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ABSTRACT: This study provides a systematic investigation into the influence of feature selection methods on
cryptocurrency price forecasting models employing technical indicators. In this work, over 130 technical indicators—
covering momentum, volatility, volume, and trend-related technical indicators—are subjected to three distinct feature
selection approaches. Specifically, mutual information (MI), recursive feature elimination (RFE), and random for-
est importance (RFI). By extracting an optimal set of 20 predictors, the proposed framework aims to mitigate
redundancy and overfitting while enhancing interpretability. These feature subsets are integrated into support vector
regression (SVR), Huber regressors, and k-nearest neighbors (KNN) models to forecast the prices of three leading
cryptocurrencies—Bitcoin (BTC/USDT), Ethereum (ETH/USDT), and Binance Coin (BNB/USDT)—across horizons
ranging from 1 to 20 days. Model evaluation employs the coefficient of determination (R2) and the root mean squared
logarithmic error (RMSLE), alongside a walk-forward validation scheme to approximate real-world trading contexts.
Empirical results indicate that incorporating momentum and volatility measures substantially improves predictive
accuracy, with particularly pronounced effects observed at longer forecast windows. Moreover, indicators related
to volume and trend provide incremental benefits in select market conditions. Notably, an 80%–85% reduction in
the original feature set frequently maintains or enhances model performance relative to the complete indicator set.
These findings highlight the critical role of targeted feature selection in addressing high-dimensional financial data
challenges while preserving model robustness. This research advances the field of cryptocurrency forecasting by
offering a rigorous comparison of feature selection methods and their effects on multiple digital assets and prediction
horizons. The outcomes highlight the importance of dimension-reduction strategies in developing more efficient and
resilient forecasting algorithms. Future efforts should incorporate high-frequency data and explore alternative selection
techniques to further refine predictive accuracy in this highly volatile domain.

KEYWORDS: Cryptocurrency; forecasting; technical indicator; feature selection; walk-forward; volatility; momentum;
trend

1 Introduction
The cryptocurrency market has emerged as a significant component of the global financial system.

The inherent complexity and high volatility of these markets pose substantial challenges for investors and
traders in making informed decisions [1]. The increasing integration of cryptocurrencies into mainstream
finance intensified the need for sophisticated prediction models that could help traders make profits within
these markets, known for their high volatility [2]. While traditional approaches like fundamental analysis
and technical analysis remain prevalent, their effectiveness is often limited by the unique characteristics of
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cryptocurrency markets, including 24/7 trading, global accessibility, and heightened sensitivity to market
sentiment [3].

Technical analysis, which relies on historical price patterns and technical indicators, faces challenges
in handling the complex, non-linear relationships inherent in these markets. Recent research suggests
that integrating multiple technical indicators through advanced analytical frameworks can significantly
enhance prediction accuracy [4,5]. Machine learning approaches have demonstrated superior capability in
capturing the intricate patterns within cryptocurrency price movements. These methods excel at processing
large volumes of historical data and identifying complex relationships that might be imperceptible through
traditional analysis. However, the effectiveness of machine learning models heavily depends on the quality
and relevance of input features, particularly in multi-horizon forecasting scenarios where different technical
indicators may exhibit varying degrees of predictive power across different time frames. By using algorithms
to analyze large volumes of data, this method can identify complex trends and provide more accurate
forecasts. Machine learning models, fueled by historical price data and technical characteristics, allow price
prediction to be treated as a classification or regression problem.

This study addresses several critical gaps in current cryptocurrency price prediction research. First,
while existing studies often focus on single-currency, next-day predictions, we extend our analysis to multiple
major cryptocurrencies (Bitcoin, Ethereum, and Binance Coin) across various prediction horizons. Second,
we employ a comprehensive set of over 130 technical indicators, substantially expanding upon the typical
20–30 indicators used in previous studies [6,7]. Third, we implement multiple feature selection methods to
identify the most relevant indicators for different prediction horizons, addressing the challenge of feature
relevance across temporal scales [8].

Our research makes several contributions to the field: (1) We provide a systematic evaluation of feature
selection methods across multiple cryptocurrencies and prediction horizons, offering insights into the
temporal stability of technical indicators; (2) We implement a walk-forward approach to ensure robust model
validation and realistic performance assessment; (3) We employ regression models that are particularly
sensitive to feature selection, enabling a more nuanced understanding of feature importance; and (4) We
develop practical recommendations for implementing these findings in real-world trading scenarios.

