps. Since originally introduced for natural language
processing tasks, Transformers have proven effective on computer vision tasks where relationships are
complex and can nest over spatial dimensions. In our architecture, flatten the deepest feature map, labelled
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E4, along its spatial dimensions and project it into a lower dimensional space via a learnable projection matrix
We . The flattened feature map undergoes a transformation to produce an input embedding, mathematically
expressed as:

z0 = LN(We x + p), (6)

where p LN is Layer Normalization and represents learnable positional embeddings. To allow the preserva-
tion of spatial structure present in the feature map, which will otherwise get flattened, the proposed needs
for the feature map to have positional embeddings included.

From theoretical analysis and empirical validation, 8 attention heads were selected with 64 dimensions.
With 8 attention heads, it was chosen to match roughly the number of distinguishable tissue types in
breast ultrasounds—from fat, glandular tissue, lesion boundaries, and various internal lesion characteristics.
It is possible for each head to specialize over different feature aspects, but for all this while keeping the
computational complexity reasonably low. This is study shows the property that the 64 dimensional feature
space has enough representational capacity to encode these subtle intensity variations and textural patterns
characteristic of ultrasound images. The dimensionality was chosen based on analysis of the correlation
patterns of breast ultrasound datasets, such that different tissue characteristics were adequately separated
and not redundantly represented. The output of the multi-head self-attention layer is computed as:

MultiHead(Q, K, V) = Concat(head1, . . . , head8)W O , (7)

where each attention head headi is defined as:

headi = Attention(QW Q
i , KW K

i , VW V
i ), (8)

with W Q
i , W K

i , and W V
i have the query, key, and value learnable weight matrices represented, respectively.

With the attention mechanism, the model is able to focus on different parts of the image depending on the
relationships between them, to capture global contextual information.

A two-layer feed-forward network (FFN) with a Gaussian Error Linear Unit (GELU) activation is
applied to the features attended according to the attention mechanism. The feature embeddings from the FFN
are further improved by adding additional non-linear transformations. The FFN is mathematically expressed
as:

FFN(x) =W2GELU(W1x + b1) + b2. (9)

Our model consists of two layers in what is known as a Multilayer perceptron where each layer W1, W2 is
a weight matrix, and b1, b2 are bias terms. Residual connections and layer normalization are used throughout
the Transformer module to stabilize training and to help propagate gradients.

To improve on processing of high resolution feature maps, the proposal introduces a new regional
attention mechanism. This mechanism breaks up the input feature map into overlapping parts and performs
self-attention localization within each region separately. Then the results are aggregated to produce a global
representation to allow the model to capture both local and global context. Given is the mathematical
formulation for this strategy:

RegionalAttention(X) = Aggregate({SelfAttention(Xi) ∣ Xi ∈ Partition(X)}). (10)

In particular, Partition(X) splits the input feature map into overlapping regions, and Aggregate(⋅)
aggregates the outputs of each region.
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The application domain’s unique characteristics of ultrasound image formation and tissue visualiza-
tion fundamentally motivate the design of the regional attention mechanism. Ultrasound images exhibit
distinctive properties that make traditional attention mechanisms suboptimal: Because sonogram point
spread functions have a shallow depth, they create (1) signal-to-noise ratios that change spatially because
of ultrasound wave attenuation, (2) depth-dependent feature characteristics from changes in acoustic
impedance, and (3) locally correlated speckle patterns that carry diagnostic information. These properties
give rise to a natural structure of feature importance that is spatially dependent and dependent on anatomical
context. Our regional attention approach draws its origins from clinical ultrasound interpretation practice
and the physics of ultrasound imaging. Clinicians usually look into ultrasound images by using anatomically
coherent neighborhoods that give them information about the body parts that are used for that technique.
Our regional approach does the same thing computationally. In the same way that ultrasound waves moving
through different layers of tissue combine the features of the layers next to each other, this mechanism splits
feature maps into parts that overlap and are not parallel to the natural edges of the tissue structures.

3.3.3 CNN Decoder
The UltraSegNets decoder part’s job is to put together the high-resolution segmentation map from

feature representations that have been encoded and transformed. You can get it by putting together a series
of upsampling blocks. Each block has two 3 × 3 convolutional layers and a transposed convolution. Only
the transposed convolutional layers increase the spatial resolution of feature maps progressively, while the
convolutional layers refine the reconstructed features. Each upsampling block’s output is as follows:

Ui = Conv3×3(Conv3×3(ConvTranspose2×2(Di−1))). (11)

To incorporate multi-scale information effectively and preserve high-frequency details, the proposed
introduces skip connections from corresponding layers of the decoder path, denoted by Ei . However, these
skip connections allow the decoder to directly obtain fine-grained spatial information from the encoder,
hence improving segmentation accuracy. The proposed also further improves these skip connections by
introducing Attention Gate (AG) modules [53] that learn to adaptively select only relevant spatial features
depending on contextual information from the encoder and decoder. The output of each AG module is
computed as:

Fi = AG(Ui , Ei). (12)

The proposed also implements a refinement of reconstruction based on progressively fusing the outputs
of the Transformer module at each decoder stage using a structure roughly based on Feature Pyramid
Networks (FPN), as shown in Fig. 5. This fusion is expressed as:

Di = Fi +Upsample(Ti), (13)

and Ti = [T L
f . . . T i

f . . . T 1
1 . . . T i

1 ] ∈ Rt×b where Ti indicates the output of the Transformer module associated
to the i-the decoder stage. The architecture combines multiple scales of information from the encoder,
decoder, and Transformer module so that both local and global contextual information is being leveraged
together in proper fashion. After that final decoder stage, an output is produced which is then subjected to
1× 1 convolutional layers followed by an upsampling layer to generate the final segmentation mask. This layer
does a pixel-by-pixel classification and gives us a probabilistic prediction for each class.



Comput Mater Contin. 2025;83(2) 3317

Figure 5: The UltraSegNet decoder architecture

3.4 Loss Function and Optimization
UltraSegNet is trained by a composite loss function that pushes towards areas that are difficult to

segment in the images and helps solve class imbalance problems. UltraSegNet model employs a weighted
composite loss function that combines Dice and Focal losses:

L = αL Dice + (1 − α)L Focal (14)

where LDice measures region-based segmentation accuracy and LFocal enhances boundary delineation.
Through systematic experimentation with α ∈ [0.1, 0.9], this is study determined that α = 0.7 provides opti-
mal performance. Evolving this weighting between global structure preservation and local detail refinement
results in a Dice coefficient of 0.911. The performance is independent of variations in lesion size (±5%), image
quality (±7%), and device (±6%). However, Focal loss has a greater influence on boundary detection, and
the dominance of Dice loss at α = 0.7 guarantees robust region-based segmentation.

3.5 Training Protocol
This research applies a two stage training strategy to allow our UltraSegNet architecture to be effectively

trained, leveraging the CNN encoder and Transformer module’s complementary capabilities. Such an
approach enables the initialization of general feature representations and their subsequent refinement for the
task of breast ultrasound image segmentation.

3.5.1 Stage 1: CNN Encoder Pre-Training
Before the next step, you need to train the CNN encoder part of UltraSegNet on a large set of different

types of general medical images. For this purpose, it utilized the ImageNet dataset [54], which contains
millions of labeled natural images across numerous categories. Although ImageNet is not medical image-
specific, the large scale of its diverse images enables learning low and mid-level features that are generalizable.
Previous work has demonstrated the usefulness of this approach for medical imaging applications by
promoting convergence during fine-tuning. This step before training is meant to set up the encoder so that
it has generic feature representations for the target dataset and can also be used in a wide range of visual
contexts other than the target dataset. We do this to accelerate the convergence process during fine-tuning
and reduce the likelihood of overfitting when training on these smaller medical datasets. During pretraining,
we optimized the encoder weights over a categorical cross-entropy loss and modified the learning rate using
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a cosine annealing schedule. When this stage completes, it saves the encoder weights to later use to initialize
a full UltraSegNet model.

3.5.2 Stage 2: Breast Ultrasound Dataset Fine-Tuning
The proposed work in the second stage involves fine-tuning the entire UltraSegNet architecture

from start to finish using our breast ultrasound dataset. There are annotated ultrasound images available,
specifically chosen for the task of segmenting breast lesions from this dataset. The work that is being proposed
will improve both the CNN encoder and the Transformer module at the same time so that they can learn
features that are specific to breast ultrasound imaging. This research performed fine-tuning for 100 epochs
and used early stopping to prevent overfitting, as shown in Fig. 6.

Figure 6: Training and validation of performance across epochs

The early stopping criterion in this study is based on the Dice coefficient, which measures how well the
model does on a held-out validation set. If the validation Dice coefficient fails to improve for 10 consecutive
epochs, the training halts.

3.5.3 Training Details
The entire training protocol is implemented in PyTorch, with extensive use of GPU-based parallelism

to accelerate data loading and model training. The codebase has custom versions of the Transformer module
and attention mechanisms that are designed to work best with the large feature maps that are common in
high-resolution ultrasound images. The implementation also includes automated logging and visualization
tools to facilitate model monitoring and performance analysis. Aside from that, the suggested training
method uses cutting edge tools and computer programs to make the UltraSegNet architecture work better
at finding both local and global contexts in breast ultrasound images.
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3.5.4 Parameter Optimization for UltraSegNet
We investigated ideal parameter values for UltraSegNet using a methodical methodology. We conducted

a large grid search to determine the optimal configuration of attention heads and feature dimensions for
the regional attention mechanism. In the section on experimental results, the ranges are shown, from 4
heads with 32 dimensions to 16 heads with 128 dimensions. We found that 8 attention heads and 64 feature
dimensions yielded the best performance (0.911 Dice score) and computational efficiency. Larger models
(16 heads/128 dimensions) provided minimal improvements (0.912 Dice score) while requiring significantly
more computing power. Conversely, smaller models (4 heads/32 dimensions) struggled with representation,
yielding a lower Dice score of 0.883.

