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ABSTRACT: As Deepfake technology continues to evolve, the distinction between real and fake content becomes
increasingly blurred. Most existing Deepfake video detection methods rely on single-frame facial image features, which
limits their ability to capture temporal differences between frames. Current methods also exhibit limited generalization
capabilities, struggling to detect content generated by unknown forgery algorithms. Moreover, the diversity and
complexity of forgery techniques introduced by Artificial Intelligence Generated Content (AIGC) present significant
challenges for traditional detection frameworks, which must balance high detection accuracy with robust performance.
To address these challenges, we propose a novel Deepfake detection framework that combines a two-stream convolu-
tional network with a Vision Transformer (ViT) module to enhance spatio-temporal feature representation. The ViT
model extracts spatial features from the forged video, while the 3D convolutional network captures temporal features.
The 3D convolution enables cross-frame feature extraction, allowing the model to detect subtle facial changes between
frames. The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer, enabling
the model to effectively handle unknown forgery techniques. Focusing on Deepfake videos and GAN-generated images,
the proposed approach is evaluated on two widely used public face forgery datasets. Compared to existing state-of-the-
art methods, it achieves higher detection accuracy and better generalization performance, offering a robust solution for
deepfake detection in real-world scenarios.
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1 Introduction
The rapid development of deep learning technology has significantly improved the efficiency of audio

and video processing, with artificial intelligence (AI) algorithms playing a key role in this process. AI
has become an indispensable part of various industries, however, it has two sides. While it brings great
convenience, the risks caused by its misuse should not be overlooked. In recent years, the use of AI technology
for illegal activities has emerged as a growing concern. Among these, Deepfake technology [1] has attracted
significant attention.

Deepfake, a combination of “deep learning” and “fake”, utilizes Generative Adversarial Networks
(GANs) [2] to generate fake content, such as face swapping [3–5] and other effects. For example, in the film
and television industry, such as the post-production of Avatar, which utilizes this technology to present better
visual and sensory effects for the audience. Although this technology has shown great potential in media,
education and other fields, its malicious use has also caused serious social problems. A report released in
October 2019 by Dutch cybersecurity startup Deeptrace estimated that 96 percent of all online Deepfakes
are pornographic. In addition to creating fake pornographic videos, the technique has also been used to
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misrepresent well-known politicians in videos. Consequently, efficient detection methods for Deepfake
videos have become a key research topic [6].

2 Structure
Early forgery detection methods could identify forged faces to some extent. For example, Popescu

et al. [7] proposed detecting double JPEG compression in images by analyzing whether the first-order
statistics of DCT coefficients exhibit specific artifacts. Similarly, Matern et al. [8] introduced a forgery
detection method based on facial feature extraction, focusing on characteristics such as pupil color, eye
reflections, and blurriness in tooth details. However, these methods rely heavily on noticeable image defects
and feature extraction, which may limit their effectiveness when dealing with more advanced forgery
techniques and complex application scenarios.

The existing deep learning methods for detecting Deepfake videos are mostly based on spatial features
at the frame level of the video. These methods detect inconsistencies between the source and fake videos,
either physiologically or physically, or identify artifacts generated during video synthesis, as well as easily
detectable traces of forgery. Depending on the focus of attention, Deepfake forgery detection techniques can
currently be divided into three types.

1. Detecting inconsistencies in the physiological and physical aspects of Deepfake videos. For example,
Pishori et al. [9] proposed detecting eye blinking in the face of a fake video to determine whether
the video is fake. Guarnera et al. [10] used fingerprints left during the image generation process for
identification. Ciftci et al. [11] suggested detecting hidden authentic biological signals in fake videos to
identify differences in time and spatial features exhibited by the forgery. Li et al. [12] observed abnormal
blinking behavior in synthesized videos.

2. Detecting the authenticity of DeepFake videos by utilizing signal-level artifacts generated during
the synthesis process. Li et al. [13] proposed a FaceX-ray method for detecting differences in image
boundaries. Li et al. [14] proposed a semi-supervised method to identify forged videos, but this method
cannot be applied to the entire video and can only detect forgeries frame-by-frame. Zhu et al. [15]
combined direct facial illumination and identity texture as cues for detecting subtle traces of forgeries.
MesoNet [16] is capable of automatically detecting facial forgery in videos. By thoroughly analyzing
and constructing a lightweight network that focuses on mesoscopic features of images, it achieves
efficient identification of forged faces. However, its limitation lies in being applicable only to specific
forgery techniques.

