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ABSTRACT: In the field of automated fruit harvesting, precise and efficient fruit target recognition and localization
play a pivotal role in enhancing the efficiency of harvesting robots. However, this domain faces two core challenges:
firstly, the dynamic nature of the automatic picking process requires fruit target detection algorithms to adapt to
multi-view characteristics, ensuring effective recognition of the same fruit from different perspectives. Secondly,
fruits in natural environments often suffer from interference factors such as overlapping, occlusion, and illumination
fluctuations, which increase the difficulty of image capture and recognition. To address these challenges, this study
conducted an in-depth analysis of the key features in fruit recognition and discovered that the stem, body, and base
serve as constant and core information in fruit identification, exhibiting long-term dependent semantic relationships
during the recognition process. These invariant features provide a stable foundation for dynamic fruit recognition,
contributing to improved recognition accuracy and robustness. Specifically, the morphology and position of the stem,
body, and base are relatively fixed, and the effective extraction of these features plays a crucial role in fruit recognition.
This paper proposes a novel model, TransSSA, and designs two innovative modules to effectively extract fruit image
features. The Self-Attention Core Feature Extraction (SAF) module integrates YOLOV8 and Swin Transformer as
backbone networks and introduces the Shuffle Attention self-attention mechanism, significantly enhancing the ability
to extract core features. This module focuses on constant features such as the stem, body, and base, ensuring accurate
fruit recognition in different environments. On the other hand, the Squeeze and Excitation Aggregation (SAE) module
combines the network’s ability to capture channel patterns with global knowledge, further optimizing the extraction of
effective features. Additionally, to improve detection accuracy, this study modifies the regression loss function to EIOU.
To validate the effectiveness of the TransSSA model, this study conducted extensive visualization analysis to support the
interpretability of the SAF and SAE modules. Experimental results demonstrate that TransSSA achieves a performance
of 91.3% on a tomato dataset, fully proving its innovative capabilities. Through this research, we provide a more effective
solution for using fruit harvesting robots in complex environments.
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1 Introduction
Object detection development comprises two main stages: the traditional stage and the deep learning

stage based on convolutional neural networks. After the advent of convolutional networks, models like
AlexNet [1], VGG [2], GoogLeNet [3–5], and ResNet [6] have drawn wide attention. Currently, research on
object detection emphasizes static object detection with significant achievements.

The world increasingly values agricultural efficiency and sustainable development, making automated
harvesting technology crucial in modern agriculture. Fruit recognition, a key part of automated harvesting
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systems, aims to enhance harvesting efficiency and quality, ensure timely harvests, and cut losses. With rising
global fruit production, along with increasing labor costs and manpower shortages, the demand for efficient
fruit detection technologies grows [7]. Fruit detection is a challenging dynamic object detection problem.
In natural environments, issues like overlapping, occlusion, and illumination changes during photography
impede accurate identification.

In recent years, deep learning technology has advanced rapidly. Fruit object detection has thus become
a research focus, with methods typically divided into two categories: the Region Detection Method (RDM),
which extracts and analyzes regions of interest (RoIs) from input images, uses deep convolutional neural
networks (DCNNs) for feature extraction, and locates fruits with the Region Proposal Network (RPN), such
as in Faster R-CNN and Mask R-CNN algorithms. After integrating the RPN, Faster R-CNN’s detection
speed and accuracy improved notably, outperforming traditional techniques in complex-background fruit
detection [8]. Mask R-CNN extends Faster R-CNN, enhancing segmentation ability to generate fruit
bounding boxes and masks simultaneously, improving recognition accuracy [9].

Compared to the RDM, the Image Detection Method (IDM) must directly analyze entire visual images
and handle vast visual data to extract discriminative features. Convolutional neural networks (CNNs) and
fully convolutional networks (FCNs) have made remarkable progress here. The YOLO algorithm family,
turning object detection into a regression task for real-time recognition, shows excellent speed and accuracy
in fruit recognition, fitting agricultural scenarios needing quick responses [10,11]. The Single Shot Multi
Box Detector (SSD) detects across different scale feature maps to target fruits of various sizes, exhibiting
outstanding detection capabilities in multiple datasets [12].

Despite their remarkable performance in fruit object detection, the RDM and IDM face challenges. The
RDM is susceptible to false positives in complex backgrounds, while the IDM is fast but has accuracy limita-
tions. Hence, developing novel network architectures and optimizing algorithms are core research directions.

1.1 Challenges
The intrinsic properties of outdoor fruit images impede high accuracy fruit target detection, mainly

in three aspects. Firstly, for dynamic target detection, as the harvesting robot moves in the orchard, the
camera perspective varies, causing the same fruit’s morphological changes and complicating detection
and localization, like the apples shown from different perspectives in the left picture of Fig. 1. Secondly,
fruit overlapping and occlusion are common during growth, with leaves partially hiding fruits. Traditional
algorithms often make mistakes in such cases, so effective strategies are urgently needed, as seen in the
middle of Fig. 1. Thirdly, illumination variability matters. Lighting changes can alter fruit color, brightness
and contrast in images, reducing detection precision. In Fig. 1 right, improper light decreases apple image
contrast and the difference from the background, leading to recognition difficulties and false detections,
especially in complex backgrounds.
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Figure 1: The fruit recognition is faced with the challenges of arbitrary orientation, occlusion and illumination, which
can cause partial information loss in fruit images. On the left, the fruit image is affected in any direction. The middle
fruit image is affected by the occlusion; On the right, the fruit image is affected by light

1.2 Observation and Motivation
When carefully examining fruit images, it became clear that these images have a number of distinctive

features. Due to the variations in shooting angle, fruit images initially exhibit a variety of shapes, including
those viewed from base, parallel, and top perspectives. Each of these morphological variants has unique
characteristics. Fortunately, there are invariant characteristics in these forms that can be used to identify
and locate fruits. Additionally, fruit images from natural environments often suffer from challenges such
as overlap, occlusion, and variations in lighting. These factors make the extraction of fruit features more
complex and mean that traditional image processing techniques are often inadequate in dealing with
these problems.