Additionally, we varied the weighting parameter α ∈ [0.1, 0.9] in steps of 0.1 and evaluated its effec-
tiveness on a validation set for the composite loss function (Eq. (14)). Performance stabilized within a
±1.2% range for α = 0.65 to α = 0.75, with α = 0.7 optimally balancing region-based accuracy (Dice loss)
and boundary delineation accuracy (Focal loss). To determine the overlapping region size for regional
attention, we conducted an ablation study comparing 32 × 32, 64 × 64, and 128 × 128 pixel sections with
varying overlap ratios (25%, 50%, 75%). The results indicated that 64 × 64 regions with 50% overlap offered
the best performance-to-computation ratio.

3.6 Evaluation Metrics
To thoroughly evaluate our model’s efficacy, the proposed study employed the subsequent metrics:

• Precision = TP
TP + FP

• Recall = TP
TP + FN

• F1-score = 2 × Precision × Recal l
Precision + Recal l

• Testing Accuracy = TP + TN
TP + TN + FP + FN

• Dice Similarity Coefficient (DSC) = 2∣X ∩ Y ∣
∣X∣ + ∣Y ∣

• Intersection over Union (IoU) = ∣X ∩ Y ∣
∣X ∪ Y ∣

where TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False Negative,
respectively. Furthermore, this work does ablation tests to assess the contribution of each element in our
hybrid architecture.

3.7 Implementation Details
This is done on a high-performance computing cluster with 4 NVIDIA A100 GPUs. We assign a batch

size of 16 to each GPU, resulting in an effective batch size of 64. To keep memory usage and computing
costs as low as possible, the proposed study used mixed precision training with automatic loss scaling from
the NVIDIA Apex library. Using this method speeds up training by taking advantage of the Tensor Cores
in the A100 GPUs to do some tasks with half-precision accuracy while keeping full precision accuracy for
all important calculations, such as adding up gradients and updating weights. The training process utilizes
the Adam optimizer, with an initial learning rate of 1 × 10−3, which is subsequently adjusted using a cosine
annealing schedule to encourage smooth convergence. A weight decay regularization term with a coefficient
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of 1 × 10−5 is used during fine-tuning to prevent overfitting by limiting the size of the model weights. The
optimization process utilized gradient clipping with a threshold of 1.0, dynamic loss scaling for mixed precision
training, Adam optimizer momentum parameters β1 = 0.9 and β2 = 0.999, and gradient accumulation every
2 steps to ensure training stability and convergence. In addition, a learning rate warm-up is done in the
first 5 epochs, where the learning rate is first small but is gradually increased within the first 5 epochs of
the fine-tuning to limit the risk of unstable training dynamics at the very beginning of fine-tuning. Besides
these training configurations, the proposed study uses techniques for adding more data to the training set to
make it more diverse and to make the model better at generalization. Each training epoch employs random
rotations, horizontal flipping, and elastic deformations as augmentations. A lot of thought goes into choosing
the augmentation parameters that will accurately show changes that happen in real ultrasound images, like
the probe moving around and the body slightly deforming.

4 Experimental Results and Discussion
In this section, we conducted a detailed evaluation of our proposed UltraSegNet model’s performance

on breast ultrasound image segmentation. The proposed study compares our model against state-of-the-art
benchmarks and discusses the results in more detail before outlining implications and potential future work.

4.1 Quantitative Results and Performance Analysis
Our suggested UltraSegNet architecture works because it has been tested extensively on two well-known

breast ultrasound datasets, called BUSI and UDAIT.
Table 1 provides a comprehensive comparison of UltraSegNet against both well-known and recently

introduced state-of-the-art segmentation methods on the BUSI and UDAIT datasets. Transformer-based
architectures (UNETR, SwinUNETR, TransUNet) are now part of the expanded benchmark. So are the
recently released Multiscale Cascaded Conv w/ residual attention (2024) and Dual-Branch Network (2025),
which are designed to interpret breast ultrasound images. Our detailed analysis indicates that UltraSegNet
consistently outperforms all competing approaches across key performance metrics.

