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ABSTRACT: The growing sophistication of cyberthreats, among others the Distributed Denial of Service attacks, has
exposed limitations in traditional rule-based Security Information and Event Management systems. While machine
learning–based intrusion detection systems can capture complex network behaviours, their “black-box” nature often
limits trust and actionable insight for security operators. This study introduces a novel approach that integrates
Explainable Artificial Intelligence—xAI—with the Random Forest classifier to derive human-interpretable rules,
thereby enhancing the detection of Distributed Denial of Service (DDoS) attacks. The proposed framework combines
traditional static rule formulation with advanced xAI techniques—SHapley Additive exPlanations and Scoped Rules
- to extract decision criteria from a fully trained model. The methodology was validated on two benchmark datasets,
CICIDS2017 and WUSTL-IIOT-2021. Extracted rules were evaluated against conventional Security Information and
Event Management Systems rules with metrics such as precision, recall, accuracy, balanced accuracy, and Matthews
Correlation Coefficient. Experimental results demonstrate that xAI-derived rules consistently outperform traditional
static rules. Notably, the most refined xAI-generated rule achieved near-perfect performance with significantly
improved detection of DDoS traffic while maintaining high accuracy in classifying benign traffic across both datasets.

KEYWORDS: Cybersecurity; explainable artificial intelligence; intrusion detection system; rule-based SIEM;
distributed denial of service

1 Introduction

1.1 Context and Rationale
In recent years, the landscape of Artificial Intelligence (AI) and Machine Learning (ML) has expanded

rapidly, empowering models with predictive capabilities that often exceed human ingenuity. However, these
remarkable achievements frequently come at the expense of transparency, as the reasoning behind model
outputs remains obscure [1,2]. Recognizing this issue, Explainable Artificial Intelligence (xAI) has emerged as
a pivotal research area dedicated to elucidating the internal logic of ML models [3]. By providing insights into
how features influence predictions, xAI holds the promise of bridging the gap between opaque algorithms
and the practitioners who rely on them.
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This pursuit for interpretability is especially important in cybersecurity, where the acceptance and
efficacy of AI-driven solutions hinge on trustworthiness. Despite increasing adoption, many decision-
makers in this field remain wary of AI’s ‘black-box’ nature [4], further complicated by the legal and ethical
implications of automated decisions [5]. As cyberthreats grow more sophisticated, ensuring that detection
methods are both accurate and transparent becomes paramount. Here, xAI finds a compelling application,
as trust and clarity underpin robust cybersecurity strategies [6–9].

Within the defensive arsenal of organizations, Security Information and Event Management (SIEM)
systems have played a leading role by applying human-crafted, rule-based detection schemes [10] for a
long time now [10–12]. By many, SIEM systems are believed to be indispensable [13]. While these rules are
transparent and grounded in domain expertise, they may not fully capture the complexity and evolving
nature of modern threats. Conversely, ML-powered Network Intrusion Detection Systems (NIDS) offer
dynamic and data-driven capabilities to identify anomalous activities, yet their black-box models are often
met with skepticism and a reluctance to fully integrate them into established workflows [14].

This research aims to unify these two paradigms—traditional rule-based SIEM and advanced ML-
driven NIDS—into a synergistic solution. Specifically, this paper proposes a methodology to extract
explainable and actionable detection rules directly from an ML model, leveraging xAI techniques. By doing
so, the paper provides a conceptual and technological bridge between longstanding cybersecurity practices
and the promise of cutting-edge ML algorithms.

While this paper primarily focuses on the application of xAI to enhance detection of DDoS attacks, the
methodologies developed here have potential implications for a broader range of cyberthreats, suggesting a
promising avenue for future research to expand the scope of these techniques in future work.

1.2 Major Contribution and Extension of This Paper
The principal contribution of this work comes in addressing the current gap in practical approaches

leveraging xAI and ML-powered NIDS. Traditional SIEM systems primarily rely on predefined, static rules
and patterns to detect anomalies, which often fail to adapt to the dynamic nature of modern cyberthreats.
The reliance on pre-established thresholds and criteria can prevent the detection of low-and-slow attack
variants, which do not initially trigger these thresholds but can escalate into severe disruptions. A significant
drawback of relying on SIEM systems is the knowledge the user needs to possess to be able to update their
rules reliably—knowledge which is expensive and hard to find [15,16]. This paper aims at addressing these
shortcomings, overcoming some of the limitations of the use of SIEM systems. This is accomplished by
augmenting conventional SIEM with xAI insights which distills precise, human-interpretable detection rules
from trained models, boosting classification accuracy and maintaining operator confidence.

To the best of the authors’ knowledge, this represents a novel and innovative approach, offering a
previously unexplored pathway to harmonize established cybersecurity frameworks with the powerful, yet
often opaque, potential of AI.

This work is an invited extension of our published conference paper from the previous Asian Conference
on Intelligent Information and Database Systems (ACIIDS) held in 2024 [17].

In the earlier study, the methodology and preliminary findings were introduced and validated using a
single dataset.

Hereby, the experiments and evaluation are strengthened and broadened by incorporating another
dataset, effectively doubling the scope of the evaluation and providing a more rigorous empirical valida-
tion of the proposed methodology. It is always important in machine learning, artificial intelligence and
cybersecurity research and practice to generalize approaches and solutions on wide range datasets and
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scenarios. Therefore, our further efforts in extending the previous work with additional experimental setups
on another dataset.

This expanded evaluation underlines the method’s scalability and generalizability, and its relevance for
a wider range of cybersecurity environments.