Finding I: The invariable evidence of congeneric fruits. Fruit identification goes beyond just visual
appearance. The essential characteristics of a category must be differentiated from other characteristics.
Once an algorithm recognizes these crucial characteristics, it makes it easier to recognize fruits within the
same category. Fig. 2 shows an illustrative example. The figure describes four different perspectives of an
apple, with each perspective containing a variety of attributes. However, when these attributes are analyzed
together, they can result in misleading information that is detrimental to effective apple identification. By
extracting the core features and identifying the long-term semantic dependency relationships between apple
fruits—for example, the connections between the stem, body and base of the fruit such adverse effects can
be mitigated. As highlighted by the colored bounding boxes in Fig. 2, the stem, body, and base of the apple
are the predominant features that contribute to its accurate recognition.

Finding II: The images of fruits from natural environments often face challenges such as overlay,
occlusion, and variations in lighting. These factors make the extraction of fruit characteristics a more complex
undertaking, with traditional image processing techniques often proving inadequate in dealing with this
complexity. Consequently, the art of isolating effective fruit characteristics within the labyrinth of the natural
environment has become central to the pursuit of efficient automated harvesting. The above discovery can
be summarized as a quest to identify invariant core features within a class of fruit images while increasing
the effectiveness of feature extraction. In particular, we argue that detecting these core features which are
insensitive to variations from different perspectives of fruit images within the same category is paramount in
conjunction with improving the ability to extract relevant features. Consequently, the judicious application of
these findings plays a crucial role in improving the precision of dynamic fruit target detection. Our impetus
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is to develop an innovative method that can efficiently extract features from fruit images to improve the
performance of dynamic fruit target detection.

Figure 2: A series of apple images taken from different perspectives. Panels (a, c, e, g) represent photographs taken
from four different angles, while (b, d, f, h) show the correlation between core identification represent features of the
fruit, namely the stem, the body and the base

To achieve this goal, we have developed a novel model that we call TransSSA, as proposed in this
paper. We have developed two novel modules: the Self-Attention Core Feature Extraction (SAF) module
and the Squeeze and Excitation Aggregation (SAE) module. The SAF module combines YOLOV8 and Swin
Transformer as a backbone network, while integrating the Self-Attention mechanism known as Shuffle
Attention (SA) to support core feature extraction. Through this approach, we are better able to capture
the characteristic features of fruits from different perspectives and overcome the challenges posed by
morphological changes in dynamic recognition. The SAE module, on the other hand, integrates the network’s
ability to capture channel patterns and global knowledge. This module improves the extraction of effective
fruit features in overlap and occlusion scenarios, thereby refining the accuracy of detection. In parallel, we
modified the regression loss function in EIOU to increase the detection accuracy.

1.3 Contributions
Our investigation addressed the invariant features of dynamic fruit target recognition, driven by a dual

motivation: first, the pursuit of extracting intrinsic features that define similar fruits; secondly, improving the
ability to effectively extract salient features of fruits. Leveraging the insights gained from our observations, we
introduced an innovative TransSSA model designed to learn the invariant cues and essential attributes of fruit
images. The main contributions of this study are as follows: (1) We developed an efficient TransSSA model to
exploit the observations made in the fruit dataset, focusing on the invariant cues present in images of similar
fruits. By using the Swin Transformer to explore these relationships, we extracted the core functions required
to generate feature maps within the TransSSA model. (2) We proposed two novel modules to exploit multi-
scale information and extract the essential features of fruit images while improving the extraction of salient
attributes. In particular, the SAF module expanded the ability to extract core features, while the SAE module
improved the extraction of effective fruit features in overlap and occlusion scenarios, thereby improving the
recognition accuracy. In addition, we changed the regression loss function to EIOU to refine the detection
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accuracy. These modifications collectively used the information in fruit images to build an invariant cue-
aware deep learning neural network. (3) We conducted experiments on the Fruit dataset and the proposed
TransSSA model outperformed several state-of-the-art methods, confirming its effectiveness.

1.4 Organization of This Paper
The rest of the work is structured as follows. Recent work on dynamic fruit target detection is presented

in Section 2. The details of our model are explained in Section 3. The experimental results, discussion of two
different data sets and extended experiments in Section 4. Finally, we conclude our work in Section 5.

2 Related Work

2.1 Problem Formulation
In general, the goal of fruit detection can be summarized as follows: when an image x is presented with

multiple objects along with their corresponding categories y and bounding box information b, the goal is to
create a mapping function G that estimates the predicted categories ŷ and bounding box b̂. The essence of
this procedure is to ensure that ŷ and b̂ represent the actual target information in the image as accurately as
possible. In recent years, a variety of network architectures have emerged, including Convolutional Neural
Networks (CNNs), Region-based Convolutional Neural Networks (R-CNNs), YOLO (You Only Look Once),
and SSD (Single Shot MultiBox Detector) [13]. These deep learning approaches manipulate image features
in different ways and use regression and classification mechanisms to predict the category and location of
targets. During the network training phase, the model parameters are optimized by minimizing the cross-
entropy loss between the predicted categories ŷ and the actual categories y, as well as the smooth L1 loss
between the predicted bounding boxes b̂ and the true bounding boxes b.