3. Combing the source videos to obtain the traces of forgery that appear in the DeepFake videos. Chugh
et al. [17] proposed an approach based on audio-video combination to detect the difference between
real and fake videos. However, the applicability of this approach is limited in scenarios where not
all datasets have audio sources; Qin et al. [18] demonstrated that the DeepFake generation process
introduces AI-specific traces, particularly around the mouth and eyes. Nguyen et al. [19] introduced
the capsule network method, which can detect post-recording attacks on generated videos. Most
of these methods rely solely on information within individual frames, performing frame-by-frame
analysis without leveraging the temporal information in videos. The multi-task learning network [20]
was primarily effective against facial reenactment attacks and face swapping attacks. To enhance
the network’s generalization capability, a semi-supervised learning approach was employed. Nirkin
et al. [21] proposed a method for DeepFake detection based on discrepancies between faces and their
context, but it also has certain limitations. Zhao et al. [22] proposed a multi-attention-based DeepFake
detection network, treating DeepFake detection as a fine-grained classification problem. By combining
texture enhancement blocks and bilinear attention pooling, the network effectively extracts features.
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M2TR [23] combined a multi-modal multi-scale Transformer structure with frequency domain feature
detection, enabling the detection of forgery traces at different scales in images. In 2024, Keresh et al. [24]
tackled the challenge of Deepfake video detection by leveraging the DINO framework to fine-tune a
Vision Transformer (ViT) model. This method allows the model to identify distinguishing features in
unlabeled data, improving its ability to detect manipulated content.

In summary, existing Deepfake detection methods have made significant optimizations to address the
characteristics of forged videos. However, these methods struggle to fully explore the forgery traces in both
temporal and spatial dimensions. Additionally, the modeling of spatiotemporal inconsistencies lacks global
relationship representation, resulting in issues of insufficient accuracy and poor generalization. Therefore,
effectively utilizing the spatiotemporal inconsistency information in forged videos to obtain complete and
high-quality feature representations is crucial for Deepfake video detection. To solve these problems, this
paper proposes a novel Deepfake detection method that leverages the spatiotemporal information from 3D
ConvNet [25] and Vision Transformer (ViT) [26] to enhance feature representation and improve the model’s
generalization ability. This method optimizes the extraction process of dynamic and temporal features from
video data with the following three main contributions.

1. Considering the entire video sequences as a whole, 3D ConvNet is utilized to integrate the spatial
information and temporal features of the video to fully explore the spatio-temporal forgery traces.

2. Taking advantage of ViT in long-range modeling, it is combined with 3D ConvNet to capture global
spatio-temporal inconsistencies and further enhance feature characterization.

3. The method mines more generalized forensic patterns in Deepfake video detection, which improves the
accuracy and generalizability of the detection.

3 Related Studies

3.1 Deepfake Generation Methods
The first public Deepfake product is FakeApp [27], created by a Reddit user based on the Autoencoder-

Decoder structure [28]. This method uses an autoencoder to extract features from compressed facial images
and a decoder to reconstruct the images. The decoder can generate clear facial images from noisy inputs.
To swap faces between source and target images, two encoder-decoder pairs are used. Each pair is trained
on a separate facial dataset, and the encoder parameters are shared between the two pairs. Similar methods
are also used in DeepFaceLab [29] and DFaker [30]. Recent advancements in deepfake detection include
methods that utilize multimodal data. For instance, Salvi et al. [31] proposed a robust multimodal approach to
deepfake detection, integrating both visual and non-visual cues. Additionally, Sunanda et al. [32] introduced
the use of CNNs to identify manipulated visual media, demonstrating significant improvements in detection
accuracy across various datasets.

The autoencoder architecture is an unsupervised learning neural network model designed to learn a
compressed representation of the input data and then reconstruct the original input data from this encoding.
Two convolutional neural networks (CNNs) are used as encoder and decoder respectively. The encoder
part encodes the input data and projects the information into a low-dimensional potential space, which
summarizes the key features of the image. The decoder part reconstructs the image from the information
in the low-dimensional potential space. By making appropriate modifications to the latent representation,
editing of the image, such as changing features like expression, age, gender, etc., can be realized. As shown
in Fig. 1, the decoders of the original and target images share the same encoder to generate different
feature labels. The shared encoder completes the reconstruction process of face data by pairing different
decoder combinations.
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Figure 1: Face manipulation using Autoencoder-Decoder architecture

3.2 Vision Transformer
Since the introduction of the Transformer [33], it has long dominated the field of natural language

processing (NLP), and its success has sparked widespread interest in exploring its application in other
areas. For a long time, scientists have sought the unity of things in objective laws, attempting to explain
the various complex problems in the natural world using more unified principles. This concept of unity
is also reflected in the field of artificial intelligence. The field of computer vision has traditionally relied
on convolutional neural networks (CNNs) to process image data. However, with the growing awareness of
the need for model scalability and global relationship modeling, researchers began to consider whether the
powerful capabilities of Transformers could be applied to the field of computer vision. This line of thinking
led to a major innovation: Vision Transformer (ViT) [26]. Its introduction brought about a revolutionary
transformation in the field of computer vision. Since 2020, Transformers have also demonstrated their strong
capabilities in computer vision, indicating that the fields of natural language processing and computer vision
may eventually converge.