Table 1: Performance metrics and computational requirements for various methods on the BUSI and UDAIT datasets

Method – BUSI dataset UDAIT dataset Computational

Params
(MB)

Prec Rec DSC IoU Prec Rec DSC IoU Time
(ms)

Memory
(GB)

SwinUNETR
(2021)

245 0.901 0.893 0.897 0.813 0.885 0.877 0.881 0.787 412 7.8

TransUNet (2021) 188 0.891 0.884 0.887 0.797 0.879 0.871 0.875 0.778 342 6.5
UNETR (2022) 298 0.892 0.885 0.888 0.798 0.878 0.869 0.873 0.775 385 6.9

MedFormer (2024) 267 0.895 0.889 0.892 0.805 0.881 0.872 0.876 0.779 368 7.2
Multiscale

Cascaded Conv
(2024)

– 0.910 0.889 0.905 – 0.900 0.876 0.895 – – –

Dual-Branch
Network (2025)

– 0.786 0.814 0.791 – – – – – – –

UltraSegNet 156 0.915 0.908 0.911 0.856 0.901 0.894 0.897 0.856 235 4.5

Achieving a 1.4%–2.4% improvement over the next-best model, SwinUNETR (0.901 accuracy, 0.98
recall, 0.897 DSC), UltraSegNet demonstrates exceptional precision (0.915), recall (0.980), and Dice score
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(0.911) on the BUSI dataset. Furthermore, UltraSegNet maintains strong performance on the more chal-
lenging UDAIT dataset, attaining a precision of 0.901 and a recall of 0.894. These results underscore its
effectiveness across diverse imaging conditions and acquisition techniques. Notably, the recently proposed
Multiscale Cascaded Conv w/ residual attention approaches but does not surpass our method, achieving
0.903 precision and 0.896 recall on BUSI. Similarly, while the Dual-Branch Network exhibits strong
performance (0.898 precision, 0.891 recall), it remains inferior to UltraSegNet in all aspects.

Even though these new methods work well, they still have trouble finding the right balance between
recall and accuracy. UltraSegNet’s adaptive feature fusion technique and regional attention mechanism solve
this problem very well. With only 156 MB of total parameters, UltraSegNet offers significant computational
efficiency over UNETR (298 MB) and SwinUNETR (245 MB). UltraSegNet can be used in clinical settings
because this parameter works well. It has faster inference times (235 ms per image) and needs less memory
(4.5 GB). The exact parameter counts for the two latest methods remain unknown due to insufficient
implementation details in their publications.Our hybrid architecture is strongly supported by the fact
that it saves a lot of time and consistently performs well across both datasets. We were able to solve the
problems of breast ultrasound image segmentation by combining CNN-based local feature extraction with
transformer-based global context modeling. These findings indicate that our design decisions were effective.

In this research, compare our proposed model with several transfer learning methods. also included a
model such as VGG-16, AlexNet, DenseNet121, VGG-19, Xception, as shown in Tables 2 and 3. This research
shows that our proposed UltraSegNet architecture outperforms existing state-of-the-art methods in breast
ultrasound image segmentation by a large margin across both datasets. The results offer several intriguing
insights into our approach’s effectiveness, allowing for further detailed analysis.

Table 2: Performance comparison of different models on Dataset 1 (BUSI)

Model Precision Recall F1-score Testing accuracy Small lesion (<10 mm)
Xception [55] 0.7232 0.6000 0.6400 0.7125 0.6745
VGG-19 [56] 0.8900 0.6100 0.6600 0.7500 0.7032
AlexNet [57] 0.6400 0.5700 0.5900 0.7625 0.6918

DenseNet121 [58] 0.8433 0.7500 0.7800 0.7750 0.7245
VGG-16 [59] 0.7766 0.7066 0.7300 0.7875 0.7321

Vision Transformer [60] 0.6300 0.6066 0.6166 0.6795 0.6532
UltraSegNet (Ours) 0.9150 0.9080 0.9110 0.9070 0.8910

Table 3: Performance comparison of different models on Dataset 2 (UDAIT)

Model Precision Recall F1-score Accuracy Small lesion (<10 mm)
Xception 0.7100 0.6100 0.6562 0.7416 0.6321
VGG-19 0.8400 0.8200 0.8200 0.8421 0.6545
AlexNet 0.7250 0.6200 0.5050 0.5737 0.6432

DenseNet121 0.8550 0.8000 0.8250 0.8462 0.6823
VGG-16 0.8800 0.7900 0.7600 0.7895 0.6945

Vision Transformer 0.6500 0.6166 0.6300 0.6981 0.6132
UltraSegNet (Ours) 0.9010 0.8940 0.8970 0.8920 0.8820
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Specifically, UltraSegNet drastically outperforms all the baseline models in terms of precision (0.915),
recall (0.908) and F1 score (0.911) on the BUSI dataset. In comparison to traditional architectures like VGG-19,
which though has an 89.00% precision, has problems with false negatives as shown by its 61.00% recall. This
disparity highlights a crucial advantage of our approach. In addition, the results indicate that UltraSegNet’s
superior effectively in detecting small lesions (<10 mm), achieving accuracy rates of 0.891 and 0.882 on the
BUSI and UDAIT datasets, respectively, while traditional models show significant performance degradation
for small lesions, ranging from 63.45% to 71.33%.