The document is structured as follows: Section 2 presents related work, discussing previous research
on feature selection methods in the cryptocurrency field. Section 3 details data collection and prepro-
cessing methods, as well as the feature selection algorithms used. Section 4 presents the results obtained
while Section 5 analyzes them and discusses their significance. Finally, Section 6 summarizes the key findings
and suggests directions for future research.

2 Related Work
Recent advances in cryptocurrency price prediction have focused on three main areas: feature selection

methodologies, technical indicator optimization, and prediction model architectures. Here, we review
relevant literature across these dimensions while highlighting the gaps our research addresses.

Feature selection has emerged as a critical component in cryptocurrency price prediction. Moodi
et al. [9] examined various technical indicators and regression methods, demonstrating that appropriate
feature selection can significantly improve model performance. Their work with 123 technical indicators
showed that certain combinations of features could improve prediction accuracy by up to 76.7% compared
to baseline models. Building on this, Pabuccu and Barbu [6] introduced Feature Selection with Annealing
(FSA), comparing it against traditional methods like LASSO and Boruta. Their study across multiple
cryptocurrencies demonstrated that FSA could enhance model performance regardless of the problem type.
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In a more focused study, Nagaraj et al. [10] applied recursive feature elimination (RFE) to select
optimal technical indicators from a set of 35 features. Their results showed significant improvements in
classification accuracy, achieving AUC (Area Under Curve) scores of 0.90 and 0.93 for different assets.
Similarly, Contreras et al. [11] explored genetic algorithms for feature selection in predicting cryptocurrency
time series monotonicity, demonstrating the effectiveness of evolutionary approaches in handling complex
market data.

Recent research has shown increasing sophistication in the integration of technical indicators. Wei
et al. [2] combined technical and fundamental analysis, highlighting the complementary nature of these
approaches in cryptocurrency markets. Their work demonstrated that certain technical indicators become
more relevant during specific market conditions, suggesting the need for adaptive feature selection
approaches. Akhiat et al. [12] introduced the Noisy Random Forest (NRF) method to improve feature
selection by adding noisy features to filter out irrelevant variables. This approach proved particularly effective
in cryptocurrency markets, where noise and volatility are prevalent. Zhu et al. [4] further explored this
direction by examining 27 factors for Bitcoin price prediction, emphasizing the importance of adaptive
feature selection in volatile markets.

While most existing studies focus on single-day predictions, some recent work has begun to explore
multi-horizon forecasting. Naganjaneyulu et al. [13] presented hierarchical strategies based on multiple
technical indicators, proposing innovative methods to select relevant indicators depending on market
conditions and prediction horizons. Alsubaie et al. [14] demonstrated that optimal indicator selection could
vary significantly across different prediction horizons, achieving improved accuracy with at least ten carefully
selected indicators.

Based on our literature review, we identify several research gaps that our study addresses:

1. Few works address feature selection in cryptocurrencies, unless explicitly mentioned the reviewed works
use stocks or other tradable assets data.

2. Few reviewed studies used multiple feature selection methods.
3. Limited scope in feature selection: Most studies utilize a relatively small set of technical indicators (20–

50) and often employ single feature selection methods.
4. Single-horizon focus: The majority of existing research focuses on single-day predictions, lacking

analysis of feature importance across different time horizons.
5. Validation methodology: Few studies implement walk-forward validation, which better reflects real-

world trading conditions.
6. Multi-currency analysis: Limited research exists on comparing feature selection effectiveness across

different cryptocurrencies.

Our study addresses these gaps by using 3 feature selection methods from filter-, wrapper-, and
embedded-based selection techniques, to analyze over 130 technical indicators across Bitcoin (BTC/USDT),
Ethereum (ETH/USDT), and Binance coin (BNB/USDT), and multiple prediction horizons (from 1 to 20). By
employing Mutual Information (MI), Recursive Feature Elimination (RFE), and Random Forest Importance
(RFI), we aim to systematically evaluate the relevance of different technical indicators in cryptocurrency
price prediction.

