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ABSTRACT: The evolving field of Alzheimer’s disease (AD) diagnosis has greatly benefited from deep learning
models for analyzing brain magnetic resonance (MR) images. This study introduces Dynamic GradNet, a novel deep
learning model designed to increase diagnostic accuracy and interpretability for multiclass AD classification. Initially,
four state-of-the-art convolutional neural network (CNN) architectures, the self-regulated network (RegNet), residual
network (ResNet), densely connected convolutional network (DenseNet), and efficient network (EfficientNet), were
comprehensively compared via a unified preprocessing pipeline to ensure a fair evaluation. Among these models,
EfficientNet consistently demonstrated superior performance in terms of accuracy, precision, recall, and F1 score. As a
result, EfficientNet was selected as the foundation for implementing Dynamic GradNet. Dynamic GradNet incorporates
gradient weighted class activation mapping (GradCAM) into the training process, facilitating dynamic adjustments
that focus on critical brain regions associated with early dementia detection. These adjustments are particularly
effective in identifying subtle changes associated with very mild dementia, enabling early diagnosis and intervention.
The model was evaluated with the OASIS dataset, which contains greater than 80,000 brain MR images categorized
into four distinct stages of AD progression. The proposed model outperformed the baseline architectures, achieving
remarkable generalizability across all stages. This finding was especially evident in early-stage dementia detection, where
Dynamic GradNet significantly reduced false positives and enhanced classification metrics. These findings highlight the
potential of Dynamic GradNet as a robust and scalable approach for AD diagnosis, providing a promising alternative
to traditional attention-based models. The model’s ability to dynamically adjust spatial focus offers a powerful tool in
artificial intelligence (AI) assisted precision medicine, particularly in the early detection of neurodegenerative diseases.

KEYWORDS: Spatial focus; GradCAM; medical image classification; deep learning; early dementia detection;
neurodegenerative disease; MRI analysis; Alzheimer’s; attention; CNN

1 Introduction
Magnetic resonance imaging (MRI) has become an essential tool for diagnosing neurodegenerative

diseases such as Alzheimer’s disease (AD) because of its ability to provide detailed images of brain structures.
MRI is particularly effective in detecting early and subtle changes in brain regions vulnerable to AD, such as
the hippocampus, which plays a critical role in memory and cognitive function. Detecting these changes is
crucial for early diagnosis and monitoring the progression of the disease [1,2]. Given the noninvasive nature
of MRI, it is widely used in both clinical and research settings to detect biomarkers associated with AD.
However, the manual interpretation of MRI images remains a challenging and time-consuming task that is
prone to human error, especially when dealing with large datasets and complex brain structures. To address
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these challenges, automated methods—particularly those leveraging machine learning and deep learning
models—have been developed to increase the accuracy and efficiency of MRI-based diagnoses [3].

Deep learning models, a type of machine learning model, have demonstrated significant potential in
the field of medical image analysis [4]. Their ability to automatically extract relevant features from raw
images without the need for manual intervention provides a substantial advantage over traditional methods.
Convolutional neural networks (CNNs) have gained widespread adoption in medical imaging tasks because
of their ability to capture spatial hierarchies and patterns through convolutional layers [5]. This powerful
feature learning capability has allowed deep learning approaches to set new performance benchmarks across
a wide range of artificial intelligence applications [6]. Recent advancements in CNN architectures have led
to models that are capable of capturing both local and global features within images. Among the most
prominent of these architectures are the residual network (ResNet), self-regularized network (RegNet),
densely connected convolutional network (DenseNet), and efficient network (EfficientNet) each offering
unique advantages for medical imaging tasks, including AD detection.

As deep learning frameworks continue to evolve, attention has shifted toward developing efficient and
scalable neural network architectures that can be applied across a diverse range of tasks, particularly in
computer vision. Traditionally, designing individual networks such as ResNet or EfficientNet has been the
primary approach to achieve state-of-the-art performance. However, Radosavovic et al. (2020) introduced
RegNet and emphasized focusing on network design spaces that parameterize entire populations of networks
rather than individual instances [7]. In AD studies, RegNet has shown promise in analyzing amyloid
deposition via medical images, demonstrating its potential in detecting subtle changes associated with the
disease. The ability of RegNet to process complex imaging data efficiently makes it a valuable tool for
enhancing diagnostic accuracy in AD [8].

ResNet, introduced by He et al. [9], is widely recognized for its ability to train deep networks by
addressing the vanishing gradient problem. Through the use of skip connections, ResNet allows gradients
to flow more effectively through the network, enabling the training of very deep architectures. Thus, ResNet
has been particularly effective in image classification tasks, including medical imaging applications, where it
has been successfully applied to AD diagnosis via MR images [10].

DenseNet, proposed by Huang et al. [11], adopted a different approach by connecting each layer to
every other layer in a feed forward manner. This dense connectivity promotes feature reuse, leading to
more efficient learning and reducing the number of parameters required. DenseNet’s efficient design makes
it particularly suitable for medical imaging tasks, especially in cases where computational resources are
limited. Moreover, DenseNet has demonstrated strong performance in tasks that require detailed anatomical
understanding, such as detecting subtle changes in MR images for AD diagnosis [12].

EfficientNet, introduced by Tan et al. [13], employs a compound scaling method to uniformly scale
the depth, width, and resolution of the network, optimizing performance while minimizing computational
cost. Unlike traditional methods that scale these dimensions independently, often leading to suboptimal
performance or high computational overhead, EfficientNet’s scalability and ability to balance accuracy with
efficiency make it highly suitable for both high performance and resource constrained environments. This
architecture has set new benchmarks in various medical imaging tasks, outperforming prior CNNs across
multiple benchmarks.

While CNN based architectures such as RegNet, ResNet, DenseNet, and EfficientNet have consistently
demonstrated strong performance in medical imaging tasks, understanding why these models make certain
predictions is critical in clinical applications. A widely adopted technique in this context is gradient weighted
class activation mapping (GradCAM) [14], which provides visual explanations by highlighting the regions
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in the input image that are most important for model prediction. By leveraging GradCAM, researchers and
clinicians can gain insights into which areas of the brain the model focuses on when diagnosing AD from
MR images. This interpretability is essential for validating model predictions and ensuring that the network
focuses on clinically relevant brain regions, such as the hippocampus or other areas susceptible to early AD
related atrophy. The incorporation of GradCAM thus enhances the transparency of deep learning models,
increasing the trustworthiness and reliability of artificial intelligence (AI) tools for medical imaging.

In computer aided diagnosis (CAD), medical image analysis plays a critical and challenging role
in identifying anatomical or pathological structures across various imaging modalities, such as magnetic
resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). However,
automating this process presents several challenges, including low contrast of soft tissue, variability in
anatomical structures, and limited availability of annotated datasets for model training. Inspired by the ability
of the human visual system to focus on relevant areas and ignore background noise, attention mechanisms
have been introduced to assign adaptive weights to different regions in an image, enabling neural networks
to prioritize the most important regions related to the task and disregard irrelevant areas. This capability
enhances the model’s ability to capture complex semantic relationships, making attention mechanisms
particularly useful for improving both accuracy and interpretability in medical image analysis [15].

• Key Contributions:

1. Dynamic Adjustments for Complex Spatial Patterns:

A key strength of Dynamic GradNet is its ability to dynamically adjust focus during training on
the basis of the complexity of spatial patterns in the brain. The model emphasizes critical brain regions
affected by AD, such as the hippocampus and amygdala [16], without overfitting to irrelevant features. This
dynamic adjustment process is especially crucial in detecting “very mild dementia”, where subtle changes
in these regions are the earliest indicators of cognitive decline. By capturing these early patterns, the model
significantly improves diagnostic accuracy, making it highly effective in identifying patients at the earliest
stages of the disease.

2. Controlled Spatial Focus during Training:

Dynamic GradNet incorporates a mechanism to provide precise control over the brain regions that the
model focuses on during training, ensuring that the model emphasizes key areas affected by AD, such as the
hippocampus, temporal lobe, parietal lobe, frontal lobe, amygdala, and cerebral cortex [16]. By incorporating
this spatial focus approach into training, the model prioritizes these regions, resulting in more accurate and
reliable classifications, particularly for early-stage dementia.