Finally, UltraSegNet achieves a better trade-off between precision and recall, a crucial issue for clinical
applications in which false positives, as well as false negatives, may have serious consequences. Equally, telling
is the comparison with more recent architectures. DenseNet121 demonstrates competitive performance with
a precision score of 84. The performance of the Vision Transformer was relatively modest, with a precision
score of 63. Finally, the study looks at the problems with using pure transformer architectures for medical
image segmentation tasks. The fact that they perform worse when used without making any domain-specific
modifications (61.18 precision, 52.08 recall) demonstrates this. Finally, our hybrid approach effectively
mitigates the limitations of both CNNs and transformers, leveraging the strengths of both approaches.

However, on the harder UDAIT dataset, UltraSegNet emerges with a precision of 0.901, recall of 0.894,
and F1-score of 0.897. Specifically, this consistent performance over different datasets marks the robustness
and generalizability of the model. Another competitor, VGG-16, attains 88.00% precision, however, receives
lower recall (79.00%), also confirming the balanced behavior of our approach.

4.2 Ablation Study and Component Analysis
In this study, an in-depth ablation study is done along several performance axes to fully confirm how well

each UltraSegNet architectural component works. Table 4 presents comprehensive results demonstrating the
impact of each architectural innovation. For this study, it starts with looking at a basic CNN architecture.
Then, it slowly adds and tests the effects of important parts of a larger group of related ideas to see what
their individual and combined effects are on model performance.Through our comprehensive ablation
study, we reveal important insights into the performance of the architecture. It was suggested that the
proposed research could improve the Dice score on the BUSA dataset by 3.4% by replacing the standard 7 × 7
convolutional layer with three consecutive 3 × 3 convolutions. The processing time was only increased by
20 ms. This is better because the smaller kernels can keep fine anatomical details better, which is important
for finding the edges of lesions more accurately. Based on our analysis of attention configuration, this is
study discovered that 8 attention heads with 64 features had the best performance with a Dice score of 0.911.
While having no more than 2 heads, or 16 dimensions, provided no noticeable improvement on the baseline
(< 0.1%), doing so increased the computational load significantly. In particular, this indicates that 8 heads are
sufficiently able to capture the diversity of tissue patterns in breast ultrasound images, whereas 64 dimensions
offer enough capacity to encode the feature without redundancy. The integration of architectural components
exhibited clear cumulative benefits. There was a 1.9% rise in the Dice score from the changed convolutional
layers and a 0.9% rise from the SE blocks. These blocks help to recalibrate the channel-wise feature and
also show a 0.3% rise in the Dice score. The model got an extra 1% bigger when the regional attention
mechanism was added. This saved long-range dependencies that were very important for understanding how
lesions of different sizes changed over time. Finally, the final multi-scale fusion component completed the
architecture with a 0.4% improvement in boundary precision. Importantly, these improvements were both
consistent across the BUSI and UDAIT datasets, with final Dice scores of 0.915 and 0.901, respectively. Our
approach’s strong cross-dataset consistency indicates that it is robust. With a processing time of 235 ms per
image and only 4.5 GB of GPU memory required, the final architecture is clinically viable and real-world
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deployable.Through a detailed ablation study, we can see in Figs. 7 and 8 how each architectural component
improves things one at a time. The cumulative percentage improvements compared to the baseline model
are shown in Fig. 7. The Dice score and IoU metrics for each configuration are shown in Fig. 8.

Table 4: Comprehensive ablation study of UltraSegNet architecture

Part A: Initial Convolution Layer Analysis

Initial layer BUSI dataset UDAIT dataset Time

Configuration Dice score IoU Dice score IoU (ms/image)

Standard 7×7 0.858 0.762 0.849 0.751 175
Three 3×3 (Ours) 0.892 0.803 0.878 0.791 195
Performance Gain +3.4% +4.1% +2.9% +4.0% +20

Part B: Attention Configuration Analysis

Attention BUSI dataset Memory Time

Setup Dice score IoU (GB) (ms/image)

4 heads, 32 dim 0.883 0.812 3.2 198
8 heads, 32 dim 0.891 0.824 3.8 208
4 heads, 64 dim 0.895 0.831 4.1 215

8 heads, 64 dim (Ours) 0.911 0.841 4.5 225
16 heads, 64 dim 0.912 0.842 5.8 245
8 heads, 128 dim 0.910 0.840 6.2 258

Part C: Progressive Component Integration Analysis

Component BUSI dataset UDAIT dataset Time

Configuration Dice IoU Dice IoU (ms/image)

Baseline CNN 0.873 0.778 0.862 0.765 180
+Modified 3 × 3 Layers 0.892 0.803 0.878 0.791 195

+ SE Blocks 0.901 0.821 0.889 0.812 210
+ Regional Attention (8/64) 0.911 0.841 0.895 0.835 225
+Multi-scale Fusion 0.915 0.856 0.901 0.856 235

Part D: Lightweight Attention Mechanisms Comparison

Attention mechanism Memory usage
(GB)

Inference time
(ms/image)

Dice score
(BUSI dataset)

Linear Attention 5.2 312 0.887
Criss-Cross Attention 4.9 289 0.882

Axial Attention 5.1 295 0.885
Our Regional Attention 4.5 235 0.911

Fig. 7 illustrates the comparison of performance gains among various UltraSegNet components. Each
point shows the addition of a major architectural part: the baseline model (0%), the SE blocks (+2.3%),
the regional attention (+4.1%), and finally the multi-scale fusion (+4.8%). The slowly but surely increasing
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trend confirms that our architectural decisions are correct and that each component is making a positive
contribution to overall performance.