2.2 Dynamic Fruit Target Detection
Numerous studies address the challenge of dynamic fruit target recognition, mainly applying deep

learning (DL) techniques divided into three methods.
Regional Proposal Network (RPN) approaches use DL models to generate candidate regions for fruit

classification and localization. Ren et al. [14] introduced Faster R-CNN, enhancing object detection speed
and accuracy via a regional proposal network, sharing folding features to reduce computation and accurately
position fruits. Zhou et al. [15] optimized RPN’s loss function to improve small fruit detection.

Feature Pyramid Network (FPN) methods create multi-scale feature maps for fine-grained detection.
Lin et al. [16] proposed FPN architecture, integrating features at different scales to boost fruit identification
and localization, performing well on various datasets, especially for small fruits and dense scenes. Chen
et al. [17] incorporated contextual information into FPN to refine feature representation and recognition
accuracy in complex backgrounds.

Self-Attention Mechanism (SA) methods introduce attention to focus on salient features. Vaswani
et al. [18] presented Transformer architecture, integrating Self-Attention into DL models for dynamic focus
adjustment. Li et al. [19] used Self-Attention to enhance fruit feature expressiveness, improving recognition.

In summary, FPN and SA excel in detecting small targets and complex backgrounds, while RPN’s
efficiency matters in fast-processing scenarios.

2.3 Yolo and Transformer-Based Image Detection
The Transformer architecture, initially prevalent in natural language processing, deeply influenced

computer vision. Carion et al. [20] presented a Transformer-based end-to-end object detection method,
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revealing its visual task potential. Zhu et al. [21] proposed a deformable detection transformer and explored
variants of end-to-end object detectors. D. Alexey et al. [22] introduced Vision Transformer (ViT), showing
it could rival and potentially replace traditional CNNs. Building on this, Alshawabkeh et al. [23] proposed
a hybrid approach combining Mask R-CNN and the Vision Transformer (ViT) model for pavement crack
detection. Xue et al. [24] combined CNN and Transformer for facial expression recognition.

Despite ViT’s achievements, it has drawbacks like computational inefficiency and poor small object
detection. ViT divides images into patches, but the quadratic complexity-patch size relationship hinders
capturing fine-grained info. Inspired by ViT, Swin Transformer performs calculations in a shift window,
leveraging fine-grained representations to handle intensive tasks, and achieves great results in object
detection and image segmentation [25–27].

In our study on dynamic fruit target detection, challenges like variable angles, lighting, and fruit
occlusion demand perception of image details, where traditional CNNs falter. We introduce Transformer for
its strength in mining latent details and semantic relations. Given the need for fast processing in automated
harvesting, we integrate YOLOV8 and Swin Transformer as a backbone network, leveraging the Feature
Pyramid Network (FPN) method’s suitability for speed.

3 Method

3.1 Overview
The process flow of the TransSSA model is shown in Fig. 3. This methodology includes two main

components: the SAF module and the SAE module. The first segment, the SAF module, serves as a central
framework for feature extraction and is tasked with delineating fine-grained, multi-scale information from
fruit images. As part of this research, we merged YOLOV8 and Swin Transformer as a backbone net-work
because of their exceptional ability to leverage shift-window schemes to uncover long-distance semantic
dependency relationships within fruit images such as stem, body, and base. The network culminates in the
extraction of invariant core features, with the backbone further refined to incorporate the Self-Attention
mechanism known as Shuffle Attention (SA), thereby expanding the capability of core feature extraction. The
second component, the SAE module, represents an innovative detection head. This module is able to improve
the extraction of effective fruit features in overlap and occlusion scenarios, thereby increasing the accuracy of
detection. Ultimately, we modified the regression loss function in EIOU to improve the detection accuracy.

3.2 SAF Module
The pipeline of the SAF model is presented in Fig. 3. The proposed method includes two parts: a feature

extraction backbone and Shuffle Attention. The first part, the feature extraction backbone, is tasked with
extracting multi-scale information from fruit images. In this study, the Swin Transformer is adopted as the
backbone due to its exceptional performance in uncovering long-dependency semantic relationships within
fruit images, such as those related to the fruit stem, body and base, through its shifted window approach.
The second part, Shuffle Attention, integrates channel and spatial attention mechanisms by shuffling and
reordering input data to compute attention weights. This mechanism enables the model to more accurately
focus on critical information within input sequences and feature maps, thereby enhancing its core feature
extraction capability.
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Figure 3: Overview of the TransSSA architecture. First, the image is divided into window partitions and attention
is calculated only within the window. Secondly, patch is trans-formed into one-dimensional feature vector by linear
projection and position embedding. Third, the SAF module integrates YOLOV8 and Swin Transformer as the backbone
network to first follow the Swin Transformer block to utilize the long dependency semantic relationship between feature
vectors. At the same time, the Shuffle Attention mechanism is integrated to expand the core feature extraction capability.
Fourth, the last stage SAE module as a new detection head combines the ability of the network to capture channel
patterns with global knowledge to improve the extraction of effective features. In addition, we change the regression
loss function to EIOU to improve the detection accuracy. Finally, the input fruit images are recognized and predicted

3.2.1 Feature Map Generation
The process of converting fruit images into a feature map by extracting salient structural components

can be divided into three main phases: First, the fruit image is divided into numerous smaller segments;
position embeddings are then applied; and finally, the Transformer blocks that use the DPG strategy are used
for processing. After completing these steps, the original input image is converted into a feature map.