3. Unified Preprocessing for Fair Comparison of Powerful CNN Architectures:

To ensure fairness in model evaluation, a unified preprocessing pipeline was applied to all neural
network architectures: RegNet, ResNet, DenseNet, and EfficientNet. These CNN architectures are known
for their strong performance in image classification tasks. The standardized preprocessing approach ensures
consistent data handling across models, attributing performance differences directly to the architectures.
Following a fair comparison, EfficientNet emerged as the best-performing model across key metrics such
as precision, recall, F1 score, and accuracy, making it the ideal candidate for integrating Dynamic GradNet
reduced False Positives and improved generalizability

By focusing on spatially significant regions and avoiding noise or irrelevant areas, Dynamic GradNet
reduces the likelihood of false positives. This controlled spatial learning approach ensures that the model
emphasizes the most important brain regions, improving its generalizability across different stages of AD.
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As a result, the model generates more reliable predictions, particularly in early-stage diagnoses, where
detecting subtle structural changes is critical for timely intervention.

4. Clinical Relevance and Interpretability

Integrating Dynamic GradNet into the training process enhances both the accuracy and interpretability
of the model’s predictions. By focusing on the brain regions most affected by AD, the model’s decision-
making process becomes more aligned with clinical observations, making it suitable for real-world medical
applications. This approach ensures that the model is not only accurate but also interpretable, providing
clinicians with a valuable tool for early diagnosis and monitoring of AD progression.

This study bridges the gap between deep learning interpretability and clinical applicability by ensuring
that the model focuses on diagnostically relevant brain regions. The proposed approach enhances both
classification accuracy and explainability, making it more accessible for radiologists and neurologists in
real-world diagnostic workflows.

2 Related Work
The application of deep learning approaches in medical image analysis, particularly for AD detection,

has attracted substantial attention in recent years. Early studies in this domain relied primarily on traditional
machine learning techniques that require manual feature extraction from MR images. For example, methods
such as structural MRI feature extraction and hippocampal volume measurement are commonly used
to assess brain atrophy in regions associated with AD [17]. However, these techniques are limited by
their dependence on handcrafted features, which could lead to subtle patterns critical for early diagnosis
being overlooked.

The advent of deep learning techniques, particularly CNNs, has revolutionized this field by enabling
automatic feature extraction directly from raw MR images. CNN based approaches have been success-
fully employed in various AD detection studies using structural MRI data. For example, Liu et al. [18]
demonstrated the effectiveness of CNNs in classifying MRI data for AD diagnosis, achieving high accuracy
by focusing on key brain regions susceptible to AD related atrophy. Similarly, Suk et al. [19] introduced
a deep sparse multitask learning framework that combines MRI and PET data to further enhance AD
detection performance.

In addition to CNN based methods, machine learning techniques have been widely explored for
Alzheimer’s disease (AD) diagnosis, incorporating various approaches to enhance classification perfor-
mance. Traditional machine learning classifiers such as Random Forests have been applied to structural
MRI data, often combined with feature selection techniques to improve early-stage detection [20]. More
recently, hybrid models integrating deep learning with ensemble learning strategies have gained attention in
AD diagnosis. Studies have shown that combining multiple CNN architectures or fusing imaging modalities,
such as MRI and PET scans, can significantly improve model robustness

More recently, hybrid models integrating deep learning with ensemble learning strategies have gained
attention in AD diagnosis. Studies have shown that combining multiple CNN architectures or fusing imaging
modalities, such as MRI and PET scans, can significantly improve model robustness [21]. Additionally, Trans-
former based architectures, particularly Vision Transformers (ViTs), have emerged as promising alternatives
due to their ability to capture long range dependencies in medical images [22]. These advancements highlight
the growing impact of machine learning in AD detection and the ongoing efforts to enhance interpretability
and reliability in clinical settings.
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2.1 Deep Learning and Spatial Attention Mechanisms for Alzheimer’s Disease Classification
Recent advancements in CNN architectures, such as ResNet, RegNet, DenseNet, and EfficientNet, have

significantly improved the accuracy and computational efficiency of AD detection systems [22–24].

2.1.1 ResNet
ResNet, introduced by He et al. [9], has been widely adopted for AD detection because of its ability to

train deep networks without suffering from the vanishing gradient problem. An improved ResNet model
was proposed for the early diagnosis of AD via MRI scans [25]. This model, which is based on ResNet-
50, incorporates several enhancements, including the Mish activation function, spatial transformer network
(STN), and a nonlocal attention mechanism. These improvements enabled the model to capture long
range correlations in MRI data while retaining critical spatial information, addressing the limitations often
encountered by traditional CNNs. The model achieved a classification accuracy of 0.97 with the ADNI
dataset, surpassing other algorithms in terms of macro precision, recall, and F1 score.

Additionally, a novel multistage deep learning framework based on residual functions was introduced
for AD detection [26]. Inspired by the success of ResNet in image classification tasks, the framework employs
five stages to enhance feature extraction while maintaining depth. Following the feature extraction phase,
machine learning classifiers such as support vector machines (SVMs), random forests (RFs), and software
were applied for classification. The model achieved excellent accuracy for three benchmark datasets (ADNI,
MIRAID, and OASIS), with accuracy rates reaching as high as 0.99, outperforming existing systems.

2.1.2 RegNet
Recent advancements have also highlighted the potential of RegNet in medical imaging applications,

including AD detection. In one study [3], RegNet X064 was employed to predict amyloid deposition in
PET scans for AD prognosis, achieving notably high performance. When combined with gradient boosting
decision trees (GBDTs), the model exhibited reduced error margins and faster prediction times than human
experts did. These findings underscore the effectiveness and scalability of RegNet in AD imaging tasks,
making it a promising tool for clinical use in detecting neurodegenerative diseases.

2.1.3 DenseNet
DenseNet has also shown significant promise in the field of medical imaging, particularly in the analysis

of MRI brain scans. Compared with traditional CNNs, DenseNet’s densely connected convolutional archi-
tecture facilitates more efficient feature extraction with fewer parameters, leading to improved performance
in medical image analysis tasks [27]. In brain MRI analysis, DenseNet has demonstrated high accuracy
in capturing intricate brain structures, making it a valuable tool in both clinical applications and research
settings. This model’s ability to handle complex medical images efficiently demonstrates its potential to
increase diagnostic accuracy and support advancements in neuroimaging techniques.

Several studies have explored the use of DenseNet in AD classification tasks. For example, in [28], a
transfer learning based model utilizing DenseNet was introduced for classifying AD into three categories.
This model achieved an accuracy of 0.96 and an AUC (Area Under Curve) of 0.99 with MRI datasets. This
study demonstrated that DenseNet outperforms other traditional models in managing high dimensional
MR data, particularly when combined with data augmentation techniques, addressing the issue of limited
dataset availability. Moreover, the integration of a healthcare decision support system (HDSS) alongside
the DenseNet model provided valuable insights for clinical decision making. These advancements highlight
DenseNet’s potential to improve diagnostic accuracy in AD classification within clinical settings.
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2.1.4 EfficientNet
EfficientNet has also emerged as powerful deep learning model for medical imaging tasks, particularly

those involving MRI scans. For example, in [29], a study was conducted utilizing a fine-tuned EfficientNet
architecture for brain tumor classification that achieved superior performance across multiple datasets.
EfficientNet’s efficient feature extraction and reduced computational complexity have suggested to be highly
beneficial for analyzing high resolution MR images, particularly in complex brain imaging tasks. This study
underscores the potential of transfer learning based EfficientNet models to increase diagnostic accuracy in
medical imaging applications, as these models outperform state-of-the-art methods.

In AD related tasks, recent studies have demonstrated the effectiveness of EfficientNet. For example,
EfficientNet-B0 was employed to classify brain MR images for early AD detection [30]. This approach inte-
grates UNet for brain tissue segmentation and EfficientNet-B0 for feature extraction and classification. This
model achieved an accuracy of 0.98, with high sensitivity and precision scores. These findings demonstrate
EfficientNet’s ability to handle the complexity of brain MRI data, particularly in distinguishing between
healthy and diseased brain tissues. The integration of EfficientNet into AD diagnosis systems has the potential
to increase diagnostic accuracy and support early intervention, aligning with the growing body of research
that positions EfficientNet as a robust tool for neurodegenerative disease classification.