Figure 7: Model configuration improvement graph

Figure 8: Model performance metrics: Dice score vs. IoU

Fig. 8 illustrates a comparison of the Dice score and IoU for different architecture variations. The
purple bars (Dice score) and the green bars (IoU) show incremental improvements from baseline to each
architectural improvement. A striking fact is how much those metrics improved after adding regional
attention, as final scores are 0.915 (Dice) and 0.856 (IoU) after multi-scale fusion.

Our model does introduce some memory overhead from the attention mechanisms and requires GPU
speedups, but the resulting speedup is well worth the trade-off. As shown in Table 4, Part D, our model for
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regional attention is the only one that gets the higher Dices score (0.911) without resizing the image to a
high resolution. It also uses less memory (4.5 GB) and takes less time to infer (235 ms/image) than other
lightweight attentional mechanisms. Consistent gains in a variety of metrics and data settings show that the
architectural choices we made balance accuracy, efficiency, and clinical usefulness. This study looks at how
each part of our model handles the problems that arise when analyzing breast ultrasound images, leading to
strong and accurate segmentation in real application.

4.3 Ablation Study and Component Analysis, after the Baseline Model Results
Each preprocessing step significantly impacts downstream performance, according to our ablation

analysis, as shown in Table 5. Each preprocessing step significantly impacts downstream performance,
according to our ablation analysis. When using raw images as a baseline model, the Dice coefficient was
0.831. This study addressed the finding that, by adding NLM denoising, the Dice score improved to 0.862,
with PSNR improving from 23.8 to 35.2 dB. The integration of CLAHE contrast enhancement results
in a performance of 0.883, with an average local contrast ratio increasing to 0.68 from 0.42. Intensity
normalization finally raised the Dice coefficient to 0.915 and reduced the inter-image intensity variations
by 65%.This study gives us numerical proof that our suggested preprocessing pipeline works to make
segmentation more accurate. As you can see, preprocessing is an important part of overall performance. Each
step of preprocessing makes UltraSegNet much more accurate, especially when images have speckle noise
and low-contrast areas.

Table 5: Quantitative impact of preprocessing steps on segmentation performance

Configuration Dice IoU Precision Recall
Raw images (No Preprocessing) 0.831 0.742 0.863 0.851

+ NLM Denoising 0.862 0.775 0.891 0.878
+ CLAHE Enhancement 0.883 0.798 0.915 0.892
+ Intensity Normalization 0.915 0.856 0.915 0.908

4.4 Analysis of Classification Challenges
Fig. 9 shows that UltraSegNet works well, but a lot of mistakes are seen, especially in cases that are close

to being wrong. None of our 237 benign lesions (test set) was misclassified as malignant (12% false positive
rate), but 31 of our 209 malignant lesions were misclassified as benign (15% false negative rate). Most of these
mistakes happen when the shape of the lesion isn’t clear, like when the boundary of the lesion isn’t completely
clear or when the pattern of the internal echo changes a lot. The model is most accurate when it comes to
identifying normal tissue; out of 334 normal cases, it only makes 9 mistakes. This shows that it is strong at
telling the difference between normal and abnormal tissue patterns.

In addressing these classification challenges, this study developed a thorough basis for enhancing data
representation and learning dynamics. To overcome the inherent imbalance in our dataset, especially for
malignant cases, this study introduced a class-balanced sampling approach. With this change, the accuracy
of finding malignant lesions increased from 85% to 89%, and the classification of benign lesions remained
stable. Through cost-sensitive learning with a weighted loss function that punishes false negatives more
harshly in cancer cases, this study made our method even better. With this change, the number of false
negatives decreased by 23%, but the number of false positives increased by 8%. This is a fair trade-off when
you consider how difficult it is to find malignant lesions. Even with these improvements, it is still difficult to
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tell the difference between lesions that have different characteristics or where the image quality is not good
enough. But none of these methods solve the problems in this work. For example, we need a more advanced
feature extraction method, and it would be helpful to add clinical metadata to the current histological data’s
metadata context. This study concludes that further research is necessary to quantify the uncertainty of
near-true predictions. The findings will help physicians make better decisions.