ViT is an evolved version of the Transformer model successfully applied to image processing tasks,
with several key differences from the original Transformer. Traditional Transformer models typically process
input sequences consisting of text embeddings, whereas ViT adopts a unique approach to handle image
information. Specifically, ViT divides the input image into fixed-size patches and rearranges them into a one-
dimensional sequence. Each patch is treated as a “token” and is combined with a position vector representing
its location in the image, along with a class vector for classification tasks. The core of the model is composed
of the Transformer encoder, retaining the main multi-head attention structure but adjusting the position of
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the normalization layers. In the final layer of the stacked Transformer encoders in ViT, the class vector in the
sequence is considered to contain the global information of the image, thus serving as the representation of
the entire image. This vector is passed through a fully connected layer to map the image representation to
the output space for specific tasks.

In summary, the Vision Transformer (ViT) process begins with labeled facial images, which are
segmented into patches representing local features. These patches are then input into the Transformer’s
encoding area, where position encoding and feature learning take place. After this, the position and feature
information are classified, and the final result is obtained.

The ViT model consists of three parts: the Linear Projection of Flattened Patches (Embedding layer),
which transforms the image data into a suitable form for processing; the Transformer Encoder, which learns
the input image features; and the MLP Head, used for the final classification task.

For an image x ∈ RH×W×C , it is first divided into N patches of size M ×M, where H, W , C represent the
height, width, and number of channels of the image, respectively. M is the width or height of each patch,
and N = HW/M2. These N patches are then flattened along the channel dimension to form a 2D sequence
xp ∈ RN×M2 C . The 2D sequence xp undergoes patch embedding, where each vector is linearly transformed,
reducing the flattened 2D sequence into a D-dimensional vector x0 = xpE, E ∈ RM2 C×D . Furthermore, Vision
Transformer embeds a learnable class token xcdass at the beginning of the 2D sequence to eliminate the need
to choose which flattened 2D embedding vector is used for the final classification prediction. A learnable
positional embedding Epε is also added to include position information in the sequence. The final input
sequence is as shown in Formula (1):

z0 = [xcl ass ; x 1
pE; x 1

pE; . . . ; xN
p E] + Epos (1)

The second part consists of L stacked Transformer Encoders. After receiving the input sequence, the
model performs L iterations of feature learning to obtain both global and local image features. Finally, the
classification prediction result is obtained by applying MLP and normalization processing to the xcl ass of z0.

Vision Transformer has demonstrated strong capability in detecting deepfake videos by learning the
subtle changes in facial details within specific scenes. It effectively identifies visual artifacts in deepfake
videos, making it well-suited for detecting forgery traces. For deepfake detection, particularly regarding facial
details, this paper utilizes Vision Transformer to capture and analyze these features.

3.3 D ConvNet
Convolutional operations typically handle two-dimensional features of an image; however, CNNs are

limited in capturing the spatial features of depth-forged videos, as they fail to account for the temporal
information. To address this, temporal features must be incorporated into the 2D features of the video,
transforming the CNN into a 3D CNN. This enables the model to capture both spatial and temporal
transformations within the video. By stacking consecutive frames of depth-forged videos, 3D convolution is
performed across these frames, allowing the model to recognize object motion over time. As shown in Fig. 2,
the feature map is derived by convolving three consecutive frames at the same position, focusing on their
local receptive fields.

While 2D convolution is commonly used for analyzing individual frames, it often neglects temporal
information. As illustrated in Fig. 2a, 2D convolution learns the features of a single frame. In contrast,
3D CNNs capture both spatial features of each frame and temporal relationships between consecutive
frames, as shown in Fig. 2b. This highlights how a 3D CNN learns spatiotemporal features in depth-forged
video sequences.
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Figure 2: The process of feature learning: (a) 2DCNN performs image convolution using a 2D convolution kernel,
(b) 3D CNN uses a 3D convolution kernel for convolution of image sequences

3D convolution can only extract specific features from the cube formed by consecutive frames in depth-
forged videos. This limitation arises because all convolution operations within the cube use the same fixed
weights. As a result, the features learned by the convolution kernels are uniform, leading to a lack of diversity
in feature extraction. To address this, multiple weight settings can be introduced to capture different features
across various dimensions of the cube.