Phase I: Segmentation of the image into smaller segments. In this initial phase, the raw input image
is first divided into non-overlapping segments, with each segment representing a one-dimensional vector.
Specifically, the input image, which initially has size X ∈ RH×W×C , is divided into a grid of smaller segments.
The number of these segments can be calculated using the following formula:

n = H
Ph
× W

Pw
, (1)

where n denotes the number of patches, where Ph and Pw represent the height and width of each patch,
respectively. Each patch pi is then flattened into 1D vector of size Ph × Pw × C linear projection is then applied
to pi , which is then projected onto p

′

i . This procedure can be formulated as follows:

p
′

i = pi ⋅ E , iε1, 2, 3, ⋅ ⋅ ⋅ , n, (2)

where pi ∈ R(Ph×Pw×C) denotes the i-th patch, E ∈ R(Ph×Pw×C)×d denotes the linear projection and p
′

i ∈ Rd

represents the visual vector one d-dimensional projection.
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Phase II: Positional embedding is introduced. Since the transformer layer is invariant to permutation of
the input patch sequence, position embeddings are important to encode the spatial position and relationships
of the patches. In the following phase, the position meaning is embedded. Since the transformer layer remains
insensitive to the reordering of the input sequence of patches, the inclusion of position embeddings is
essential for encoding the spatial coordinates and interdependencies of these patches.

In particular, these patches are integrated into the patch vectors by adding position embeddings. The
formula is as follows:

c0 = [p
′

1 , p
′

2, p
′

3, ⋅ ⋅ ⋅ , p
′

n] + Epos , (3)

where c0 ∈ Rn×d denotes a matrix consisting of patch vectors, where “n” represents the number of patches
and Epos ∈ Rn×d means position embeddings. The type of position embeddings can be selected from a variety
of options, including 2D sine embeddings, learnable embeddings, and relative position embeddings.

Phase III: Navigating the Transformer Constructs. After position embedding, the individual patches
are systematically processed by a series of M Swin Transformer modules. Each Swin Transformer module is
carefully calculated according to the following protocol:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂ l =W −MSA[LN (d l−1)] + d l−1 ,

d l = MLP [LN (d̂ l)] + d̂ l ,

d̂ l+1 = SW −MSA[LN (d l)] + d l ,

d l+1 = MLP [LN (d̂ l+1)] + d̂ l+1 ,

(4)

where in d̂ l and d l denote the output patch vectors of the (S)W-MSA module and the MLP module,
respectively, within the l-th Ttransformer block, respectively. LN refers to layer normalization. MLP signi-
fiesrefers to a cascade of fully connected layers. W-MSA stands for window-based multi-head Self-Attention,
where SW-MSA design a notes the shift deferred window partitioning scheme employ used in the Swin
Transformer architecture.

3.2.2 Shuffe Attention
As shown in Fig. 4, the Shuffle Attention module carefully divides the input feature map into multiple

clusters and uses the Shuffle unit to merge both channel wise and spatial attention within each block of these
clusters. All derived sub features are then aggregated, with the “Channel Attention” operator facilitating the
communication of information between the different sub-features.

The Spatial Attention (SA) mechanism initially partitions the feature map X ∈ RC×H×W where C, H, and
W denote the number of channels, spatial height, and width respectively, into G distinct groups based on the
channel dimension. This division can be as follows:

X = [X1 , ⋅ ⋅ ⋅ , XG] , (5)

where Xk ∈ RC/G×H×W with each subgroup Xk being a subset of the original feature map. Throughout
the training phase, each of these sub-features Xk is sequentially tuned to encapsulate a distinct seman-
tic response.

We employ an attention module to assign importance coefficients to each sub-feature. In the architecture
of each attention unit, the input Xk is divided into two separate branches along the channel axis, resulting in
Xk1 , Xk2 ∈ RC/2G×H×W. As depicted in Fig. 4, one branch is responsible for creating a channel attention map
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by leveraging the channel-wise interdependencies, while the other branch constructs a spatial attention map
by capitalizing on the spatial relationships among features.

Figure 4: Network structure of the Shuffle Attention module

By simply using global average pooling (GAP) to embed global information, channel statistics s ∈
R

C/2G×1×1 can be generated by reducing Xk1 through the spatial dimensions H ×W , with the formula as
follows:

s = Fg p (Xk1) =
1

H ×W ∑
H
i=1∑

W
j=1 Xk1 (i , j) . (6)

Additionally, a streamlined characteristic is incorporated to facilitate precise and dynamic selection.
This is accomplished through a straightforward gating mechanism utilizing sigmoid activation. Conse-
quently, the ultimate output from the channel attention module can be derived as follows:

X
′

k1 = σ (Fc (s)) ⋅ Xk1 = σ (W1s + b1) ⋅ Xk1 , (7)

where W1 ∈ RC/2G×1×1 and b1 ∈ RC/2G×1×1 are parameters used to scale and shift s.
Spatial attention, distinct from channel attention, is concerned with identifying “where” lies the

informative segments within an image, providing a complementary perspective. Initially, we apply Group
Normalization (GN) to Xk2 in order to derive spatial-wise statistical information. Subsequently, we utilize
a fully connected Fc (⋅) layer to augment the representation of X

′

k2. The resultant output from the spatial
attention mechanism is computed as follows:

X
′

k2 = σ (W2 ⋅GN (Xk2) + b2) ⋅ Xk2, (8)

where W2 are parameters with shape ∈ RC/2G×1×1.
The two branches are then connected so that the number of channels matches the number of inputs as

follows:

X
′

k = [X
′

k1 , X
′

k2] ∈ RC/G×H×W. (9)

3.3 SAE Module
In the YOLOv8 detection architecture, the detection head consists of a pair of rails, each decorated

with a duo of convolution blocks. Each of these blocks is carefully crafted and integrates a convolution layer
(Conv2d), a batch normalization (BatchNorm2d), and an activation function, typically either SiLU or ReLU.
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Our proposed SAE detection head introduces a novel modification within the Cls-loss branch by appending
a Squeeze Aggregated Excitation layer after two consecutive convolution layers. This innovation expands
the network’s ability to capture channel patterns and global knowledge, resulting in superior representation
of features. It selectively conveys key features and optimizes the stage through layer-by-layer enhancement
through the SAE module. Inspired by the Inception module, we integrated fully connected layers with
multiple branches and equivalent dimensions. Fig. 5 shows the structural diagram of the SAE module.

Figure 5: Network structure of the SAE module

When the feature graph is input to SAE module, a convolution transformation Ftr is passed first, and u
is output, as follows:

uc = Vc ∗ X = ∑C′

s=1 V s
C ∗ Xs , (10)

where X ∈ RH′×W′×C′ and U ∈ RH×W×C , Vc is the convolution kernel.
The Squeeze operation begins after the global average pooling layer, which extracts channel statistics.

Subsequently, this channel information is channeled into the Squeeze operation, where the dimension of the
input is reduced. The formula is as follows:

zc = Fsq (uc) =
1

H ×W ∑
H
i=1∑

W
j=1 uc (i , j) . (11)

Next is the Excitation layer. In architecture, residual modules are built by repeating convolutional layers
after specific intervals to form a structured module. The formula is as follows:

s = Fex (z, W) = σ (g (z, W)) = σ (W2δ (W1z)) , (12)

where δ is the activation function of ReLU, W1 ∈ RC/r×C and W2 ∈ RC×C/r, r is the reduction ratio.
The final output is as follows:

χc = Fscal e (uc , sc) = scuc . (13)

In this architecture, residual modules are built by periodically replicating convolutional layers at
specified intervals, creating a structured module. These modular units are recursively optimized to ensure
that the learned gradients propagate effectively, mitigating potential gradient disappearance problems that
can arise in deep neural networks.
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3.4 EIoU Model
The effectiveness of fruit recognition is significantly influenced by the precision of fruit localiza-

tion; Within the YOLOv8 model, regression loss is quantified by the CIoU metric, whose mathematical
formulation is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LCIoU = 1 − IoU (A, B) + ρ2 (Ac tr , Bc tr) /c2 + αv ,

v = 4
π2 (arc tan

ωg t

hg t
− arc tan(ω

h
))

2

,

α = v
(1 − IoU) + v

,

(14)

where A and B represent the two boxes, Ac tr , Bc tr represent the center mid-points of A and B. So the first
two parts of CIoU agre consistente with DIoU (the LOSS here is LCIoU ). The only thing that goesgoing up
is the αv on the back, which indicates the aspect ratio.

However, the CIoU metric possessehas two notable deficiencies. Firstly, if the aspect ratios of the
predicted bounding box and the ground truth box coincidematch, the penalty associated with the aspect
ratio remains perpetually atmanently zero. Secondly, upo, when examining the gradients of width (w) and
height (h) relative to the velocity (v) within the CIoU formulation, it becomes apparentis clear that these
gradients are inversely proportional, indicating that width and height cannot simultaneously do not increase
or decrease.

When assessing the degree of bounding box matching, EIoU not only considers the size of the
overlapping area but also takes into account the distance between the central points. In contrast, CIoU solely
focuses on the size of the overlapping area [28–30]. Therefore, EIoU can more comprehensively measure the
similarity between the predicted bounding box and the ground truth bounding box. Due to its consideration
of the distance between central points, EIoU can more accurately reflect the positional relationship between
the target bounding boxes. This enables EIoU , when used as a loss function in training object detection
models, to better guide the model in learning the precise locations of the target bounding boxes. Compared
to CIoU , EIoU introduces more parameters when calculating the overlapping area, making it more sensitive
when dealing with small targets. This aids the model in better identifying and regressing small targets,
thereby enhancing the accuracy and robustness of object detection [31–33]. Our TransSSA employs EIoU as
a replacement for CIoU .

EIoU builds upon the CIoU ′s penalty terms of CIoU by decoupling the aspect ratio influencempact
factor of the predicted and ground truth bounding boxes, and calculating the length and width of each sepa-
rately, thereby mitigating the issues inherent inproblems associated with CIoU [34]. EIoU comprisesnsists of
three integral components: the Iintersection over Uunion (IoU) loss, the distance loss, and the height-width
loss (overlapping area, centroid distance, and aspect ratio). Its specific mathematical expression is as follows:

LEIoU = LIoU + Ld ic + Las p = 1 − IoU + ρ2 (b, bg t)
(cω)2 + (ch)2 +

ρ2 (ω, ωg t)
(cω)2 + ρ2 (h, hg t)

(ch)2 , (15)

where cω and ch denote the width and height, respectively, of the minimum enclosing rectangle encom-
passingthat includes the predicted bounding box and the actual bounding box. ρ represents the Euclidean
distance between two points.
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4 Experimental Results

4.1 General Setting
The process flow of the TransSSA model is shown in Fig. 3. This methodology includes two main

components: the SAF module and the SAE module. The first segment, the SAF module, serves as a central
framework for feature extraction and is tasked with delineating fine-grained, multi-scale information from
fruit images. As part of this research, we merged YOLOV8 and Swin Transformer as a backbone net-work
because of their exceptional ability to leverage shift-window schemes to uncover long-distance semantic
dependency relationships within fruit images such as stem, body, and base apples. The network culminates in
the extraction of invariant core features, with the backbone further refined to incorporate the Self-Attention
mechanism known as Shuffle Attention (SA), thereby expanding the capability of core feature extraction. The
second component, the SAE module, represents an innovative detection head. This module is able to improve
the extraction of effective fruit features in overlap and occlusion scenarios, thereby increasing the accuracy of
detection. Ultimately, we modified the regression loss function in EIOU to improve the detection accuracy.