Building on this approach, our study specifically addresses the following research questions:

1. How does the effectiveness of different feature selection methods (MI, RFE, RFI) vary across different
cryptocurrencies (BTC, ETH, BNB), different prediction horizons (1–20 days), and different regression
models (Huber, SVR, KNN)?
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2. What is the temporal stability of selected technical indicators across different prediction horizons, and
how does this impact model performance?

3. How do different categories of technical indicators (momentum, trend, volatility, volume) contribute to
prediction accuracy at various time horizons?

3 Methodology
This section details the dataset employed for Bitcoin (BTC/USDT), Ethereum (ETH/USDT), and

Binance coin (BNB/USDT) price forecasting, the feature selection methods investigated, the machine
learning models applied, and the evaluation metrics used to assess the performance of the models.

3.1 Data Collection and Preprocessing
We obtained minute-by-minute historical trading data for three major cryptocurrencies (Bitcoin,

Ethereum, and Binance Coin) paired with USDT from the Binance exchange [15]. The data spans from
August 2017 (November 2017 for BNB) to January 2025, providing a comprehensive dataset that captures
various market conditions.

Each dataset contains OHLCV (Open, High, Low, Close, Volume) values and the number of transactions
for each minute. Following [16], we aggregated the minute-by-minute data into daily windows, calculating
daily OHLCV values to reduce noise and computational complexity while maintaining essential price
information [17].

Using the pandas-ta Python library [18], we generated over 130 technical indicators across four main
categories:

• Volatility: Volatility indicators measure the magnitude and frequency of price fluctuations, giving insight
into market risk and potential price swings.

• Momentum: Momentum indicators assess the speed and strength of price movements, identifying
potential trend reversals or continuations.

• Volume: Volume indicators analyze trading activity, confirming trends or signaling potential reversals
when combined with price data.

• Trend: Trend indicators help identify the overall direction of the market, whether bullish, bearish,
or neutral.

3.2 Logarithmic Returns
In this study, we used the logarithmic returns of the closing price as the target variable to predict future

variations in Bitcoin’s price. Logarithmic returns are preferred over simple returns due to their time additivity
and symmetry [19], which allow for a more accurate analysis of cumulative returns and balanced treatment
of gains and losses.

3.3 Feature Selection Methods
We employed three empirically chosen feature selection methods—Mutual Information, Recursive

Feature Elimination (RFE), and Random Forest Importance—each offering a distinct approach to identifying
the most relevant technical indicators. Each of these methods is used to get 20 features of the technical
indicators, which are used as input for our models. These methods were selected because they represent the
three main categories of feature selection methods: filter-based, wrapper-based, and embedded techniques.
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3.3.1 Mutual Information
Mutual Information (MI) is a statistical measure used to quantify the dependence between two random

variables [20], evaluating the amount of information that the knowledge of one variable provides about the
other, thereby capturing both linear and nonlinear dependencies between them [21]. As a filter-based feature
selection method, MI falls under the category of techniques that assess the relevance of each feature by
examining its statistical relationship with the target variable independently of any learning algorithm [22].
This capability is crucial for identifying non-linear relationships in volatile and complex markets like Bitcoin,
where traditional linear assumptions often fall short. Formally, the mutual information between two random
variables x and y is defined by Formula (1).

I(x , y) = ∑n
i=1 ∑

n
j=1 p(x(i), y( j))log ( p(x(i), y( j))

p(x(i)) ⋅ p(y( j))) (1)

where MI is zero when X and Y are statistically independent as depicted in Formula (2).

p(x(i), y( j)) = p(x(i)) ⋅ p(y( j)) (2)

3.3.2 Recursive Feature Elimination (RFE)
Recursive Feature Elimination (RFE) represents a wrapper-based method. Wrapper methods involve

training a model iteratively and evaluating feature subsets based on model performance [23]. RFE recursively
removes the least important features based on the model’s performance, providing a systematic way of
identifying the most relevant features [20]. This approach is particularly effective in ensuring that only the
most impactful indicators are retained while accounting for interactions between features, thus minimizing
noise in the prediction model.

3.3.3 Random Forest Importance (RFI)
Random Forest Importance belongs to the embedded category of feature selection techniques. Embed-

ded methods perform feature selection during the process of model training [24]. Random Forest Importance
ranks features based on their contribution to reducing model error in an ensemble framework, offering
insights into the importance of features as they interact within the model.