In comparison, 2D convolution lacks an additional channel for feature extraction, which results in the
loss of some three-dimensional information in depth-forged videos. It can process either a sequence of
consecutive video frames or different 2D slices of a 3D cube. On the other hand, 3D CNNs are well-suited
for tasks like video classification and image segmentation. In the medical field, most data is inherently 3D.
For example, while a slice viewed with the naked eye appears 2D, it is part of a 3D structure. Identifying
pathological tissues, such as tumors, involves analyzing a 3D object through its 2D sections, where 3D CNNs
can be effectively applied. For classification tasks, 3D CNNs capture both spatial and temporal features across
consecutive frames, delivering superior performance. This makes them highly effective for applications in
depth-forged video detection and medical imaging analysis.

4 Methods
With the continuous evolution of Deepfake, the distinction between real and fake data has become

increasingly blurred. Currently, some mainstream Deepfake video detection methods suffer from low
detection accuracy and weak generalization performance. To address these issues, this paper proposes a deep
forgery video detection method based on spatio-temporal feature fusion. The model integrates a 3D CNN
network and Vision Transformer (ViT) to effectively distinguish between real and fake face videos generated
by various forgery algorithms.

4.1 Network Architecture
The model structure used in this paper is shown in Fig. 3, and its process is as follows. First, frames

are extracted from the video, and facial regions are cropped to generate both video and optical flow
sequences. The main framework of the model adopts a dual-branch network, where each branch specializes
in capturing spatial and temporal features of forged videos while suppressing irrelevant ones. The model
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aims to capture spatial forgery traces within video frames and temporal inconsistencies between frames, thus
identifying representative spatiotemporal forgery artifacts for more accurate predictions. To achieve this,
both feature types are aggregated into a strongly correlated spatiotemporal inconsistency feature sequence
at each feature extraction stage. These feature sequences are then input into the Vision Transformer (ViT)
module for feature interaction, long-distance dependency modeling, and obtaining global spatiotemporal
inconsistency features.

Figure 3: Model structure of the proposed method

4.2 Two-Stream Inflated 3D-ConvNet (I3D)
The 3DCNN network used in this paper is the Two-Stream Inflated 3D Convolutional Net-

work (I3D) [34], which effectively learns the spatial and temporal features of deepfake facial videos.
Originally proposed for action classification, the I3D network can learn continuous spatiotemporal features
from videos. It is based on state-of-the-art image classification architectures, but with expanded filters
and kernels, which are then projected into 3D, creating a deeply natural spatiotemporal classifier. The
I3D employs a dual-stream approach for analyzing deepfake videos, with one stream processing RGB data
and the other analyzing optical flow (FLOW) data. The results from the RGB and FLOW streams are
fused. The flow images in the dual-stream structure represent the instantaneous motion of objects on a
2D plane during movement, capturing the correlation of behavior features between consecutive frames and
detecting differences between them to compute frame correspondence. For deepfake videos, the temporal
features between adjacent frames are inconsistent, irregular, and lack continuity, whereas real videos exhibit
continuity and correlation between adjacent frames, with highly similar temporal features. Therefore, real
and fake videos show significant feature differences.

The I3D network model is primarily derived from the Inception-V1 network, as shown in Fig. 4, which
illustrates the Inception module and the 3D-Inception network model used to extract temporal information
from video data. This model combines 2D convolutional network filters and pooling layers, adding a temporal
dimension to better handle video data. The Inception module in the model includes three convolutional
kernels of different sizes and a max-pooling layer. The model is trained separately on RGB data and optical
flow data, and their respective predictions are averaged and fused at the end. The final classification result is
output through a softmax function.
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Figure 4: 3D-Inception

To validate the effectiveness of the optical flow information extracted by the model, a dual-stream
architecture is designed, where both channels are trained using RGB data. The base structure of I3D is
Inception-V1. I3D extends 2D convolutions into 3D, adding a temporal dimension to both convolutional and
pooling layers. This is achieved by inflating all filters and pooling kernels from 2D to 3D, where the 2D filters’
weights are repeated along the time dimension, normalized by dividing by N, and then rescaled. The 3D
convolution enables the learning of temporal features, but the original flow branch still struggles to capture
the fine-grained features of the face.