Figure 9: Confusion matrix analysis for lesion classification

Grad-CAM visualization, as shown in Fig. 10, the model can be easily interpreted by focusing all
attention on the segmentation results. Our research indicates that UltraSegNet looks at clinically important
parts of the images, such as the edges of a lesion and the textures inside the lesions. These parts are similar to
how radiologists diagnose problems. Purple indicates high-attention areas, and yellow and green prescribe
low-attention areas, thus guiding clinicians by indicating the basis for decisions made by the model. These
visualizations can assist clinical practice in a few ways:

• The study focuses on the resolution of segmentation and quality conflicts in lesions with uncertain
borders.

• The detection of texture patterns affected the decisions taken by the model.
• It is crucial to evaluate the quality of segmentation outcomes, especially in challenging instances where

tissue presentation is heterogeneous.

We illustrate consistent performance across both datasets with different characteristics and acquisition
protocols, demonstrating their robustness. In this study, we show that our model can handle a range of clinical
situations in the BUSI dataset, which has more cases. We also show how well it works on the UDAIT dataset,
which represents a more structured situation. Improvement in the study performance, specifically increase of
2.4% in segmentation accuracy (Dice Similarity Coefficient), is important for clinical use. Exact segmentation
of the lesion boundaries is essential in breast ultrasound for direct diagnostic reliability. This improved
segmentation reduces false negatives, especially in cases where subtle or ambiguous lesion characteristics can
make early cancer detection less likely. In addition, the delineation allows clinicians to gain more anatomical
insights, which treatment planning requires, before biopsies and surgical interventions. The final illustration
of our segmentation process across different architectures for the BUSI dataset is shown in Fig. 11.
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Figure 10: Segmentation results and attention mechanism visualization of UltraSegNet

Fig. 11 provides a comprehensive comparison of the segmentation results of a suite of architectures. Each
row shows a different case. UltraSegNet achieves superior delineation consistency and stability, especially
for difficult cases with irregular shapes or indistinct margins. Notice how small lesions (bottom row) and
complex tissue patterns (second row) are much better handled on focal eyes than other architectures.

A key limitation of this study is the small size of the dataset (943 images), which may influence the
model’s ability to generalize to various clinical scenarios. However, our comprehensive mitigation approach
demonstrates effective handling of this constraint through three complementary strategies:

1. Physics-Informed Data Augmentation: To address dataset size limitation, this study developed a
physics-informed data enhancement pipeline that increases the effective size of the training set. This
pipeline uses changes in acoustic properties and tissue deformation patterns, while being limited by
guarantees of plausibility in the corresponding anatomical scene. Putting these strategies together
improved performance by 7.5%, and the physics descriptions added another 2.8% to the accuracy of the
whole thing.
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2. Transfer Learning from Medical Imaging Datasets: By leveraging robust feature representations to
transfer learning from broader medical imaging datasets, our method achieved 4.1% better perfor-
mance, helping the model generalize to unseen cases. This study also ensured that the performance
estimation was reliable in different pathological distributions by using five-fold cross-validation with
stratified sampling.

Figure 11: (a) Original Images. (b) Ground Truth. (c) Segmentation of UltraSegNet. (d) Segmentation of TransUNet.
(e) Segmentation of MedFormer. (f) Segmentation of SwinUNETR. (g) Segmentation of UNETR

Although the aforementioned strategies significantly mitigate the limitation of data set size, several
challenges remain that warrant further study. These include:

• Severe Acoustic Shadowing: In cases where acoustic shadowing covers more than 30% of the image area,
the segmentation accuracy is significantly degraded. This is due to the inherent difficulty in extracting
meaningful features from regions of heavy ultrasound attenuation. Currently, the regional attention
mechanism is unable to process these information-poor regions. Future work will explore shadow-aware
attention mechanisms or multi-view fusion methods to address this limitation.

• Low Contrast Conditions: The model demonstrates decreased reliability in defining the boundaries of
the lesion under extremely low contrast conditions, such as deep tissue imaging or suboptimal device
settings. While the modified initial convolutional layers achieve the best results in preserving fine details,
they do not fully capture subtle edge information in difficult contrast scenarios. This could be addressed
by incorporating contrast-adaptive feature extraction or explicit edge detection streams.
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Current hospital imaging systems can incorporate UltraSegNet to optimize efficiency and improve
diagnostic outcomes. Essential parts of its inclusion include the following:

• PACS/DICOM compatibility: Ensure seamless interoperability with hospital image databases.
• The system improves clinical workflow by making it easier for radiologists to find and describe lesions

automatically, with the option for experts to review the results.
• Edge deployment: Fine-tuned for near-instant real-time processing on medical imaging hardware,

facilitating quicker decision-making in clinical scenarios.
• Regulatory assessment: The model is being looked at to see if it meets the medical imaging standards

(FDA/CE) that are needed for safe and effective use in clinical settings.

4.5 Ethical Considerations and Bias Mitigation
This research creates and uses AI-based medical diagnostic tools such as UltraSegNet, which must be

very aware of their ethical implications, their own biases, and the medical standards of care needed. We aim
to address these concerns and propose strategies to mitigate bias.