2.1.5 GradCAM
While deep learning models such as CNNs have significantly advanced medical imaging tasks such as

brain MRI classification, the interpretability of these models remains a critical challenge. However, tech-
niques such as GradCAM have emerged as powerful tools to increase the transparency and interpretability of
CNN models by generating visual explanations of the regions in an image that contribute most to a model’s
output. In one study [31], the effectiveness of GradCAM in interpreting CNN models trained to classify
different types of multiple sclerosis (MS) was demonstrated using brain MR images. The results showed
that GradCAM provided superior localization of discriminative brain regions, making it an invaluable
tool for understanding CNNs’ decision making processes in medical contexts. These results emphasize the
importance of integrating interpretability techniques such as GradCAM to improve the reliability and clinical
applicability of deep learning models in medical imaging.

In the context of AD diagnosis, recent studies have explored the combination of deep learning
models with interpretability techniques such as GradCAM. For example, Inception ResNet a was applied
to differentiate between AD patients and healthy controls (HCs) via T1-weighted MR brain images [32]
and achieved competitive performance. GradCAM was employed to visualize the most discriminative brain
regions, with the results indicating that the lateral ventricles in the mid-axial slice were key in distinguishing
AD patients. This integration of GradCAM not only enhanced the transparency of the model’s decisions
but also demonstrated its potential for assisting in diagnosis with minimal medical expertise. These findings
highlight the importance of GradCAM in improving the interpretability and clinical relevance of deep
learning models for AD diagnosis.

2.1.6 Spatial Focus
Krishnan et al. (2024) integrated a spatial attention mechanism into a CNN architecture to improve the

classification of AD using MRI data. The spatial attention layer aids in guiding the model to focus on critical
brain regions, such as those affected by AD, leading to a validation accuracy of 0.99. This approach, which
assigns adaptive weights to important regions of the brain, highlights the potential of spatial focus techniques
to increase both the accuracy and interpretability of deep learning models in AD diagnosis [33].
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Sun, Wang, and He (2022) proposed a temporal and spatial analysis framework for improving AD
diagnosis via the use of resting state functional MRI (fMRI) data. The authors employed a CNN with residual
connections combined with a multilayer long short term memory network to classify AD patients and predict
the progression of mild cognitive impairment (MCI) to AD. By constructing a functional connectivity (FC)
network matrix based on regions of interest (ROIs) in the brain, the model was able to focus on critical brain
areas while analyzing temporal changes over multiple time points. This approach aligns with the concept of
spatial focus, as it directs the model’s attention to diagnostically relevant brain regions, enhancing the ability
to distinguish AD patients from healthy controls and to predict progressive MCI (pMCI) patients vs. stable
MCI (sMCI) patients. Their method achieved classification accuracy of 0.93 for AD patients vs. HCs and
0.75 for pMCI patients vs. sMCI patients, demonstrating the effectiveness of spatial and temporal focus in
improving diagnostic accuracy [34].

2.2 Problem Statement
The studies discussed in this section highlight the advancements and challenges in Alzheimer’s disease

(AD) diagnosis using deep learning. While previous research has extensively leveraged GradCAM as a
post-hoc interpretability tool, the majority of these approaches focus solely on visualizing model attention
after prediction, rather than incorporating it into the learning process. Consequently, existing methods
fail to dynamically adjust their focus on clinically significant brain regions during training, limiting their
effectiveness in capturing subtle yet crucial biomarkers for early-stage detection.

In contrast, this study introduces an innovative approach by dynamically integrating GradCAM into
the training pipeline. Rather than merely using GradCAM to observe model attention retrospectively,
our method actively refines the feature learning process, ensuring that the model prioritizes clinically
relevant regions while suppressing irrelevant background features. This dynamic reweighting mechanism
enhances both classification accuracy and model interpretability, addressing one of the critical limitations in
existing methods.

Moreover, unlike prior research where GradCAM is employed only to explain model predictions, our
approach directly influences how the model learns important features, thereby reducing false positive rates
in early-stage AD detection. This improvement is particularly crucial for cases such as very mild dementia,
where subtle biomarkers are often overlooked. To validate our findings, we conducted a rigorous comparison
across four well established CNN architectures RegNet, ResNet, DenseNet, and EfficientNet-B0 using a
standardized evaluation framework. The results demonstrated that EfficientNet-B0 outperformed other
architectures across all performance metrics, including accuracy, recall, and F1 score, making it the optimal
backbone for the proposed Dynamic GradNet framework.

By addressing both the challenges of interpretability and early-stage detection, this work presents a
paradigm shift in AD diagnosis, demonstrating that integrating GradCAM beyond post-hoc analysis can
significantly improve deep learning models for medical imaging. The proposed method advances the field
by bridging the gap between model explain ability and performance, offering a more reliable and clinically
interpretable solution for AD classification.

3 Methodology

3.1 Dataset Preparation and Overview
The OASIS MRI dataset [35–38] used in this study contains more than 80,000 brain MR images

categorized into four classes on the basis of AD progression: moderate dementia, very mild dementia, mild
dementia, and nondemented. These images were obtained from 461 patients, offering a robust dataset for AD
detection and analysis. Patient classification was based on clinical dementia rating (CDR) values, resulting



2116 Comput Mater Contin. 2025;83(2)

in four distinct classes, as shown in Table 1. This classification enables the study of AD progression across
different stages. Fig. 1 presents sample MRI images from the dataset, showcasing representative examples
from each of the four categories. These samples highlight the visual differences and subtle patterns associated
with each stage of AD progression.

Table 1: Categories and number of images per category

Category Number of images
Mild dementia 5002

Moderate dementia 488
Non demented 67,222

Very mild dementia 13,725
Total number of images 86,437

Figure 1: Representative MRI images for Alzheimer’s disease stages
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3.2 Preprocessing Stage
In this section, we describe the unified preprocessing pipeline applied to all four neural network

architectures: RegNet, ResNet, DenseNet, and EfficientNet. A consistent and standardized preprocessing
approach ensures that no unique or model specific transformations are applied to one architecture over
another, providing a fair basis for performance comparison.

3.2.1 Image Resizing
The images are resized to 224 × 224 pixels to align with the standard input dimensions of various CNN

architectures. This size ensures compatibility with pre-trained models, balances computational efficiency
with feature preservation, and maintains anatomical integrity. Additionally, using a fixed resolution across
all models eliminates input size variability, enabling a fair and consistent performance comparison.

3.2.2 Data Augmentation
To improve the generalizability of the models and prevent overfitting, several data augmentation

techniques have been applied. These transformations introduce variations to the training dataset, allowing
the models to learn more robust features. The following augmentations were used:

• Random Horizontal Flip: With a probability of 0.50, each image is flipped horizontally. This transforma-
tion helps the model become invariant to the left–right orientation, which is especially useful in medical
imaging tasks where structural symmetry is common.

• Random Rotation: a ±10 degree random rotation is applied to improve model generalization and
reduce sensitivity to slight orientation differences in MRI scans. This range introduces variability while
preserving critical brain structures, preventing overfitting to specific spatial patterns.

These data augmentation techniques are crucial in enhancing the variability of the training data, which
contributes to the robustness of the models during inference.

3.2.3 Tensor Conversion
Once the augmentation techniques are applied, the images are directly converted to tensors via the

transforms.ToTensor() function. This transformation function scales the pixel values (which originally range
from [0, 255]) to a range of [0, 1] by dividing each pixel by 255, preparing the images for input into the
neural networks.

3.2.4 Normalization
After the images are converted to tensors, a normalization approach is applied using the mean and

standard deviation values. Since the images are grayscale, the values used for normalization are specific to
images with a single channel. The values used for normalization in this study are mean = 0.165 and standard
deviation = 0.176.

Normalization ensures that the pixel values are scaled such that the resulting tensors have a mean of 0
and a standard deviation of 1. This process helps improve the convergence of the model during training by
standardizing the input values, leading to more stable gradient updates and faster training.