The main components of the Inflated Inception-V1 include convolutional layers, pooling layers, and Inc
layers. In this network, the first convolutional layer has a stride of 2, followed by four max-pooling layers
with a stride of 2. Before the final linear classification layer, there are four more max-pooling layers and one
average-pooling layer. The model is trained using 300 frames of video at 25 frames per second and tested on
the entire video.
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4.3 The Function of the ViT Module in the Network
This study addresses the accurate extraction of forgery traces within individual video frames and their

discontinuities across frames. By leveraging cross-domain information fusion, the interaction between spa-
tial and temporal features is enhanced, improving the model’s ability to analyze video data. As shown in Fig. 5,
the Vision Transformer (ViT) model captures long-range dependencies by considering the relationships
between different regions in an image. Under sufficient training, ViT outperforms state-of-the-art CNN
models, suggesting a higher performance ceiling. However, ViT faces challenges such as limited locality, low
sample efficiency, and difficulty in modeling complex visual features. In contrast, 3D CNNs excel at local
feature extraction but may lose spatial information during convolution and pooling, reducing sensitivity
to positional details. Thus, a hybrid model combining ViT and 3D CNN leverages the strengths of both,
compensating for their weaknesses and providing more accurate representations.

Figure 5: ViT module

To address the temporal feature neglect in existing methods for deepfake video detection, the proposed
3DCNN-ViT model integrates ViT for collaborative spatiotemporal feature learning. The ViT sub-model
focuses on spatial features, effectively extracting semantic information from each frame. The 3D CNN sub-
model captures temporal features by enabling cross-frame feature extraction, allowing it to detect subtle
changes in the forged face. The confidence scores from both models are then fused at the decision layer for
final classification.

Existing methods often overlook the spatial information’s role in enhancing detection performance
while extracting temporal features. This study proposes a hybrid model combining ViT and 3D CNN to retain
spatial features while focusing on temporal information. By preprocessing video data with varying sampling
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strides and combining spatial and temporal convolutions, we extract comprehensive spatiotemporal features
from both high- and low-sampling-rate data. The ViT model then captures global relationships within the
spatiotemporal feature sequence, further improving feature representation.

4.4 Necessity of Combining 3D ConvNet with ViT
While the Vision Transformer (ViT) excels at capturing spatial features through self-attention mecha-

nisms, it primarily focuses on static spatial information and is not optimized for temporal features in videos.
Since videos contain dynamic changes across consecutive frames, relying solely on ViT for temporal feature
extraction presents certain limitations. To address this, we incorporate a 3D Convolutional Network (3D
ConvNet). Unlike ViT, 3D ConvNet captures both spatial and temporal features by performing convolutions
across multiple consecutive frames, enabling it to detect temporal inconsistencies between frames. This is
essential for identifying dynamic forgeries in Deepfake videos. By combining the spatial feature learning of
ViT with the spatiotemporal feature extraction capabilities of 3D ConvNet, our approach effectively leverages
both spatial and temporal information, thereby improving the accuracy and robustness of deepfake detection
in videos.

4.5 Loss Function
The loss function, also referred to as the cost function, maps the values of random events or variables

related to random events to non-negative real numbers, representing the “risk” of these events. The
fundamental task of deep learning is to approximate a function f(x) that maps input images to corresponding
labels, with the loss function quantifying the quality of this mapping. Different loss functions exhibit
varying performance outcomes. The method proposed in this paper is inherently a model for binary
classification tasks. Hence, during the training process, cross-entropy loss is employed as the loss function.
The mathematical form of the cross-entropy loss is as follows:

Li = −yT log(Pi(Ypi)) (2)
Pi(Ypi) = soft max(cl si(Ypi)) (3)

Among them, Li is the loss of the i-th branch; y is the true label of the input sample, represented by
a one-hot vector; cl si represents the classifier of the i-th branch; Pi represents the classification probability
calculated by the i-th branch. The final Ltotal is expressed as:

Ltotal = L1 + L2 (4)

where L1 is the loss of the video sequence branch, and L2 represents the loss of the optical flow branch.

5 Experiments
The experiments in this study are conducted on an Ubuntu 16.04 operating system with the following

hardware configuration: NVIDIA GeForce GTX 4070Ti, Intel Core i7-12700K CPU, 64 GB DDR4 RAM, and
Python 3.7.

When extracting temporal features from video data, high sampling rate continuous video frames are
essential, as low sampling rates may lead to insufficient extraction of temporal information. On the other
hand, for spatial feature extraction, inputting high-sampling rate video frames can waste computational
resources without necessarily improving detection performance. To more effectively extract spatiotemporal
features, video data is preprocessed with different sampling rates based on specific needs. Low-sampling rate
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video frames help enhance the model’s ability to express spatial semantics, while high-sampling rate frames
ensure the completeness of temporal features.

Specifically, video data is sampled with different time steps, tS and tT. The input video is represented as
a continuous image sequence V, which is divided into V/t separate image sets. When tS is set to 32, the model
processes only one frame from every 32-frame segment. For different sampling intervals t, using a larger
time step tS (tS/8 = tT) during sampling allows for better utilization of the spatial features within the video
frames. Similarly, reducing the sampling step and increasing the video sampling rate helps capture temporal
inconsistencies between frames.