3.4 Machine Learning Algorithms
In this study, we employ three regression models that are particularly sensitive to feature selection:

Support Vector Regression (SVR), Huber Regressor, and K-Nearest Neighbors (KNN) Regressor.

3.4.1 Support Vector Regression (SVR)
The SVR model constructs a hyperplane in a high-dimensional space that maximizes the margin while

ensuring that the prediction error remains within an ε-insensitive tube. Given a dataset {(xi , yi)}n
i=1, the

SVR optimization problem is formulated as:

min
w ,b ,ξ i ,ξ∗i

1
2
∣w∣2 + C

n
∑
i=1
(ξ i + ξ∗i ) (3)

subject to

yi − ⟨w , ϕ (xi)⟩ − b ≤ ε + ξi , i = 1, . . . , n
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⟨w , ϕ (xi)⟩ + b − yi ≤ ε + ξ∗i , i = 1, . . . , n
ξi , ξ∗i ≥ 0, i = 1, . . . , n

where:

• ϕ (.) is the feature mapping induced by the radial basis function (RBF) kernel,
• ε defines the error tolerance,
• C is a regularization parameter balancing model complexity and error penalization,
• ξi and ξ∗i are slack variables allowing for errors beyond the ε-tube.

3.4.2 Huber Regressor
The Huber Regressor combines the properties of linear regression with robust error estimation. It

minimizes the Huber loss function, which is less sensitive to outliers than the squared error loss. The Huber
loss function is defined as:

Lδ(y, f (x)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
(y − f (x))2, i f ∣ y − f (x) ∣≤ δ,

δ(∣ y − f (x) ∣ − 1
2

δ), otherwise
(4)

where δ represents the threshold that delineates the transition from quadratic to linear loss behavior.

3.4.3 K-Nearest Neighbors (KNN) Regressor
The KNN regressor predicts the target value for an observation by averaging the responses of its k nearest

neighbors in the feature space. Formally, if Nk (x) denotes the set of indices corresponding to the k nearest
neighbors of an observation x, the predicted response ŷ (x) is given by:

ŷ (x) = 1
k ∑

i∈Nk(x)
yi (5)

3.5 Model Validation and Evaluation
We implemented a walk-forward validation [25] to simulate real-world trading conditions and ensure

robust model evaluation. Our validation strategy involves:

1. Setting an initial training window of two years
2. Using a validation window of six months
3. Implementing a step size of one month
4. Retraining models at each step

For performance evaluation, we employ two primary metrics: R2 and RMSLE.

3.6 Evaluation Metrics
3.6.1 Coefficient of Determination (R2 Score)

The coefficient of determination, R2, is a key measure for evaluating the quality of a regression model,
indicating the proportion of variance in the data that is explained by the mode [26]. The higher the R2

value, the better the model captures the variations in the observed data. Formula (6) shows how the R2

Score is calculated. Where n is the number of measurements, yi is the value of the i-th observation in the
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validation dataset, ȳ is the mean of the values in the validation dataset, and ŷi is the predicted value for the
i-th observation.

R2 = 1 − ∑
n
i=1 (yi − ŷi)2

∑n
i=1 (yi − y−)2 (6)

3.6.2 Root Mean Squared Logarithmic Error
The RMSLE (Root Mean Squared Logarithmic Error) is a performance metric for regression models,

particularly useful when the target values span multiple orders of magnitude. It measures the difference
between the logarithms of predicted and actual values, giving more weight to large proportional errors [27].
The formula for calculating RMSLE is given by Formula (7).

RMSLE =
√

1
n∑

n
i=1 (log (1 + yi) − log (1 + y∧i ))

2 (7)

where:

• n is the number of data points.
• ŷi is the predicted value for observation i.
• yi is the actual value for observation i.
• log is the natural logarithmic function.

4 Results
This section summarizes our experimental findings on feature selection methods and machine learning

models (SVR, Huber, KNN) for predicting BTC/USDT, ETH/USDT, and BNB/USDT prices. The experimen-
tal protocol comprised: (1) identifying an optimal subset of 20 technical indicators (after confirming that 20
balanced complexity and accuracy), (2) establishing a baseline model (benchmark) trained on the full feature
set across 1–20-day horizons, and (3) comparing each reduced feature set from Mutual Information (MI),
Recursive Feature Elimination (RFE), and Random Forest Importance (RFI) with the baseline. Negative
values in figures were excluded to highlight the most salient data.