4.2 Methodological Comparisons
The field of dynamic fruit target detection includes a variety of methods. In the following section, several

representative approaches are described and compared to the different iterations of our proposed method
using comparative experimental analyses.

SSD [35]: The SSD detection framework efficiently achieves object localization and classification
simultaneously. It integrates the task into one forward inference, using basic CNNs like VGG16 or ReNet
as feature extractors with added convolutional layers for multiscale feature maps, crucial for detecting
various-sized objects.

Faster R-CNN [36]: An effective object detection algorithm, it incorporates a Region Proposal Network
(RPN) based on CNNs. Shared feature maps generate candidate regions, then refined via classification and
regression for fast, precise target identification.

RetinaNet [37]: This innovative network tackles the class imbalance in object detection. By combining
a Feature Pyramid Network (FPN) with Focal Loss, it balances high accuracy and efficiency in single-
stage detection.

EfficientDet [38]: Using a compound scaling approach, it modulates model scaling across depth, width,
and resolution. At its core, EfficientNet employs depth-separable convolutions to cut computatioal cost while
retaining feature extraction power.

YOLOV8 [39]: “You Only Look Once Version 8” is a realtime, advanced object detection and localization
algorithm. Refining CNN architectures enables efficient detection of objects at different scales.

ViT [22]: An effective visual paradigm, ViT segments images into patches and treats them as sequen-
tial inputs. Leveraging Self-Attention, it captures global context, excels at feature extraction and image
categorization, showing great capabilities in various visual tasks via pretraining and finetuning.

DETR [20]: Proposed by Facebook AI Research, DETR is an innovative object detection framework
based on Transformer. It abandons the traditional anchoring, viewing detection as collective prediction,
directly identifying objects as target sets. Through training, it achieves precise detection, streamlining the
process and boosting efficiency.

TransSSA: We present an innovative model called TransSSA, which includes two novel modules (SAF
and SAE) designed to efficiently extract features from fruit images.
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4.3 Datasets
Two datasets were utilized to train and validate the TransSSA model. The ACFR Orchard Fruit Dataset,

sourced from the University of Sydney and the Australian Center for Field Robotics, encompasses apples,
mangoes, and almonds. It features natural field images, with 1120 apple, 1964 mango, and 620 almond pics.
The 2022 Dataset of String Tomato in Shanxi Nonggu Tomato Town was compiled from July to August 2022
in glass greenhouses in Shanxi. Comprising fine tomato images captured under diverse conditions (weather,
time, angles) via different mobiles, 3665 images (5.31 GB) were selected after sorting.

The ACFR orchard dataset has field captured images. In contrast, the 2022 string tomato dataset from
Shanxi Nonggu tomato city, a horticultural hub, contains carefully selected greenhouse images. Visually,
the latter has better clarity and related metrics. Fig. 6 shows a comparative visual analysis of images from
both datasets.

Figure 6: Apples, mangoes and almonds come from the ACFR Orchard Fruit Dataset, tomatoes from the Shanxi
Nonggu Tomato Town Dataset

4.4 Evaluation Metrics
The predominant criteria for evaluating the effectiveness of dynamic fruit detection and recognition

algorithms are the precision rates achieved on the test data set. The quantification of precision is defined as
follows:

Precision = TP
TP + FP

, (16)

wherein TP denotes the number of true positives, signifying the instances in which and denotes the cases
where the model accurately predicted the positive class as positive; Conversely, FP represents the number of
false positives, and indicatinges the instanccases where the model erroneousincorrectly classified the negative
class as positive.

4.5 Experiment Results and Analysis
We compared our method with several state-of-the-art approaches and analyzed the performance

metrics of each technique, with the best values displayed in bold. Experimental results on the ACFR Orchard
Fruit Dataset: Experiments were conducted on this dataset using commonly used methods. It consists of
three subsets: apple, mango, and apricot datasets. The quantitative results are presented in Tables 1–4. The
upper section shows CNN-based models, while the lower section presents transformer-based models, with
Precision as the evaluation metrics.
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Table 1: Performance comparison between our TransSSA method and state-of-the-art methods on the Apple dataset

Methods Backbone Precision (%)
SSD [35] VGG-16 85.7

Faster R-CNN [36] ResNet-101 87.9
RetinaNet [37] ResNet-50 87.3

EfficientDet [38] EfficientDet 88.1
YOLOV8 [39] CSPNet 89.4

ViT [22] ViT-B_16 89.1
DETR [20] DETR 88.7
TransSSA Swin-B + CSPNet 90.2

Table 2: Performance comparison between our TransSSA method and state-of-the-art methods on the Mango dataset