Moreover, Deepfake techniques typically focus on manipulating facial regions in videos. By cropping the
background, the model’s computational load can be reduced, while preventing overfitting to the background
data. Therefore, RetinaFace is first used to preprocess the input data, locating the facial region based on
anchor points and setting face bounding boxes. Additionally, each face region in the frames is enlarged by
1.5 times and cropped to a size of 320 × 320.

5.1 Dataset and Experimental Setup
In the real world, people’s facial expressions and postures vary quite complexly, and these changes may

be affected by multiple factors such as the environment, emotions, and lighting. At the same time, since
the lighting, background, and environmental conditions in real scenes may change, the dataset used in the
experiment should contain data samples of various facial expressions and postures and taken under different
environmental conditions to ensure that the model can adapt to various environments. In addition, since
detection in real scenes also needs to consider people of different races, genders, and ages, the dataset should
cover a diverse population to ensure that the model can work effectively among a wide range of people. Using
appropriate and rich datasets, deep fake detection models can be better generalized to various situations in
the real world, improving their accuracy, generalization, and practicality. Therefore, the experiment selected
two widely used, richly typed, large-scale, high-quality datasets. The information of these two datasets is
shown in Table 1.

Table 1: Experimental datasets

Dataset Quantity Intra-dataset training Cross-dataset evaluation (%)
FaceForensics++ [35] 5000

√
100

Celeb-DF [36] 5639
√

100

The FaceForensics++ (FF++) [35] dataset is a large-scale deep fake face video dataset used to study
deep fake detection and face tampering detection technology. It is one of the most widely used datasets.
This dataset is a large face dataset shared by Google. It collects 1000 initial videos from the YouTube video
network, including a dataset of more than 1.8 million images. These videos have been forged using four face
tampering methods, namely Deepfakes, Face2Face, FaceSwap, and NeuralTextures. Among them, DeepFake
is based on the well-known GAN technology. For the faces it generates, the recognition rate of the human
eye is about 75%. The FaceSwap method uses a deep learning method to completely reconstruct the face. It
can use the model to swap the target face image. The recognition rate of the human eye for this algorithm is
also around 75%. The Face2Face method replaces the target face with the real face by swapping it. There is
no new face. In this case, the recognition rate of the human eye is only 41%. Each video contains a frontal
face and is traceable. This is a well-known large dataset that can be used in face forensics.
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The Celeb-DF [36] dataset takes into account people of different genders, ages, and races. It collects 590
real videos of 59 celebrities from YouTube, and then uses the DeepFakes method to generate 5639 fake videos
in MPEG4.0 format with an average length of 13 s. Since this dataset can improve the face resolution, establish
a color conversion algorithm for the faces in the fake video and the original video, and better integrate the
boundaries of the fake area and the original area, it greatly improves the quality of the generated fake data
and can be used to simulate fake generated videos in real environments.

Since the forged areas of the samples are mostly concentrated in the facial features, in order to make
the model pay more attention to the characteristics of the forged areas, in the data preprocessing stage, 32
frames were captured at equal time intervals for each video in the FaceForensics++ and Celeb-DF datasets
and processed as key frames as experimental samples. Then, the MTCNN face detection algorithm was used
to locate the face in each frame to determine the facial rectangle. Finally, after face alignment, the image was
cropped to a size of 320 dpi × 320 dpi, and divided into training set, validation set and test set in a ratio of
6:2:2.

For the training parameters in the network, the learning rate is 0.001. After about 200 iterations, the loss
begins to converge. The activation function is the Relu function, the loss function is the cross entropy loss
function, and the epoch is set to 200. The model uses the AdamW optimization algorithm to dynamically
adjust the learning rate. The initial learning rate is set to 1 × 10−4, the training batch size is set to 18, and the
epoch is set to 40.

5.2 Evaluation
Video face forgery detection is essentially a binary classification problem. In this paper, the following

evaluation metrics are used to comprehensively evaluate the performance of the proposed method:

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

Accuracy = TP + TN
TP + FN + TN + FP

(7)

TP is the number of samples correctly predicted as positive, which means true positive examples. TN
is the number of samples correctly predicted as negative, which means true negative examples. FN is the
number of samples incorrectly predicted as negative, which means false negative examples. FP is the number
of samples incorrectly predicted as positive, which means false positive examples.

In addition to these indicators, the AUC, a commonly used evaluation indicator in similar binary
classification tasks, is also considered to evaluate the performance of the model. This indicator can compre-
hensively measure the model’s discriminative ability and is particularly suitable for evaluating datasets with
unbalanced samples.