4.1 Feature Selection
Table 1 lists the selected technical indicators (46 unique technical indicators), with concise descriptions,

and whether they were selected by MI, RFE, or RFI for each trading pair. The “Cat.” column denotes categories
assigned by pandas-ta to each technical indicator (M: Momentum, V: Volume, Vy: Volatility, T: Trend, O:
Overlap).

Table 1: Selected features by various feature selection methods, for each of the considered trading pairs

Selected feature Description BTC/USDT ETH/USDT BNB/USDT Cat.

MI RFE RFI MI RFE RFI MI RFE RFI
BOP Balance of power indicator ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ M

CFO_9 Chande forecast oscillator (9) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ M
SLOPE_1 Linear regression slope (1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ M

BBP_5_2.0 Bollinger bands %B (5,2.0) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Vy
BBB_5_2.0 Bollinger bands bandwidth (5,2.0) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Vy

THERMO_20_2_0.5 Thermo indicator (20,2,0.5) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Vy
TRUERANGE_1 True range (1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Vy

(Continued)
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Table 1 (continued)

Selected feature Description BTC/USDT ETH/USDT BNB/USDT Cat.

MI RFE RFI MI RFE RFI MI RFE RFI
BIAS_SMA_26 Bias indicator (26-SMA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ M

PVR Price volume rank indicator ✓ ✓ ✓ ✓ ✓ ✓ ✓ V
PVO_12_26_9 Percentage volume oscillator

(12,26,9)
✓ ✓ ✓ ✓ ✓ ✓ ✓ M

ROC_10 Rate of change (10) ✓ ✓ ✓ ✓ ✓ ✓ ✓ M
INC_1 Increasing indicator (1) ✓ ✓ ✓ ✓ ✓ ✓ T

NATR_14 Normalized average true range (14) ✓ ✓ ✓ ✓ ✓ ✓ Vy
PGO_14 Pretty good oscillator (14) ✓ ✓ ✓ ✓ ✓ ✓ M
EFI_13 Elder force index (13) ✓ ✓ ✓ ✓ ✓ V

THERMOl_20_2_0.5 Thermo lower band (20,2,0.5) ✓ ✓ ✓ ✓ ✓ Vy
DEC_1 Decay ✓ ✓ ✓ ✓ ✓ T

PVOh_12_26_9 Percentage volume oscillator
histogram (12,26,9)

✓ ✓ ✓ ✓ M

PDIST Price distribution indicator ✓ ✓ ✓ ✓ Vy
ADOSC_3_10 Accumulation/

Distribution oscillator (3,10)
✓ ✓ ✓ ✓ V

BBL_5_2.0 Bollinger bands lower (5,2.0) ✓ ✓ ✓ Vy
RVI_14 Relative volatility index (14) ✓ ✓ ✓ Vy

TTM_TRND_6 TTM trend (6) ✓ ✓ ✓ T
WILLR_14 Williams %R (14) ✓ ✓ ✓ M

SMIo_5_20_5 Stochastic momentum index
(5,20,5)

✓ ✓ ✓ M

PVT Price volume trend indicator ✓ ✓ ✓ V
AD Accumulation/

Distribution indicator
✓ ✓ V

BEARP_13 Bear power (13) ✓ ✓ M
CG_10 Center of gravity (10) ✓ ✓ M

CCI_14_0.015 Commodity channel index
(14,0.015)

✓ ✓ M

DCL_20_20 Donchian channel lower (20,20) ✓ ✓ Vy
DMN_14 Donchian channel middle (14) ✓ ✓ Vy
DPO_20 Detrended price oscillator (20) ✓ ✓ T

UO_7_14_28 Ultimate oscillator (7,14,28) ✓ ✓ M
BBM_5_2.0 Bollinger bands middle (5,2.0) ✓ Vy

COPC_11_14_10 COPC indicator (11,14,10) ✓ M
DMP_14 Directional movement plus (14) ✓ T

HWL High-low indicator ✓ O
J_9_3 J indicator (9,3) ✓ M

KCLe_20_2 Keltner channel lower (20,2) ✓ Vy
KVO_34_55_13 Klinger volume oscillator (34,55,13) ✓ V