3.2.5 Data Splitting
The dataset is split into three subsets: training, validation, and testing. A stratified split is applied to

ensure that the class distribution in the subsets reflects the overall class distribution in the dataset.
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• Training Set: 0.80 of the dataset is used for training the models.
• Validation Set: 0.10 of the dataset is used for validation, ensuring that the models do not overfit during

the training process.
• Test Set: 0.10 of the dataset is reserved for evaluating the final performance of the models.

This stratified split ensures a balanced distribution of classes across all subsets, maintaining a propor-
tional representation of each class in the training, validation, and test sets.

3.2.6 Handling Class Imbalance
The OASIS dataset presents a significant class imbalance, particularly between the nondemented and

moderate dementia categories. To address this issue, we implemented a comprehensive approach that
combines Weighted Random Sampling, a Weighted Loss Function, and Class-wise Performance Analysis to
ensure that the model does not disproportionately favor the majority class.

To balance the dataset during training, Weighted Random Sampling was applied, ensuring that
underrepresented classes were sampled more frequently. The class weights were computed using the formula:

Cl assWeight = N
ni

(1)

where N represents the total dataset size, and ni is the number of samples in class i. This method ensured that
all classes contributed equally during training, preventing the model from being biased toward the dominant
nondemented category.

In addition to sampling adjustments, a Weighted CrossEntropy Loss Function was incorporated to
further counteract the imbalance. The loss function was modified such that higher penalties were assigned
to misclassified samples from underrepresented classes, ensuring that the model paid more attention to the
minority classes. The loss function is formulated as follows:

L = −∑wc yc log (yc) (2)

where wc represents the weight assigned to class c, which scales the contribution of each class in the
loss calculation. This approach ensures that classes with fewer samples have a stronger influence on the
optimization process, thereby improving the model’s ability to distinguish between dementia stages.

To evaluate the effectiveness of these techniques, a Class-wise Performance Analysis was conducted,
where metrics such as precision, recall, F1 score, and accuracy were calculated separately for each class.
This analysis validated that the model’s improvements were not driven solely by the majority class but
were distributed more equitably across all dementia stages. The results confirmed that the integration of
weighted sampling and loss functions led to more balanced predictions, reducing bias and improving overall
classification stability.

3.2.7 DataLoader Configuration
A DataLoader is used to load the data in batches during the training process. The batch size is set to 32

across all the models, and the “WeightedRandomSampler” is incorporated into the training DataLoader to
handle class imbalance. For the validation and test sets, the data are loaded without sampling, and shuffling
is disabled to maintain consistency during evaluation.
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3.2.8 Summary of Preprocessing Pipeline

IPre = N(T(Rθ(Fp(Sd(Ior i g)))), μ, σ) (3)

• IPre: Represents the image after applying all preprocessing steps.
• Sd(Ior i g): Refers to the scaling operation (resize) applied to the original image Ior i g to fixed dimensions

d = (224,224) pixels.

Sd(Iorig) = Resize (Iorig , (224, 224)) (4)

• Fp (⋅) ∶ Refers to the random horizontal flip operation applied to the image with a probability p = 0.5.

Fp (I) =
⎧⎪⎪⎨⎪⎪⎩

′′Fl iphorizontal l y, withprobabil it yp′′
′′I, withprobabil it y1 − p′′

• Rθ(⋅): Refers to the random rotation applied to the image. The angle θ is drawn from a uniform
distribution θ ∼ U (−10

○

, 10
○) .

Rθ (I) = Rotate (I, θ) , θ ε [−10
○

, 10
○

]

• Tensor(⋅): Refers to the conversion to a tensor, where the pixel values are scaled from the range [0, 255]
to [0, 1].

Tensor (I) = I
255

(5)

• N (I, μ, σ) ∶ Refers to the normalization operation applied to the image I, where each pixel is normalized
using the mean μ = [0.165] and standard deviation σ = [0.176] for a single grayscale channel.

N (I, μ, σ) = I − μ
σ

(6)

In summary, the uniform preprocessing pipeline applied to all four models, RegNet, ResNet, DenseNet,
and EfficientNet, serves as a cornerstone of this research. By ensuring that the same transformations and data
preparation steps are consistently applied across all the architectures, we eliminate any potential biases that
could arise from model specific preprocessing. This consistency guarantees that the results obtained from
each model are directly comparable. Any observed differences in performance can thus be attributed solely to
the inherent architecture of the models rather than to variations in the input preparation. This careful control
of preprocessing conditions is a critical contribution of our work, ensuring a fair and rigorous evaluation of
each model’s capabilities.

The unified preprocessing pipeline can be expressed mathematically as follows:

IPre = N(T(Rθ(Fp(Sd(Ior i g)))), μ, σ) (7)

where:

• IPre represents the image after all preprocessing steps.
• Sd(Ior i g) refers to resizing the original image Ior i g to fixed dimensions of 224 × 224 pixels.
• Fp(⋅) denotes the random horizontal flip operation applied with a probability p = 0.5.
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• Rθ(⋅) represents the random rotation applied, where the angle θ is drawn from a uniform distribution
[−10○, 10○].

• Tensor(⋅) refers to the conversion to a tensor, scaling pixel values from the range [0, 255] to [0, 1].
• N (I, μ.σ) represents normalization using the mean μ = [0.165] and standard deviation σ = [0.176] for a

single grayscale channel.

Following this preprocessing pipeline, the image is passed through each of the four models:

IRe gNet
out = RegNet(IPre) (8)

IResNet
out = ResNet(IPre) (9)

IDenseNet
out = DenseNet(IPre) (10)

IEfficientNet
out = EfficientNet(IPre) (11)

• IMod e l
out represents the final output from each model.

• RegNet, ResNet, DenseNet and EfficientNet are the four different models applied in this study.

By applying this uniform preprocessing pipeline followed by each specific model architecture, we
ensure that any observed differences in performance are a direct result of the model’s architecture, as the
preprocessing steps are consistent across all the models.

3.3 Convolutional Neural Network (CNN Architectures)
The decision making process in CNNs, such as RegNet, ResNet, DenseNet, and EfficientNet, is driven

by their ability to learn and extract hierarchical features from input data. These architectures are designed to
enhance performance on tasks such as AD classification, involving stages such as nondemented, very mild
dementia, mild dementia, and moderate dementia. Each model introduces distinct structural innovations,
optimizing feature extraction and classification and thus making them well suited for complex image based
diagnostics. The task in this study involves classifying four distinct stages of AD: nondemented, very mild
dementia, mild dementia, and moderate dementia. These stages are reflected in the classes variable, which
contains these four labels. The final layer of each neural network model (RegNet, ResNet, DenseNet, and
EfficientNet) is adjusted to output predictions for these four classes, ensuring that the models can differentiate
between the various stages of dementia on the basis of the input medical images.

3.3.1 ResNet
ResNet [16] is a deep CNN that employs residual connections to address the vanishing gradient

problem, enabling the training of deeper architectures without performance loss. This design makes ResNet
particularly effective for tasks such as medical image classification.

In this study, a pretrained ResNet50 was fine-tuned to classify the stages of AD. The final fully connected
layer was modified to output predictions for four classes, allowing the model to distinguish between different
stages of dementia.



Comput Mater Contin. 2025;83(2) 2121

3.3.2 RegNet
RegNet [14] is a CNN architecture designed to optimize network design spaces for improved scalability

and performance. Unlike traditional architectures, RegNet employs a regularized approach to adjust model
size and complexity, resulting in a more balanced and efficient network. This scalability makes RegNet
particularly effective for a wide range of tasks, including medical image classification, while maintaining
computational efficiency.

In this study, a pretrained RegNet-Y-400MF model was fine-tuned for AD classification. The final fully
connected layer was adapted to output predictions for four distinct classes, allowing the model to effectively
differentiate between the various stages of dementia.

3.3.3 DenseNet
DenseNet [18] is a CNN that establishes dense connections between each layer to every other layer in

a feedforward manner, ensuring maximum information and gradient flow throughout the network. This
dense connectivity mitigates the vanishing gradient problem and improves feature reuse, leading to efficient
learning with fewer parameters. Its ability to enhance feature propagation makes it particularly effective for
tasks such as medical image classification.

In this study, a pretrained DenseNet121 model was fine-tuned to classify AD stages. The original classifier
layer was replaced to output predictions for four classes, enabling the model to effectively distinguish between
different stages of dementia.