The AUC (Area Under Curve, AUC) indicator is defined as the area under the receiver operating
characteristic curve (Receiver Operating Characteristic, ROC), which represents the probability value of
predicting that the probability of a real image sample is greater than the probability of a forged sample,
and its size ranges from 0 to 1. The AUC indicator measures the model’s ability to classify real samples and
forged samples, that is, the classification performance of the detector: When the AUC value is larger, it means
that the detector has a greater probability of ranking positive samples before negative samples, that is, the
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classification effect is better. Especially in cross-dataset testing, the AUC indicator can directly reflect the
generalization ability of the detector.

5.3 Experimental Results and Analysis
First, experiments are conducted based on the dataset constructed in this paper, and the results are

compared with other advanced Deepfake detection algorithms to validate the effectiveness of the proposed
approach. Additionally, training is performed on different datasets to conduct cross-dataset validation and
comparison experiments, assessing the generalization performance of the algorithm.

To evaluate the proposed method, we first conduct experiments on the FaceForensics++ (FF++)
dataset [35], which is divided into training, validation, and test sets in a 6:2:2 ratio. Various evaluation metrics,
including AUC (Area Under the Curve), Accuracy, Precision, and Recall, are employed for a comprehensive
assessment of the model’s performance. Table 2 presents the results across different subsets of FF++.

Table 2: The test performance of intra-dataset on datasets of FF++ [35]

Dataset AUC (%) Precision Recall Accuracy
DeepFakes 99.75 0.9735 0.9465 0.9741
FaceSwap 99.34 0.9469 0.9867 0.9568
Face2Face 99.10 0.9687 0.9012 0.9589

NeuralTextures 98.45 0.9643 0.9645 0.9489

The proposed method demonstrates exceptional performance on DeepFakes and FaceSwap, achieving
AUC values of 99.75% and 99.34%, respectively, indicating a strong capability to detect these types of
forgeries. Performance remains consistently high on Face2Face and NeuralTextures, with AUC values of
99.10% and 98.45%, respectively, despite these techniques being more complex than standard face-swapping
approaches. As each subset of FF++ contains videos manipulated using a single forgery technique, the
introduced artifacts are relatively simple and easier to detect. These findings highlight the effectiveness of
the proposed model in identifying forgeries with limited and localized modifications.

To further assess the model’s ability to detect more complex deepfake patterns, we conduct additional
experiments on the full FaceForensics++ and Celeb-DF datasets. The results, summarized in Table 3,
highlight the model’s robustness across diverse forgery scenarios. Celeb-DF, in particular, poses a greater
challenge due to its wider variety of face manipulations, involving different age groups, genders, and
ethnicities. Despite these variations, the proposed model maintains a high AUC of 98.16% and an accuracy of
95.42%, indicating its strong generalization capabilities. On the FaceForensics++ dataset, the model achieves
an AUC of 99.24% and an accuracy of 96.28%, confirming its stability in detecting manipulated videos. These
results demonstrate that the proposed method is not only effective in detecting specific forgery types but
also exhibits strong performance in diverse, real-world deepfake scenarios. The model’s ability to generalize
across different datasets underscores its robustness and reliability in deepfake detection.

To further validate the effectiveness of our approach, we compare its performance with six state-
of-the-art deepfake detection methods, including MesoNet [16], Multi-task [20], Face+Context [21],
Multi-attentional [22], M2TR [23], and 3D Residual-in-Dense [37]. The AUC comparisons, presented
in Table 4, illustrate the advantages of our model over existing approaches. On the FaceForensics++ dataset,
our method achieves an AUC of 99.38%, outperforming M2TR (99.51%) and DINO (99.14%). This demon-
strates the effectiveness of incorporating both spatial and temporal information for detecting high-quality
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deepfake videos; On the Celeb-DF dataset, our approach achieves an AUC of 98.46%, surpassing M2TR
(95.50%) by 2.96% and DINO (96.87%) by 1.59%. These results indicate that our method excels in detecting
low-quality and compressed forgeries, where many traditional detection models struggle. Compared to
MesoNet and Multi-task models, which rely on shallow feature extraction, our method significantly improves
performance, particularly on highly compressed deepfake videos. In contrast to Face+Context and Multi-
attentional methods, our approach integrates a Two-Stream 3D Convolutional Network (I3D) and a Vision
Transformer (ViT), effectively capturing both temporal inconsistencies and spatial distortions present in
deepfake videos.