MOM_10 Momentum (10) ✓ M
PVOs_12_26_9 Percentage volume oscillator

variant (12,26,9)
✓ M

QS_10 Quick stick (QStick) indicator ✓ T
STC_10_12_26_0.5 Schaff trend cycle (10,12,26,0.5) ✓ M

THERMOma_20_2_0.5 Thermo moving average (20,2,0.5) ✓ Vy

4.2 Model Performance Results
We evaluated each model’s R2 and RMSLE across 1–20-day horizons. Figs. 1–18 illustrate performance

for SVR, Huber, and KNN on BTC/USDT, ETH/USDT, and BNB/USDT using both the full (baseline or
benchmark) and reduced feature sets (selected 20 features).
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Figure 1: SVR model R2 results for BTC/USDT pair using different feature sets

Figure 2: SVR model RMSLE results for BTC/USDT pair using different feature sets
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Figure 3: SVR model R2 results for ETH/USDT pair using different feature sets

Figure 4: SVR model RMSLE results for ETH/USDT pair using different feature sets
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Figure 5: SVR model R2 results for BNB/USDT pair using different feature sets

Figure 6: SVR model RMSLE results for BNB/USDT pair using different feature sets
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Figure 7: Huber model R2 results for BTC/USDT pair using different feature sets

Figure 8: Huber model RMSLE results for BTC/USDT pair using different feature sets
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Figure 9: Huber model R2 results for ETH/USDT pair using different feature sets

Figure 10: Huber model RMSLE results for ETH/USDT pair using different feature sets
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Figure 11: Huber model R2 results for BNB/USDT pair using different feature sets

Figure 12: Huber model RMSLE results for BNB/USDT pair using different feature sets
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Figure 13: KNN model R2 results for BTC/USDT pair using different feature sets

Figure 14: KNN model RMSLE results for BTC/USDT pair using different feature sets
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Figure 15: KNN model R2 results for ETH/USDT pair using different feature sets

Figure 16: KNN model RMSLE results for ETH/USDT pair using different feature sets
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Figure 17: KNN model R2 results for BNB/USDT pair using different feature sets

Figure 18: KNN model RMSLE results for BNB/USDT pair using different feature sets
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4.2.1 Support Vector Regressor
• BTC/USDT (Figs. 1 and 2): Short-term horizons (1–5 days) showed modest R2, but performance

improved around days 6–12. MI-based features outperformed the baseline in the longer term (13–20
days). RMSLE increased with the horizon which indicates bigger errors for longer horizons. This was
the same for all other models and pairs. Hence starting from here, we will no longer comment on the
RMSLE values.

• ETH/USDT (Figs. 3 and 4): Benchmark was the best for short to mid-term horizons, while RFI surpasses
MI and RFE for long-term horizons.

• BNB/USDT (Figs. 5 and 6): BNB displayed notable short-term results under MI (with a peak R2 > 0.7
around day 3), although medium-range forecasts converged across methods.

4.2.2 Huber Regressor
• BTC/USDT (Figs. 7 and 8): MI outperformed other subsets in the early horizons, but the baseline model

tended to dominate in medium-to-long terms.
• ETH/USDT (Figs. 9 and 10): The baseline model dominated the short horizons while RFI surpassed MI

and RFE in all horizons except the early ones where MI was near the benchmark model.
• BNB/USDT (Figs. 11 and 12): Early and mid-term horizons were dominated by MI, while the baseline

method led to longer forecasts.

4.2.3 KNN Regressor
• BTC/USDT (Figs. 13 and 14): R2 remained low in short horizons but improved slightly for medium terms

using MI.
• ETH/USDT (Figs. 15 and 16): RFI-based features produced better mid-range R2 than MI or RFE, while

they failed to get any results compared to the base model at early horizons, in longer horizons both RFI
and MI were better than the baseline model.

• BNB/USDT (Figs. 17 and 18): BNB showed higher predictive performance with MI (notably >0.8 in
medium horizons), although results weakened after day 12.

5 Discussion
Our discussion focuses on three dimensions: (1) trading pair distinctions, (2) feature selection methods,

and (3) technical indicator categories. We also interpret model-specific outcomes and offer practical recom-
mendations.