Methods Backbone Precision (%)
SSD [35] VGG-16 85.4

Faster R-CNN [36] ResNet-101 87.6
RetinaNet [37] ResNet-50 87.1

EfficientDet [38] EfficientDet 87.9
YOLOV8 [39] CSPNet 89.1

ViT [22] ViT-B_16 88.9
DETR [20] DETR 88.7
TransSSA Swin-B + CSPNet 90.0

Table 3: Performance comparison between our TransSSA method and state-of-the-art methods on the Almond dataset

Methods Backbone Precision (%)
SSD [35] VGG-16 85.1

Faster R-CNN [36] ResNet-101 87.2
RetinaNet [37] ResNet-50 86.9

EfficientDet [38] EfficientDet 87.7
YOLOV8 [39] CSPNet 88.9

ViT [22] ViT-B_16 88.6
DETR [20] DETR 88.4
TransSSA Swin-B + CSPNet 89.7

Table 4: Performance comparison among our TransSSA method and state-of-the-art methods on the Shanxi Nonggu
Tomato Town dataset

Methods Backbone Precision (%)
SSD [35] VGG-16 86.8

Faster
R-CNN [36]

ResNet-101 88.7

(Continued)
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Table 4 (continued)

Methods Backbone Precision (%)
RetinaNet [37] ResNet-50 88.2
EfficientDet [38] EfficientDet 89.6
YOLOV8 [39] CSPNet 90.3

ViT [22] ViT-B_16 90.4
DETR [20] DETR 89.9
TransSSA Swin-B +

CSPNet
91.3

Tables 1–4 showed that integrating the FPN, LSTM, and CNN architectures into YOLOV8 [39] facilitates
the extraction of features across various scales, while simultaneously merging complementary fragment
information within images. This collaborative approach enhances the model’s adaptability to complex
scenarios and demonstrates superior performance within the CNN-based paradigm. Nevertheless, despite
meticulous design, the optimal performance of CNN-based methods only marginally surpassed pure
transformer methods, such as in the apple dataset, the Vision Transformer (ViT [22]) and Detection
Transformer (DETR [20]) demonstrated improvements of 0.3%, 0.2%, and 0.3%, respectively. In stark
contrast, the TransSSA model, which leverages the Swin Transformer architecture, showed performance
gains of 0.8%, 0.9%, and 0.8% when benchmarked against the leading CNN-based methods. These findings
affirm the validity of our proposed model. When compared to prior methodologies, our model boasts an
accuracy rate of 90.2%, highlighting our successful exploitation of invariant cues and long-range dependent
semantic relationships within fruit images.

The methodology was applied to the Shanxi Nonggu Tomato Town dataset, where it was contrasted with
a convolutional neural network CNN-based model and a Transformer-based approach. Notably, the dataset
was carefully compiled from indoor greenhouse environments characterized by high resolution images.
Consequently, TransSSA (ours) technique achieved an impressive accuracy rate of 91.3%.

We selected the Apple dataset from ACFR Orchard Fruit Dataset and the Shanxi Nonggu Tomato Town
dataset, compared the results of various methods between the two datasets, and established Fig. 7.

As shown in Fig. 7, the Vision Transformer (ViT) [22] has been enhanced through the integration of
modules designed for dynamically modulating resolution and implementing ambiguous position encoding.
These enhancements improve its adaptability and precision when dealing with inputs of varying resolutions.
It shows outstanding performance in processing ultrahigh resolution images, highlighting the importance
of multiscale information in dynamic fruit target detection. Our methodology advances by leveraging the
multiscale information in fruit images, which empirically boosts accuracy. Compared to CNN-based models,
the superior expression of Transformer-based models stems from the Transformer architecture’s ability to
uncover latent long term dependency semantics in all patches. Generally, TransSSA performs excellently
among the methods in Fig. 7. Compared to the basic ViT, our TransSSA achieves improvements of 1.1% and
0.9%, demonstrating its capacity to extract invariant cues and subtle discriminative representations from
fruit images.
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Figure 7: Comparison of various methods performances on Apple and Tomato datasets

4.6 Visualization
We conducted extensive visualizations for TransSSA interpretability. Using ScoreCAM [40], we repro-

duced our model’s intricacies. Meanwhile, we presented key loss functions (Box Loss, Cls Loss, DFL Loss)
and accuracy metrics (precision, recall, mAP50, mAP50-95 curves) across training and testing datasets.

4.6.1 Visual Output of Thermal Map and Target Detection Results
Fig. 8 shows ScoreCAM heatmap visualizations highlighting regions of interest in input images. For

comparison, we selected four fruit images (apples, mangoes, almonds, tomatoes), each with a pair of images
for heatmap and object detection result comparison. Four methods were evaluated: Faster R-CNN, YOLOV8,
ViT, and TransSSA (ours).

In Fig. 8, a comparative analysis of heatmaps and detection results reveals that Transformer-based
methods (ViT and TransSSA) outperform CNN-based ones (Faster R-CNN and YOLOV8) in identifying
core features. CNN-based methods have a broader feature detection range but poor core feature location
ability, with misclassification and missing detections (e.g., Faster R-CNN’s errors and YOLOV8’s misses).
Transformer-based methods limit detection scope and enhance core feature identification, and TransSSA
is more accurate than ViT in this regard. In the tomato dataset, all four methods show higher accuracy
due to greenhouse collection minimizing lighting impact and tomato characteristics. TransSSA stands
out in identifying core features among evaluated methods, highlighting its generalizability, adaptability,
and robustness.