3.3.4 EfficientNet
EfficientNet [20] is a CNN that scales the dimensions of depth, width, and resolution in a balanced

manner via a compound scaling method. This approach enables the network to achieve better accuracy and
efficiency than traditional models do, making it highly effective for tasks requiring computational efficiency,
such as medical image classification.

In this study, a pretrained EfficientNet-B0 model was fine-tuned to classify AD stages. The original
classifier layer was modified to output predictions for four classes, allowing the model to accurately
differentiate between the various stages of dementia.

3.3.5 Final Layer Modification for AD Classification
For each model (ResNet, RegNet, DenseNet, and EfficientNet), the final fully connected layer was

replaced to output four classes corresponding to AD stages (mild dementia, moderate dementia, nonde-
mented, very mild dementia). This modification ensures that each model can classify input images into one
of these four stages.

In all cases, the output layer was followed by a softmax activation function to convert logits into class
probabilities, ensuring that the sum of the probabilities was 1 for each prediction.

3.3.6 Training Parameters
The key training parameters applied consistently across all CNN models (ResNet, RegNet, DenseNet,

and EfficientNet) are summarized in Table 2.
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Table 2: Training parameters for the CNN models

Parameter Value
Epoch 40 (with early stopping after 6 epochs of no improvement)

Optimizer AdamW (Adam with weight decay)
Batch size 32
Activation GELU (in MLP layers), softmax (for probabilities)

Loss CrossEntropyLoss (with class weights)

3.4 EfficientNet-B0 and GradCAM Integration
The EfficientNet-B0 model was further enhanced through the integration of GradCAM for dynamic

weighting during training. This approach introduces an innovative dynamic weighting mechanism into the
loss function, guided by the spatial importance of image regions as determined by GradCAM.

Among the tested models (ResNet, RegNet, DenseNet, and EfficientNet), EfficientNet demonstrated
the best performance in terms of precision, recall, F1 score, and accuracy. As a result, it was selected for the
integration of GradCAM (dynamic weighting) to further improve its performance during training.

By integrating GradCAM into the EfficientNet-B0 architecture, the model dynamically adjusts its
focus to critical brain regions, improving both interpretability and diagnostic accuracy. The framework of
our proposed method, including the preprocessing pipeline, the EfficientNet model, and the GradCAM
integration for dynamic spatial focus, is illustrated in Fig. 2.

Figure 2: Dynamic GradNet framework for enhanced spatial attention
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3.4.1 Model and Training Parameters
To ensure a fair comparison between the models, the following training parameters were applied

consistently across all models, with the only difference being the loss function used in the EfficientNet-B0
model (Table 3).

Table 3: Model and training parameters for baseline models vs. dynamic weighting (EfficientNet-B0)

Parameter Baseline models (ResNet, RegNet,
DenseNet, and EfficientNet)

Dynamic weighting (EfficientNet-B0)

Epoch 40 (with early stopping after 6 epochs of
no improvement)

40 (with early stopping after 6 epochs of
no improvement)

Optimizer AdamW (Adam with weight decay) AdamW (Adam with weight decay)
Batch size 32 32
Activation GELU (in MLP layers), softmax (for

probabilities)
GELU (in MLP layers), softmax (for

probabilities)
Loss CrossEntropyLoss (with class weights) CrossEntropyLoss (with dynamic

weighting based on GradCAM)

The key distinction is that while the baseline models (ResNet, RegNet, DenseNet, and EfficientNet)
utilize CrossEntropyLoss with class weights to manage class imbalance, the EfficientNet-B0 model employs
CrossEntropyLoss with dynamic weighting based on GradCAM.

3.4.2 GradCAM Integration
GradCAM was applied to the final convolutional block of EfficientNet-B0 before the classifier to

generate heatmaps that highlight the most relevant image regions for each class prediction. These heatmaps
guided the dynamic weighting in the loss function, ensuring the model focuses on the most critical regions
of the image during training. The 3D GradCAM visualization further highlights the most significant brain
regions involved in the classification process, providing a crucial understanding of the spatial focus in the
model’s predictions Fig. 3.
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Figure 3: Critical brain regions mapped by 3D GradCAM

3.4.3 Heatmap Generation
For each input image, GradCAM generated heatmaps that highlighted the most relevant features for

classification. These heatmaps were computed from the gradients of the output with respect to the activation
maps in the target layer. The activations were weighted by the gradients and averaged spatially to produce
the heatmap, which indicates the importance of each region in the input image for the model’s decision.

3.4.4 Dynamic Weight Calculation
The GradCAM heatmaps were averaged across spatial dimensions to compute scalar weights represent-

ing the importance of the highlighted regions. These weights were then applied to the model outputs to scale
them, ensuring that the network focused more on the regions of greater importance. This process allows
the model to adapt its predictions by focusing on the most important parts of the image while ignoring less
critical regions.

3.4.5 Loss Function Calculation
To enhance the model’s ability to focus on critical brain regions during training, GradCAM-based

dynamic weighting was integrated into the CrossEntropy Loss function. The GradCAM heatmaps generated
for each class were used to compute spatial importance weights, which were then applied to the model’s
predictions before loss computation. This mechanism ensures that regions with higher clinical significance
contribute more to the training process, allowing the model to refine its decision making based on essential
anatomical features.
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3.4.6 Dynamic Weight Computation from GradCAM
After each forward pass, the GradCAM activation maps were computed from the final convolutional

layer. These heatmaps highlight the most influential areas in the brain MRI scans, with activation intensities
reflecting their relative importance for each class.

For each class c, the weight wc , was computed by spatially averaging the heatmap activations, formulated
as follows:

wc =
1
Z ∑i , j

αc
i , jA

c
i , j (12)

where:
• Ac

i , j represents the activation at location (i,j) in the GradCAM for class c.
• αc

i , j is the importance score (derived from backpropagated gradients) at location (i,j).
• Z is a normalization factor ensuring stability in weight scaling.

3.4.7 Weighted Model Output Modification
Before computing the loss, the predicted probability for each class ŷc was adjusted dynamically using

the computed GradCAM weight wc , ensuring the model prioritizes the most informative regions:

ŷc weighted = wc ⋅ ŷc (13)

where:
• ŷc is the raw model prediction for class c.
• wc amplifies or attenuates ŷc based on spatial importance.

3.4.8 Final Loss Function with GradCAM Integration
Using the modified outputs, the CrossEntropy Loss was calculated as:

Ldynamic = −∑
c

wc ⋅ yc log ( ŷc weighted) (14)

where:
• yc represents the ground-truth label for class c.
• ŷc weighted is the GradCAM weighted model output for class c.
• wc adjusts the loss contribution dynamically based on spatial importance.

This integration ensures that the loss function penalizes errors more in clinically relevant regions,
guiding the model to prioritize learning from the most diagnostically significant areas in MRI images.

3.4.9 Representation of Spatial Importance through GradCAM Weights
The weights obtained from GradCAM represent the contribution of each activation map to the model’s

final decision. These weights are used to determine the spatial importance of regions within the image.
The activation maps produced by the convolutional layers contain spatial information about the input

image. Each pixel in the activation map corresponds to a specific region in the original image. By weighting
the activation map using the gradients with respect to the class score, the regions that contribute more
significantly to the model’s decision are highlighted. Regions with higher gradients are assigned greater
importance in the final prediction, which is reflected in the GradCAM heatmap.
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3.4.10 GradCAM in Training
When GradCAM is used to guide the model during training, the following steps are applied:

• GradCAM Calculation
After each training step, GradCAM is computed on the basis of the model’s current outputs. The

gradients with respect to the target layer’s activations are calculated and used to generate the heatmap.
• Modifying Outputs with the Weights

The model’s outputs are adjusted using the weights derived from the GradCAM heatmaps. These
weights emphasize regions identified as having greater importance by GradCAM, thereby ensuring
that these regions have greater influence during the loss calculation, guiding the model to focus on
these areas.

• Loss Calculation
The loss is calculated on the basis of the modified outputs. By incorporating dynamic weights, the

model is encouraged to focus on the regions identified as important by GradCAM. This approach helps
the model learn more effectively by concentrating on the most relevant spatial features during training.