5.1 Feature Selection Analysis by Trading Pair
Table 1 shows that Mutual Information (MI) selected eight momentum and seven volatility indicators for

BTC/USDT, while Recursive Feature Elimination (RFE) prioritized nine volatility and six momentum indi-
cators, and Random Forest Importance (RFI) chose nine momentum and eight volatility indicators. Across
these methods, volatility was especially prominent in BTC selection sets (e.g., Bollinger Bands, True Range),
Although volume features were comparatively fewer (2–3 across methods), the Accumulation/Distribution
Oscillator (ADOSC_3_10) and Price Volume Rank (PVR) offered supplemental information, particularly
under RFE and RFI.

For Ethereum, momentum indicators appear with the greatest frequency. MI and RFI selected nine
and seven momentum features, respectively, while RFE selected 11—its highest momentum count among all
three trading pairs. Volatility indicators ranged from five (RFE) to nine (RFI), suggesting that ETH price



Comput Mater Contin. 2025;83(2) 3429

fluctuations, while partly volatility-driven, rely more on rapid-change metrics such as SLOPE_1 and CFO_9.
Volume indicators (e.g., PVR, EFI_13) also appeared in each method’s selection for ETH/USDT. The Huber
Regressor R2 plot (covering horizons of 1–20 days) further indicated that combining momentum and volume
features can enhance short-to-medium-term prediction for ETH.

BNB/USDT displayed the most balanced distribution across categories. MI selected 10 momentum and
5 volatility features, along with 4 trend indicators. RFE also targeted multiple momentum and volatility
features, though at slightly lower counts, while RFI emphasized momentum (9 selections) and volume (3
selections). Trend-based indicators such as DPO_20, INC_1, and DEC_1 were more common for BNB than
for BTC or ETH. These findings imply that BNB price movements benefit from a broader mix of momentum,
trend, and volatility elements when constructing a predictive feature set.

5.2 Feature Selection Method Performance
When summing across all trading pairs, MI chose 27 momentum, 18 volatility, 10 trend, and 5 volume

indicators. This distribution underscores MI’s strong preference for momentum signals (e.g., BOP, CFO_9,
SLOPE_1) while still identifying key volatility measures (e.g., Bollinger Band metrics) and select trend
features (e.g., INC_1, DEC_1).

RFE’s overall selections leaned slightly toward volatility (24 total across pairs) and momentum (22
total), with fewer trend (5) and volume (9) indicators. This pattern highlights RFE’s balance between
reacting to short-term market shifts (momentum) and accounting for price dispersion (volatility). RFE also
uncovered moderate contributions from volume metrics such as PVR and EFI_13, suggesting a synergy
between volatility and volume signals in certain horizons (particularly for BTC).

RFI displayed the strongest emphasis on momentum (28 total across pairs) and substantial coverage
of volatility (20). The method also identified a single overlap indicator, high-low indicator (HWL), for the
BTC/USDT set. This outcome points to the capacity of tree-based models to capture complex, non-linear
relationships among momentum and volatility factors. In certain instances—e.g., ETH/USDT mid-term
predictions—RFI features (especially momentum oscillators) drove more stable forecasts compared to pure
volatility- or volume-centric subsets.

5.3 Technical Indicator Category Analysis
Momentum formed the largest category (19 unique indicators, ~41% of the total unique selected

technical indicators). BOP, CFO_9, and SLOPE_1, each registered nine total appearances (i.e., chosen by all
three methods for every pair). PVO_12_26_9, ROC_10, and PGO_14 showed moderate-to-high selection
frequencies, highlighting the broad importance of relative price changes and oscillatory signals in capturing
market sentiment shifts.

Volatility indicators contributed a significant portion of the selected features overall (14 unique indi-
cators, 30% of the total). Bollinger Band Percent (BBP_5_2.0) and Bollinger Band Bandwidth (BBB_5_2.0)
each appeared nine times across all pairs and methods. True Range (TRUERANGE_1) and Thermo
(THERMO_20_2_0.5) also consistently ranked highly.

Volume indicators were less frequent overall (6 unique features). PVR had seven total appearances
(the highest among volume metrics), reinforcing the notion that price-volume convergence can confirm
momentum or volatility signals. Elder Force Index (EFI_13) also contributed to medium- and long-horizon
modeling by integrating price and volume flux.
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Trend indicators (6 unique across all selections) had varying importance by trading pair. INC_1 and
DEC_1 were more frequently selected for BTC/USDT and BNB/USDT, aiding in short-term direction
detection.