For further heat map analysis in Fig. 9, when applying trained models to images with larger fruit
positions, CNN-based methods (Faster R-CNN and YOLOV8) can only identify the fruit part with poor
positioning. Transformer-based methods are superior. While ViT can only partially recognize the stem and
fruit body, TransSSA can effectively identify the stem, body, and base of the fruit, having better core feature
recognition, more focused attention, and more precise positioning.
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Figure 8: Shows a comparative visualization of two representative methods (heatmaps and detection result graphs).
The effectiveness of four approaches (FR-CNN, YOLOV8, ViT, TransSSA) is described, focusing on identifying four
fruits (apples, mangoes, almonds, tomatoes). The visual array includes: (a) apple heatmap, (b) apple detection results, (c)
mango heatmap, (d) mango detection results, (e) almond heatmap, (f) almond detection results, (g) tomato heatmap,
(h) tomato detection results
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Figure 9: Presents a graphical representation of heat map utilization. It describes the effectiveness of four methods
(FR-CNN, YOLOV8, ViT, and TransSSA) in identifying four types of fruit (apples, mangoes, almonds, and tomatoes),
including (a) apple heat map, (b) mango heat map, (c) almond heat map, and (d) tomato heat map

4.6.2 Loss Function and Accuracy Function Curve Visualization
As shown in Fig. 10, we get a visual representation of the fluctuations of the loss function and the

accuracy function during model training. For comparison, we selected the most representative metrics
from these two feature types and conducted a comparative analysis of seven methods (SSD, Faster R-CNN,
EfficientDet, YOLOV8, ViT, DETR and TransSSA) on the Shanxi Nonggu Tomato Town dataset over 100
epochs. Since Faster R-CNN and RetinaNet have the same backbone architecture, we chose Faster R-CNN’s
superior performance for this comparison. The results show that TransSSA (ours) is optimal.
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Figure 10: Shows that our TransSSA model surpasses the other six models in convergence, loss function, and accuracy.
Notably, the Transformer-based methods ViT and TransSSA are closer in box loss. Besides, the performance of CNN-
based YOLOV8 is commendable, indicating its superior model optimization

4.7 Ablation Study
We conducted an ablation study on the TransSSA model. Considering that the ACFR Orchard Fruit

Dataset comprises three distinct fruit datasets, we selected the apple datasets from both the ACFR Orchard
Fruit Dataset and the Shanxi Agricultural Valley Tomato Town Dataset for the ablation study to enhance time
efficiency. The TransSSA model is comprised of the SAF module, SAE module, and EIOU module, where the
SAF module itself consists of swwin-b + CSPNet (SC) and Shuffle Attention (SA). In the ablation study, we
systematically examined each component individually. Table 5 presents the ablation experimental results for
the apple datasets from the ACFR Orchard Fruit Dataset and the Shanxi Agricultural Valley Tomato Town
Dataset, describing the performance of each module with Precision as the evaluation metrics.

Table 5 shows the TransSSA model, the baseline is the Swin-B + CSPNet architecture, which is
consistently used during the ablation experiments. The results of these experiments illustrate that the SAF
module contributes most significantly to improving model ac-curacy, with its main function being the
extraction of the feature backbone and facilitating the retrieval of fine-grained, multi-scale information from
fruit images. The integration of YOLOV8n and Swin Transformer as a backbone network is beneficial due
to its ability to leverage the shifted windowing scheme to delve into the wide-ranging semantic relationships
within fruit images. Ultimately, the invariant core features of fruit images are extracted, while the Self-
Attention mechanism is introduced to expand the ability of core feature extraction. This conclusion is further
supported by the results of the ablation experiments.

In addition, the SAE module and the EIOU module have also demonstrated their effectiveness in
improving model precision, with improvements of 0.2% and 0.1% in the ACFR Orchard Fruit dataset and
0.3% and 0.2%, respectively, in Shanxi Nonggu Tomato City dataset.
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Table 5: Each module ablation study

Datasets SAF SAE EIOU Precision (%)

SC SA
√

89.6√ √
90.0

ACFR orchard fruit dataset
√ √

89.8√ √
89.7√ √ √ √
90.2√
90.6√ √
91.1

Shanxi Nonggu tomato town
√ √

90.9√ √
90.8√ √ √ √
91.3

5 Conclusion
In this work, we address the challenges in fruit image detection during dynamic fruit harvesting,

particularly those related to multi-view capturing, fruit overlap, occlusion, and illumination fluctuations.
To tackle these issues, we propose an innovative method for extracting invariant features in fruit object
detection. To achieve this goal, we introduce the TransSSA model, an effective approach comprising two
modules: SAF and SAE. The SAF module integrates YOLOV8 and Swin Transformer as backbone networks,
while also incorporating the Shuffle Attention (SA) self-attention mechanism to enhance the core feature
extraction capabilities. Conversely, the SAE module focuses on improving fruit feature extraction in overlap-
ping and occluded scenarios, achieving a significant boost in detection accuracy through refined processing.
Furthermore, we adopt EIOU as the regression loss function to further optimize detection performance.

To validate the effectiveness of the TransSSA model, rigorous testing and comparisons were conducted
on four different fruit datasets. Experimental data fully demonstrate the remarkable ability of this method in
recognizing invariant features in fruit images and its significant advantages in achieving precise localization.
Based on the outstanding results achieved by TransSSA, we have reason to believe that learning methods
based on invariant information possess unique competitive advantages and broad development prospects in
the field of dynamic fruit recognition.

Currently, the TransSSA model is primarily applied to fruit image object detection based on different
capturing perspectives and has demonstrated good application effects. However, its application scope still has
certain limitations. Looking ahead, we plan to further develop lightweight and video-based versions to play
a greater role in more practical scenarios, thereby promoting the widespread application and development
of dynamic fruit recognition technology.
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