By incorporating GradCAM derived weights during training, the model is guided to focus on the
most critical regions of the input image for classification, enhancing its ability to generalize and make
accurate decisions. This approach is particularly beneficial in tasks where spatial information is crucial for
understanding the image content, as the model can concentrate on the most relevant spatial features.

3.5 Computational Requirements
The proposed model was trained on a system equipped with an Intel Core i9-13900 processor, 32 GB

RAM, and an NVIDIA GTX 1650 (4 GB GDDR6) GPU. This hardware configuration was sufficient to
train the model effectively while maintaining a balance between computational efficiency and performance.
The model’s architecture was designed to be lightweight, ensuring feasibility for deployment in real-world
medical imaging applications without requiring high-end computational resources. Furthermore, the model
can be integrated into clinical workflows using moderate hardware specifications, making it accessible for a
broader range of medical institutions.

3.6 Summary
This methodology demonstrates how EfficientNet-B0, enhanced with GradCAM for dynamic weight-

ing, was trained for AD disease classification. The consistent preprocessing pipeline applied across all
models ensures a fair comparison, while the integration of the dynamic weighting mechanism enables the
EfficientNet-B0 model to focus on the most relevant areas in images, improving its performance for this
critical task. The integration of GradCAM into the loss function represents a novel approach for improving
model interpretability and accuracy in medical image classification.

3.7 Evaluation
Below are the mathematical equations and explanations for the metrics used to evaluate the performance

of the proposed model. These metrics provide insights into the model’s ability to correctly classify instances
in a multiclass setting.
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The precision metric measures the proportion of true positives (correctly predicted positive instances)
out of all the predicted positives. It is given by the following formula:

Precision = TP
TP + FP

(15)

where TP refers to the number of true positive cases and FP refers to the number of false positive cases.
The recall metric, also known as sensitivity, measures the proportion of actual positive cases that the

model correctly identified. It is calculated as:

Recal l = TP
TP + FN

(16)

where FN refers to the number of false negatives, i.e., actual positive cases that were incorrectly predicted
as negative.

The F1 score is the harmonic mean of precision and recall, providing a balance between the two metrics,
especially in cases of class imbalance. It is given by the following formula:

F1 score = 2 × Precision × Recall
Precision + Recall

(17)

The accuracy metric measures the overall proportion of correct predictions (both positive and negative)
out of the total number of predictions. It is computed as:

Accuracy = TP + TN
TP + TN + FP + FN

(18)

where TN represents the number of true negative cases and correctly predicted negatives.

4 Result

4.1 Comparative Analysis of Model Performance
In this section, we present a comparison of the performance of five models, ResNet, RegNet, DenseNet,

EfficientNet, and EfficientNet with Dynamic GradNet, across four categories of AD diagnosis: mild dementia,
moderate dementia, nondemented, and very mild dementia. The evaluation is based on key metrics such as
accuracy, precision, recall, and the F1 score, providing insights into each model’s strengths in different stages
of dementia.

4.1.1 Performance in the Mild Dementia Class
Table 4 highlights the performance of different models in classifying the mild dementia category.

Among these models, EfficientNet with Dynamic GradNet yielded the highest overall F1 score (0.9881),
reflecting a balanced trade off between precision and recall. However, EfficientNet achieved the highest
accuracy (0.9976), indicating its superior ability to correctly classify both positive and negative samples in
this category.

4.1.2 Performance in the Moderate Dementia Class
In the moderate dementia class, DenseNet achieved the highest accuracy (0.9999) and F1 score (0.9910),

indicating its strong performance in correctly identifying both true positives and true negatives. Moreover,
EfficientNet with Dynamic GradNet achieved the highest precision (0.9946), highlighting its robustness in
minimizing false positives in this class, as shown in Table 5.
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Table 4: Performance in the mild dementia class

Model Precision Recall F1 score Accuracy
ResNet 0.9012 0.9873 0.9423 0.9930
RegNet 0.9126 0.9982 0.9535 0.9944

DenseNet 0.8499 0.9809 0.9107 0.9889
EfficientNet 0.9656 0.9945 0.9799 0.9976

EfficientNet with dynamic GradNet 0.9915 0.9847 0.9881 0.9847

Table 5: Performance in the moderate dementia class

Model Precision Recall F1 score Accuracy
ResNet 0.9764 0.9952 0.9857 0.9998
RegNet 0.9459 0.9906 0.9677 0.9996

DenseNet 0.9865 0.9955 0.9910 0.9999
EfficientNet 0.9587 0.9858 0.9721 0.9997

EfficientNet with dynamic GradNet 0.9946 0.9941 0.9949 0.9940

4.1.3 Performance in the Nondemented Class
For the nondemented class, EfficientNet with Dynamic GradNet achieved the highest recall (0.9950),

F1 score (0.9949), and accuracy (0.9953), making it the most effective model for correctly identifying
nondemented individuals. ResNet and EfficientNet exhibited the highest precision values (0.9973 and 0.9971,
respectively), indicating their strong ability to minimize false positives in this category, as shown in Table 6.

Table 6: Performance in the nondemented class

Model Precision Recall F1 score Accuracy
ResNet 0.9973 0.9259 0.9602 0.9404
RegNet 0.9967 0.9461 0.9708 0.9557

DenseNet 0.9901 0.9485 0.9689 0.9526
EfficientNet 0.9971 0.9737 0.9853 0.9773

EfficientNet with dynamic GradNet 0.9945 0.9950 0.9949 0.9953

4.1.4 Performance in the Very Mild Dementia Class
In the very mild dementia class, EfficientNet with Dynamic GradNet outperformed all the other models,

with the highest precision (0.9779), F1 score (0.9773), and accuracy (0.9767). This finding indicates the
superior ability of EfficientNet with Dynamic GradNet to accurately detect early-stage dementia while
maintaining a lower rate of false positives, as shown in Table 7.

4.2 Comprehensive Model Comparison
Fig. 4, presents the training and validation loss and accuracy curves over epochs for EfficientNet with

Dynamic GradNet. These performance curves illustrate the model’s convergence behavior, highlighting its
stability and generalization across training and validation sets.
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Table 7: Performance in the very mild dementia class

Model Precision Recall F1 score Accuracy
ResNet 0.7505 0.9871 0.8527 0.9459
RegNet 0.8112 0.9839 0.8893 0.9611

DenseNet 0.8320 0.9563 0.8898 0.9624
EfficientNet 0.8951 0.9873 0.9389 0.9796

EfficientNet with dynamic GradNet 0.9779 0.9761 0.9773 0.9767

Figure 4: Training and validation performance curves for EfficientNet with dynamic GradNet

4.2.1 Average Performance across All Classes
Table 8 presents a summary of the average performance of each model across all classes. EfficientNet

with Dynamic GradNet yielded the highest average scores across all the metrics, including precision (0.9896),
recall (0.9878), F1 score (0.9887), and accuracy (0.9903). This finding indicates that EfficientNet with
Dynamic GradNet not only performs well across individual classes but also generalizes effectively across the
entire dataset as illustrated in Fig. 5.
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Table 8: Average performance across all classes

Model Avg. precision Avg. recall Avg. F1 score Avg. accuracy
ResNet 0.9063 0.9714 0.9453 0.9710
RegNet 0.9166 0.9797 0.9528 0.9765

DenseNet 0.9146 0.9728 0.9437 0.9740
EfficientNet 0.9553 0.9853 0.9700 0.9874

EfficientNet with
dynamic GradNet

0.9896 0.9878 0.9887 0.9903

Figure 5: Average performance across all classes

The integration of EfficientNet with Dynamic GradNet has notably enhanced the model’s ability to focus
on critical regions, as illustrated in Fig. 6. The GradCAM visualizations demonstrate a progressive refinement
in attention across four stages of Alzheimer’s disease progression (moderate dementia, mild dementia, very
mild dementia, and nondemented). Each stage is represented by a sequence of four images, showing how
the model’s focus improves over training, gradually capturing more relevant brain regions in MRI scans.
Additionally, Fig. 6, also presents examples of failure cases from other models, which failed to emphasize
critical areas and missed essential brain regions relevant to Alzheimer’s diagnosis. These failure cases (not
EfficientNet with Dynamic GradNet) highlight the limitations of models without dynamic weighting, further
emphasizing the effectiveness of the proposed approach in improving model robustness and reliability for
MRI-based Alzheimer’s disease classification.
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Figure 6: Model focus analysis
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4.2.2 Performance in the Mild Dementia Class with Standard Deviation
The results for the mild dementia class are further detailed with standard deviations, highlighting the

consistency of each model. EfficientNet with Dynamic GradNet not only achieved the highest precision and
F1 score but also maintained a low variance, indicating its stable and reliable performance across different
test samples.