Only one Overlap category indicator (HWL) was selected, exclusively under RFI for BTC/USDT. Its
limited appearance suggests that simpler overlapping metrics (e.g., High–Low range) may be less informative
than specialized volatility, momentum, or trend measures in most crypto-market contexts.

5.4 Models Performance Analysis
Three regression models—Support Vector Regression (SVR), Huber Regressor, and K-Nearest Neigh-

bors (KNN)—were evaluated over 1–20-day horizons. Each model was tested with the baseline (full) feature
set, as well as the subsets identified by MI, RFE, and RFI.

• SVR
○ Short term (1–5 days): Across BTC/USDT, ETH/USDT, and BNB/USDT, R2 values tended to be low

for all the feature selection models. However, BNB exhibited an early spike in R2 (>!0.7) under MI
around day 3.

○ Medium-term (6–12 days): ETH/USDT peaked here, with RFI surpassing MI and RFE on some
horizon. The baseline model was near the best-performing feature selection method except for BNB
where MI continued the lead.

○ Long-term (13–20 days): R2 stabilized at moderate levels. MI occasionally outperformed RFE and
RFI, particularly for BTC and BNB.

• Huber Regressor
○ Short term (1–5 days): MI-based features boosted early predictions for BTC/USDT and BNB/USDT,

whereas the baseline feature set still yielded strong results for ETH/USDT.
○ Medium-term (6–12 days): The baseline model regained superiority for BTC/USDT, while RFI

offered more accurate ETH/USDT mid-horizon forecasts. BNB performance favored MI, though
RMSLE climbed slightly.

○ Long-term (13–20 days): The baseline typically delivered the highest R2 for BTC/USDT and
BNB/USDT, with RFI occasionally surpassing it for ETH/USDT.

• KNN
○ Short term (1–5 days): BTC/USDT and ETH/USDT scored low R2, whereas BNB/USDT under MI

occasionally reached comparatively higher accuracy.
○ Medium-term (6–12 days): BNB/USDT peaked (>0.8 for some horizons) under MI. ETH/USDT

performance favored RFI.
○ Long term (13–20 days): BTC/USDT saw gradual R2 gains, whereas ETH and BNB results tended

to decline, indicating that KNN may struggle to generalize well for extended horizons.

5.5 Practical Recommendations
Overall, the combination of momentum and volatility indicators is essential for capturing short-term

price oscillations and market volatility, whereas trend and volume features consistently refined medium-
to-long-horizon forecasts. RFE and RFI often highlighted nuanced volatility–momentum interactions,
while MI successfully extracted momentum-dominant subsets that performed strongly in certain BTC and
BNB scenarios.

These outcomes underline the importance of tailoring feature selection to each cryptocurrency pair and
predictive time frame. For BTC/USDT, volatility-driven methods are particularly beneficial; for ETH/USDT,
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momentum-oriented strategies may outperform; and for BNB/USDT, a broad, balanced combination of
indicators offers robust results. Model-wise, SVR, and Huber typically outperformed KNN in generalization,
although strong feature selection can significantly elevate KNN’s short-to-medium term accuracy.

6 Conclusion and Future Work
This study offers a comprehensive exploration of technical indicator selection in cryptocurrency

price prediction. By examining multiple feature selection methods and machine learning regressors, the
findings indicate that volatility- and momentum-based indicators play critical roles in enhancing forecasting
accuracy, while volume and trend technical indicators can contribute to performance improvements in
specific horizons.

Despite a strong empirical foundation, several constraints affect the scalability of the approach. First,
relying on daily aggregation may mask intra-day trading opportunities and price fluctuations critical for
real-time decision-making. Second, the analysis focuses on three large-cap cryptocurrencies, which may
limit the generalizability of these findings to a broader universe of digital assets with differing liquidity and
market structures. Third, the study employs only one representative algorithm from each category of feature
selection methods, potentially leaving out more specialized or hybrid approaches.

Future work can deepen these insights by integrating shorter time-frame data to capture high-frequency
market dynamics, expanding the investigation to additional cryptocurrencies or token classes, and applying
a broader suite of feature selection and modeling techniques. Incorporating fundamental metrics, such as
macroeconomic indicators and on-chain analytics, may offer a more complete perspective on price formation
mechanisms. By addressing these avenues, subsequent research can further refine the predictive capability
of machine learning models in cryptocurrency markets.
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