Table 3: The performance evaluated within the dataset on FF++, Celeb-DF datasets

Dataset AUC (%) Precision Recall Accuracy
FaceForensics++ [35] 99.24 0.9502 0.9128 0.9628

Celeb-DF [36] 98.16 0.9329 0.9014 0.9542

Table 4: AUC comparisons with 6 state-of-the-art approaches on FF++ and Celeb-DF datasets

Dataset Precision FaceForensics++ [35] Celeb-DF [36]
MesoNet [16] Video 75.30% 54.80%

Multi-task [20] Video 80.10% 90.50%
Face+Context [21] Image/Video Frame 75.00% 66.00%

Multi-attentional [22] Image/Video Frame 97.60% _
M2TR [23] Video 99.51% 95.50%

3D Residual-in-Dense [37] Video _ 92.93%
DINO [24] Image/Video Frame 99.14% 96.87%

Ours Video 99.38% 98.46%

Overall, these comparative results confirm that leveraging both spatial and temporal features is critical
for deepfake detection. By integrating I3D for dynamic feature extraction and ViT for spatial context
modeling, the proposed method significantly enhances detection accuracy and generalization, particularly
in cross-dataset evaluations.

To further evaluate the model’s generalization performance, cross-training and testing were conducted
on the FF++ and Celeb-DF datasets, with AUC as the evaluation metric. The experimental results presented
in Table 5 show that the model achieves high accuracy on known datasets and demonstrates strong
generalization performance on unseen datasets. The model trained on Celeb-DF performs less well on FF++,
which can be attributed to the greater diversity of facial forgery techniques and generative processes in
FF++, making the dataset more varied. Overall, both FF++ and Celeb-DF involve neural network-based face
forgery methods, and the model demonstrates reasonable generalization ability. The classification examples
of the detection results are shown in Fig. 6.
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Table 5: Performance of inter-dataset evaluation on FF++, Celeb-DF datasets

Train Test AUC ([37]) AUC ([24]) AUC (Our)
FaceForensics++ [35] FaceForensics++ [35] 99.57% 98.67% 99.37%
FaceForensics++ [35] Celeb-DF [36] 68.42% 70.42% 76.10%

Celeb-DF [36] FaceForensics++ [35] 60.87% 66.21% 73.05%
Celeb-DF [36] Celeb-DF [36] 98.56% 98.77% 98.63%

Figure 6: Examples of detection results

6 Conclusions
This paper proposes a detection method based on the fusion of spatiotemporal information to learn

the spatiotemporal inconsistencies in deepfake videos. The composition and workflow of each module
are described in detail. The proposed spatiotemporal feature aggregation network utilizes a dual-branch
structure to extract spatial inconsistency features within individual image frames and temporal inconsistency
features between consecutive video frames. The Vision Transformer (ViT) module is incorporated to enhance
the representation of spatiotemporal inconsistency features, significantly improving detection performance.
Experiments on large public datasets, such as FF++ and Celeb-DF, demonstrate that the proposed method
enhances detection accuracy. Compared to other advanced detection methods, it also shows improved
generalization performance.
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7 Limitations and Future Work

7.1 Limitations
Training Speed: The training process is relatively slow due to the need to process each Deepfake video

by splitting it into individual frames. This step consumes considerable time. Additionally, the training speed
of the ViT network is slower and less efficient. In future work, we plan to focus on extracting representative
features from each frame to accelerate the training speed of the network.

Lack of Real-World Face Swap Datasets: Both the FF++ and Celeb-DF datasets primarily contain
Deepfake videos created by professional institutions, lacking real-world video data. Furthermore, these
datasets predominantly feature faces of foreign individuals, whose facial features may differ from those
of people from other regions, making the dataset less representative. A more complete dataset containing
real-world face swap data would improve the model’s generalization capability.

Accuracy Limitations: While the model has shown improved generalization, accuracy still remains
suboptimal. It is currently unable to achieve 100% classification accuracy for faces. As Deepfake technology
continues to evolve, detecting Deepfake faces will become increasingly challenging. Some current Deepfake
methods are nearly indistinguishable by the human eye, and it is becoming increasingly difficult to identify
subtle artifacts. In future research, we will explore the “uniformity” of Deepfake videos to improve detection
accuracy and generalization performance.

Challenges in Compression and Low-Light Conditions: Despite its robust performance, the proposed
framework encounters limitations in certain challenging scenarios. Specifically, detection accuracy declines
when handling videos that have undergone significant compression or are captured under low-light condi-
tions. High compression rates can obscure subtle forgery traces, while poor illumination can degrade the
spatial and temporal feature extraction process. These issues underline the need for further optimization.

7.2 Future Work
Future work will focus on improving the framework’s robustness against diverse video quality issues,

such as compression artifacts and extreme lighting conditions. Techniques like adaptive enhancement for
low-light frames and compression artifact removal may help mitigate these challenges. Moreover, incorpo-
rating multi-modal data (e.g., audio-visual or metadata) and domain adaptation techniques could improve
the model’s generalization, enabling more reliable detection across a wider range of real-world scenarios.
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