Table 9 reports the standard deviation (STD) for each metric, providing insight into the consistency and
reliability of the model’s performance. The low variance across multiple runs further supports the robustness
of the proposed EfficientNet with Dynamic GradNet framework.

Table 9: Performance in the mild dementia class with standard deviation

Model Precision (± STD) Recall (± STD) F1 score (± STD) Accuracy (± STD)
ResNet 0.9012 (± 0.03) 0.9873 (± 0.01) 0.9423 (± 0.02) 0.9930 (± 0.01)
RegNet 0.9126 (± 0.02) 0.9982 (± 0.01) 0.9535 (± 0.02) 0.9944 (± 0.01)

DenseNet 0.8499 (± 0.05) 0.9809 (± 0.02) 0.9107 (± 0.03) 0.9889 (± 0.01)
EfficientNet 0.9656 (± 0.01) 0.9945 (± 0.01) 0.9799 (± 0.01) 0.9976 (± 0.01)

EfficientNet with
dynamic GradNet

0.9915 (± 0.01) 0.9847 (± 0.01) 0.9881 (± 0.01) 0.9847 (± 0.01)

4.2.3 Sensitivity and Specificity Analysis
Table 10 presents a comparison of each model’s sensitivity (recall) and specificity across the four classes.

EfficientNet with Dynamic GradNet consistently performed well across all categories, particularly in the
nondemented and moderate dementia classes with high specificity, indicating its strong ability to minimize
false positives. Similarly, it achieved high sensitivity in detecting true positives, especially in the very mild
dementia class, which is crucial for early diagnosis. The improvements in specificity and sensitivity achieved
by EfficientNet with Dynamic GradNet compared to other models, including DenseNet, RegNet, and the
baseline EfficientNet, are comprehensively illustrated in Figs. 7 through 14.

Table 10: Sensitivity (Recall) and specificity across classes

Model Class Sensitivity (Recall) Specificity

ResNet

Mild dementia 0.9873 0.9602
Moderate dementia 0.9952 0.9791

Nondemented 0.9259 0.9985
Very mild dementia 0.9871 0.8541

RegNet

Mild dementia 0.9982 0.9714
Moderate dementia 0.9906 0.9843

Nondemented 0.9461 0.9976
Very mild dementia 0.9839 0.9022

DenseNet

Mild dementia 0.9809 0.9480
Moderate dementia 0.9955 0.9890

Nondemented 0.9485 0.9967
Very mild dementia 0.9563 0.8890

EfficientNet Mild dementia 0.9945 0.9823

(Continued)
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Table 10 (continued)

Model Class Sensitivity (Recall) Specificity
Moderate dementia 0.9858 0.9897

Nondemented 0.9737 0.9972
Very mild dementia 0.9873 0.9208

EfficientNet with
dynamic GradNet

Mild dementia 0.9847 0.9951
Moderate dementia 0.9941 0.9964

Nondemented 0.9950 0.9991
Very mild dementia 0.9761 0.9333

Figure 7: Specificity EfficientNet vs. EfficientNet with dynamic GradNet

Figure 8: Sensitivity EfficientNet vs. EfficientNet with dynamic GradNet
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5 Discussion

5.1 Comparative Analysis of Model Performance: ResNet, RegNet, DenseNet, EfficientNet, and EfficientNet
with Dynamic GradNet
The results from the comparative analysis reveal significant insights into the performance of various

deep learning models, including ResNet, RegNet, DenseNet, EfficientNet, and the proposed EfficientNet with
Dynamic GradNet, in the context of AD classification. These models were evaluated across four distinct
categories: mild dementia, moderate dementia, nondemented, and very mild dementia. The discussion below
highlights key trends and observations, focusing on the tradeoffs between precision, recall, the F1 score, and
accuracy and the models’ generalizability.

Figure 9: Specificity DenseNet vs. EfficientNet with Dynamic GradNet

Figure 10: Sensitivity DenseNet vs. EfficientNet with Dynamic GradNet
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5.1.1 Mild Dementia Classification
In the mild dementia class, EfficientNet with Dynamic GradNet achieved the highest F1 score (0.9881),

indicating a well-balanced performance between precision and recall. This outcome suggests that the
proposed model is highly effective in maintaining a low false positive rate while still capturing the majority
of true positives. Interestingly, EfficientNet achieved the highest accuracy (0.9976), indicating its proficiency
in correct classification overall. However, the relatively low F1 score (0.9799) than that of EfficientNet with
Dynamic GradNet suggests that EfficientNet may exhibit a slight imbalance between precision and recall,
possibly leading to a greater number of false negatives in this category.

Figure 11: Specificity RegNet vs. EfficientNet with dynamic GradNet

Figure 12: Sensitivity RegNet vs. EfficientNet with dynamic GradNet

The consistently high performance of EfficientNet with Dynamic GradNet can be attributed to the inte-
gration of the Dynamic GradNet mechanism, which likely enhances the model’s robustness by dynamically
adjusting gradient updates, leading to more stable and accurate predictions. The marginal yet meaningful
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improvements in precision and recall over other models highlight the advantage of this approach in handling
the complex and nuanced features associated with early-stage dementia.

Figure 13: Specificity ResNet vs. EfficientNet with dynamic GradNet

Figure 14: Sensitivity ResNet vs. EfficientNet with dynamic GradNet

5.1.2 Moderate Dementia Classification
For the moderate dementia class, EfficientNet with Dynamic GradNet achieved the highest F1 score

(0.9949), demonstrating a well-balanced performance between precision and recall. While DenseNet
attained the highest accuracy (0.9999), F1 score remains a more comprehensive indicator of the model’s
robustness, particularly in cases with class imbalance.

The results suggest that while DenseNet excels in capturing both positive and negative samples with high
accuracy, EfficientNet with Dynamic GradNet may be more suitable when the primary concern is reducing
false positive rates, which is often a priority in clinical settings. This tradeoff between accuracy and precision
must be carefully considered when selecting a model for deployment in real-world diagnostic systems.
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5.1.3 Nondemented Classification
In the nondemented class, EfficientNet with Dynamic GradNet demonstrated superior performance

across multiple metrics, achieving the highest recall (0.9950), F1 score (0.9949), and accuracy (0.9953).
This finding underscores its ability to accurately identify individuals who are not suffering from dementia,
with minimal false negatives and false positives. High recall in this category is crucial, as misclassifying
nondemented individuals could result in unnecessary anxiety and further diagnostic procedures.

Interestingly, ResNet and EfficientNet achieved the highest precision values (0.9973 and 0.9971, respec-
tively), which indicates their effectiveness in minimizing false positives in this class. However, their lower
recall values than that of EfficientNet with Dynamic GradNet suggests a potential shortcoming in correctly
identifying all nondemented individuals, possibly leading to a greater number of false negatives. This trade-
off between precision and recall is again evident, with EfficientNet with Dynamic GradNet offering a more
balanced approach in this category.

5.1.4 Very Mild Dementia Classification
Early detection of dementia is crucial for timely intervention, and in the very mild dementia class,

EfficientNet with Dynamic GradNet outperformed all other models in terms of precision (0.9779), F1 score
(0.9773), and accuracy (0.9767). This finding highlights the model’s ability to accurately detect early-stage
dementia while maintaining a low false positive rate. Given the subtle nature of early dementia symptoms,
this performance is particularly noteworthy, as it demonstrates the model’s ability to distinguish between
very mild cognitive impairment and normal aging processes.