• Dataset representation and bias: The BUSI and UDAIT training datasets may not be representative
of diverse populations. Furthermore, these data sets might lack representation on several crucial
demographic dimensions. Furthermore, severely reduced geographic diversity for data collection could
further bias the results in their ability to generalize broadly. The use of data sets with such differences in
composition can raise important questions about the generalizability and inclusivity of the methodology
and the findings of the study.

• Bias mitigation strategies: General medical AI is a field that is growing rapidly. It will need clear rules to
deal with issues such as possible biases in training datasets and issues with model performance compared
to natural population variation. Protocols for collecting data should protect representational diversity by
setting minimum demographic requirements for inclusion and making sure that the make-up of datasets
is properly documented. We should routinely identify and audit demographic gaps in training data to
minimize potential biases. When developing the models, fairness should guide researchers in including
strong metrics that assess performance in various demographic subgroups. It consists of applying
uncertainty quantification methods and establishing explicit confidence values for automated decision-
making. These strategies create reliability and effectiveness for the model in diverse population segments.
This is where clinical validation of the model’s performance and generalizability becomes important.
We should prioritize developing and validating multi-center studies that specifically evaluate the
model’s accuracy in various populations, particularly in underrepresented groups. To eliminate possible
performance differences and make the model more useful in clinical settings, performance discrepancies
must be carefully recorded, and demographic-specific calibration strategies must be created.

• Clinical Integration and fairness: Following transparency, justice, and ethics, the guidelines recommend
making clear what the demographics of the training data are and reporting performance metrics
between population subgroups regularly to showcase the limitations of the models. Deep protocols
go along with smart clinical workflows. They spell out model disagreements, say who needs to be
involved, and require that decisions made by AI be documented. We need to create and implement
regulatory and auditing rules to monitor clinical outcomes and understand the functioning of these AI
systems and their real-world effects. In this way, mechanistic solutions can help patients without bias.
The responsible implementation of clinical AI involves ongoing monitoring and proactive correction. It
requires ongoing monitoring of performance across large demographic populations, regular updating of
fairness measures, and feedback cycles to our providers and patients. Periodic ethical evaluations ensure
that the AI system remains in accordance with current social and healthcare norms.
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5 Conclusion
This work presents UltraSegNet, which offers a robust design that incorporates original innovations

like regional attention and modified initial layers, effectively combining local feature extraction from CNN
with global context modeling from Transformer to significantly enhance the state-of-the-art in segmentation
performance. This design significantly enhances the state-of-the-art in segmentation performance. This
study compares UltraSegNet to the BUSI and UDAIT datasets in excellent detail, showing that it is always
better than the most recent best methods. With our choice of architectural design, we obtain 0.915 precision
and 0.908 recall on the BUSI dataset, whereas we achieve strong performance on the UDAIT dataset too
(0.901 precision and 0.894 recall). Such improvements are particularly relevant in challenging scenarios
where speckle noise, acoustic shadows, and complex tissue geometry exist and are common limitations
to traditional methods. In addition to its performance on benchmark datasets, we will further investigate
UltraSegNet’s capability on real-world clinical data in future work. This will let us look at a wider range of
qualitative errors, which is especially important in tricky situations. This research will also have to learn
more about the practical trade-offs between speed and accuracy when using these models in a clinical
setting. Clinical validation studies will be critical in understanding the performance of the model on varied
patient populations and imaging conditions. Some people may think that images of a coronavirus changing
from an icosahedral shape to a helical shape are a useful way to explain how segmentation algorithms
work. The technical performance of UltraSegNet looks good, but its clinical success will depend on how
well it can be integrated into interventional workflows. There will also be the long-term and difficult
task of making sure that UltraSegNet is compliant with regulations and best practices in various clinical
settings. Further work will need to focus on prospective clinical validation studies and an implementation
roadmap to facilitate routine clinical implementation. The results from this work show that UltraSegNet
is promising enough for clinical integration to improve breast cancer screening accuracy, and that it has
the potential to generalize well for translation to a variety of clinical environments and imaging modalities.
UltraSegNet is a viable candidate for use in a real-world clinical setting because it works well with a wide
range of datasets and imaging protocols and uses very little computing power (235 ms for each image).
While the architecture’s demonstrated generalization capabilities will guide its implementation, its flexibility
offers even more potential applications in the medical imaging domains. However, its adoption hinges
on its ability to balance the model’s infrastructure requirements with the necessary clinical validation
processes. There needs to be more research done to make sure that the model can be used on various
computing environments, such as ones with mobile devices and different types of clinical workstations. While
our current implementation works well with standard GPU hardware, we think that model compression
methods (like quantization approaches) and hardware-specific optimizations could be intriguing areas to
look into further to make clinical integration possible across a wide range of different clinical deployments.
Furthermore, our architecture’s adaptability to various medical modalities could potentially broaden its
impact in other diagnostic tasks.
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