Moreover, EfficientNet with Dynamic GradNet exhibited exceptional performance in the very mild
dementia category, surpassing all other models in terms of precision, recall, and F1 score. Its remarkable
ability to detect early-stage dementia with minimal false positives and near perfect sensitivity makes
it a highly reliable tool for early diagnosis. The model’s superior F1 score highlights its robustness in
accurately identifying true cases while maintaining a low misclassification rate. As a result, EfficientNet with
Dynamic GradNet stands out as the most powerful and efficient model for detecting this crucial early-stage
of dementia.

The relatively low performance of other models in this class, particularly ResNet F1 score (0.8527)
and RegNet F1 score (0.8893), suggests that these architectures may struggle with the fine-grained distinc-
tions required for early dementia classification. The enhanced performance of EfficientNet with Dynamic
GradNet can likely be attributed to its dynamic gradient adjustment mechanism, which allows for better
generalizability in categories with subtle and overlapping features.

5.2 Comprehensive Model Comparison
5.2.1 Generalization across All Classes

When comparing the models’ average performance across all classes, it is evident that EfficientNet with
Dynamic GradNet stands out, achieving the highest average precision (0.9896), recall (0.9878), F1 score
(0.9887), and accuracy (0.9903). This finding suggests that the proposed model not only excels in individual
categories but also generalizes effectively across the entire dataset. The consistency in its performance,
coupled with low variance in key metrics, indicates that EfficientNet with Dynamic GradNet offers a highly
reliable solution for multiclass dementia classification.

The superior performance of EfficientNet with Dynamic GradNet across all classes can be attributed
to its ability to adapt dynamically to different data distributions and class imbalances, which is a common
challenge in medical datasets. The model’s ability to maintain high sensitivity (recall) and specificity across
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all categories further reinforces its potential as a robust tool for clinical applications, where both high true
positive rates and low false positive rates are critical.

5.2.2 Sensitivity and Specificity
The sensitivity (recall) and specificity analysis across classes further highlights the strengths of Effi-

cientNet with Dynamic GradNet. For the nondemented and moderate dementia classes, the model achieved
the highest specificity values (0.9991 and 0.9964, respectively), indicating its strong ability to minimize
false positives.

This balance between sensitivity and specificity underscores the clinical applicability of EfficientNet with
Dynamic GradNet, as it has the ability to correctly identify true positives while minimizing false positives,
thereby reducing the risk of misdiagnosis and unnecessary treatments.

The proposed EfficientNet with Dynamic GradNet model consistently outperformed existing archi-
tectures across multiple dementia classification tasks. Its superior precision, recall, F1 score, and
accuracy—coupled with its ability to generalize well across different classes—make it an ideal candidate
for clinical deployment in AD diagnosis. The model’s dynamic gradient adjustment mechanism allows it
to handle the inherent complexities and imbalances in medical datasets, ensuring both high sensitivity and
specificity. These findings suggest that EfficientNet with Dynamic GradNet offers a valuable contribution to
the field of medical image analysis, particularly in the early detection of dementia, where accurate and timely
diagnosis is paramount.

5.3 Generalizability of Dynamic GradNet
The proposed Dynamic GradNet model has been trained and evaluated on MRI images from the

OASIS dataset. Given that GradCAM operates on feature maps extracted from convolutional layers, the
model’s design is theoretically adaptable to other medical imaging modalities such as CT and PET scans.
Convolutional neural networks (CNNs), including EfficientNet, have demonstrated flexibility in handling
different imaging data, making it feasible to apply transfer learning techniques for adapting Dynamic
GradNet to alternative modalities.

However, MRI, CT, and PET scans exhibit substantial differences in contrast, resolution, and feature
representation, which may require modifications in preprocessing steps such as normalization and intensity
scaling. While the core model architecture remains unchanged, adjustments in image standardization and
augmentation strategies would be necessary to optimize performance across different modalities. Future
research may focus on fine tuning Dynamic GradNet using multi-modal datasets, evaluating its robustness
in cross modality diagnostic settings. This extension will ensure the model’s broader applicability in clinical
decision support systems, enhancing its real-world utility beyond MRI based Alzheimer’s diagnosis.

5.4 Potential Integration into Clinical Diagnostic Workflows
The proposed Dynamic GradNet framework not only enhances classification performance but also

presents a significant step toward integrating deep learning models into clinical diagnostic workflows.
Unlike conventional post-hoc interpretability approaches, our method actively refines the learning process,
ensuring the model consistently prioritizes clinically relevant brain regions. This improvement is particularly
valuable for computer aided diagnosis (CAD) systems, where reliability and transparency are crucial for
adoption in real-world medical imaging applications. By reducing false positives, particularly in early-stage
dementia detection, and improving model interpretability, Dynamic GradNet aligns well with the needs of
radiologists and neurologists. Furthermore, its adaptability to existing MRI-based diagnostic tools suggests
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potential applicability in automated diagnostic systems and future AI-assisted medical imaging software.
These findings highlight the feasibility of integrating Dynamic GradNet into clinical settings, paving the way
for its implementation in decision support systems for Alzheimer’s disease diagnosis.

By integrating GradCAM into the training process, this framework not only improves model inter-
pretability but also enhances its practical applicability in clinical settings, where explain ability is essential
for trust and adoption by healthcare professionals. This advancement facilitates its integration into decision-
support systems, aiding radiologists and neurologists in Alzheimer’s disease diagnosis.

6 Conclusion and Future Work
This study underscores the importance of dynamic spatial focus in the diagnosis of AD and introduces

the EfficientNet GradNet model as an effective approach for improving diagnostic accuracy and interpretabil-
ity. A comparison of four state-of-the-art CNN architectures revealed that EfficientNet outperformed the
others in terms of accuracy, precision, recall, and F1 score, particularly in the early stages of dementia. The
integration of Dynamic GradNet further enhanced the model’s ability by enabling it to focus on the most
relevant regions in medical images while reducing the impact of less critical areas such as image edges or
irrelevant organ sections. This focus not only provides better interpretability but also improves the model’s
learning process during the training phase by emphasizing anatomically significant regions.

In medical imaging, some portions of images, such as peripheral areas or non-crucial regions, may not
contribute significantly to the classification process. Dynamic GradNet ensures that the model focuses on
the critical areas required for accurate diagnosis, minimizing the influence of irrelevant portions of images.
This capability is essential both for enhancing model interpretability and for guiding learning in the training
phase, where the model needs to prioritize the most important patterns.

One of the key contributions of this study is highlighting the importance of dynamic spatial focus in
medical diagnostics. This approach could serve as a foundation for future studies on spatial prioritization,
where precise anatomical localization plays a crucial role in improving diagnostic accuracy, particularly in
neurodegenerative diseases. By demonstrating the impact of spatial focus on performance, this study opens
the door for further exploration into how spatial attention mechanisms can be tailored for other medical
conditions, potentially leading to more refined diagnostic tools that leverage the most critical regions in
medical images.

In the future, several avenues can be explored. First, researchers could focus on improving the model’s
performance in classifying complex cases, such as mixed or ambiguous forms of dementia. Comparative
studies with other imaging modalities, such as CT or PET, could be performed to assess the model’s
adaptability across different types of medical imaging.

To further evaluate the generalizability of Dynamic GradNet, future work will explore its adaptation to
different imaging modalities, such as computed tomography (CT) and positron emission tomography (PET).
While the model’s architecture remains unchanged, modifications in preprocessing strategies, including
normalization, intensity scaling, and domain specific augmentations, will be considered to optimize perfor-
mance across different imaging techniques. Additionally, training and validation on multi-modal datasets
will provide insights into the model’s robustness and effectiveness in cross modality diagnostic settings. This
extension will help establish Dynamic GradNet as a more versatile tool for clinical decision support, ensuring
its applicability beyond MRI-based Alzheimer’s diagnosis.

Finally, incorporating more advanced interpretability frameworks, such as explainable AI (XAI) tech-
niques, could provide deeper insights into the model’s decision making process, fostering greater trust in
AI-assisted diagnostic tools.
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Overall, EfficientNet with Dynamic GradNet has significant potential in supporting AD diagnosis.
Continued refinement and innovation in this direction can further increase the accuracy and clinical
applicability of this model, meaningfully contributing to the future of AI technologies in medical diagnostics.
Moreover, the importance of dynamic spatial focus could serve as a key stepping stone for further studies,
driving advancements in how medical imaging models prioritize and interpret critical spatial information
across various diseases.
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