1.3 Structure of the Paper
The paper is organized as follows: Section 2 overviews the related work, highlighting the lack of

practical approaches; Section 3 delves into the enabling concepts and technologies of the proposed
research; Section 4.1 provides details regarding the Datasets and methodology, presenting the correlation
rules defined before and after the application of xAI; Section 5 presents the results of the experiments
using both sets of rules; Section 6 analyzes the obtained results and provides a comparison between the
discovered rules on two different benchmark datasets. Threats to validity and possible future directions are
given in Section 7. Finally, Section 8 ends the paper with final remarks. The list of abbreviations used in the
paper is enclosed in Table 1.

Table 1: List of abbreviations and their full forms

Abbreviation Full form
xAI Explainable Artificial Intelligence

SIEM Security Information and Event Management
RF Random Forest

RFM Random Forest Model
IDS Intrusion Detection System
IPS Intrusion Prevention System

DDoS Distributed Denial of Service
ML Machine Learning
DT Decision Tree

SVM Support Vector Machine
LIME Local Interpretable Model-Agnostic Explanations
SHAP SHapley Additive exPlanations

ANCHORS Rule-based local explanations (not an acronym, it is the name of an
algorithm)

SMOTE Synthetic Minority Over-sampling Technique
ANOVA Analysis of Variance

CICIDS2017 Canadian Institute for Cybersecurity Intrusion Detection System 2017
WUSTL-IIOT-2021 Washington University in St. Louis Industrial Internet of Things 2021

IIoT Industrial Internet of Things
PCAP Packet Capture
MCC Matthews Correlation Coefficient

BA Balanced Accuracy
G-mean Geometric Mean

TP True Positive
TN True Negative
FP False Positive
FN False Negative

(Continued)
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Table 1 (continued)

Abbreviation Full form
ACIIDS Asian Conference on Intelligent Information and Database Systems
TCPRtt TCP Round-Trip Time
Proto Protocol

SrcRate Source Rate

2 Related Work
This section reviews the existing literature on xAI applications in cybersecurity, particularly focusing

on NIDS, to underscore the unique contribution of this research as related to the backdrop of previous work.
In the last few years, xAI has been gaining popularity in the cybersecurity domain, as it has become the

subject of various reviews [6–9] and experiments.
For what concerns Intrusion Detection Systems (IDS) [6] introduces an advanced IDS utilizing ML

ensemble methods like Decision Trees (DT), Random Forest (RF), and Support Vector Machines (SVM),
achieving promising results. In [18], the critical role of trust management in IDS is explored, emphasizing
the need for transparency in ML models utilized in the cybersecurity domain. It discusses the challenges
of interpreting “black-box” AI models and the importance of xAI in enhancing trust by enabling human
experts to comprehend the model’s decision-making process. The paper [19] introduces an IDS employing
ML techniques like DT, RF, and xAI on real-world Software-Defined Networking (SDN) data. The evaluation
covers various intrusion scenarios, achieving high accuracy. By integrating Machine Learning and xAI using
Local Interpretable Model-Agnostic Explanations (LIME), the research aims to boost intrusion detection
accuracy and maintain data integrity. The objectives are to classify intrusions using DT and RF algorithms
in SDN, compare their performance, and implement LIME to identify key network features contributing
to intrusions. In [20], an approach for detecting DDoS attacks using xAI is proposed. The method focuses
on identifying attack behaviours in network traffic flows without analyzing packet payloads. By leveraging
autoencoders and xAI, it provides a better understanding of the most influential features for attack detection,
and setting individual thresholds for such features to support attack detection. The work carried out
in [21] aims at contributing to rigorous xAI-equipped IDS for DDoS attacks. It introduces an approach
based on artificial immune systems, featuring a decision tree model. The paper details the process of
mapping, combining, and merging to transform continuous features into boolean expressions, which are
then simplified into prime implicants. The resulting prime implicants serve as rules for DDoS intrusion
detection. Most of the research works in the application of xAI in ML-powered NIDS focus on opening
the black box of AI, hoping to gather trust for the emerging technology. There is a very relevant gap in
the utilisation of knowledge garnered by ML algorithms in NIDS, which would translate into immediately
available, actionable intel for the security operatives. The research contained within this paper provides an
innovative experimental study to employ xAI to enhance traditional rule-based SIEM systems and IDS,
by using ML logic to support the definition of highly accurate discrimination criteria for attack detection.
This bridges the gap between the immense benefits of the application of data-based algorithms and the
apparent lack of trust in the emerging technology among the cybersecurity community. Despite using
various search engines and bibliographic methods, no similar approaches have been found other than the
aforementioned works. To the best of the auhtors’knowledge, the proposed research is a novel, innovative
approach filling the research gap. In order to illustrate the landscape of current research on the application
of xAI in cybersecurity, Table 2 provides a comprehensive overview of related works in the field.
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Table 2: Overview of key studies on the application of xAI in cybersecurity, highlighting methodologies, focus areas,
and contributions

Reference Methodology Focus Key contributions
Patil et al., 2022 ML ensemble methods

(DT, RF, SVM)
IDS Enhanced model transparency,

addressed adversarial attacks
Mahbooba, 2021 xAI applications IDS trust management Discussed the importance of

transparency to enhance trust
in IDS

Karna et al., 2021 ML techniques with
LIME

IDS Enhanced intrusion detection

Kalutharage, 2023 Autoencoders and xAI DDoS attack detection Improved attack detection by
identifying key features and

setting thresholds
Zhou et al., 2022 Artificial immune

systems, decision trees
IDS for DDoS attacks Developed boolean rules from

continuous features for DDoS
detection

Nwakanma et al.,
2023

Review of xAI in NIDS Review of xAI
applications

Highlighted the application of
xAI in improving NIDS in

autonomous vehicles
Choras, 2020 Exploration of AI

implications in
cybersecurity

The need for xAI,
fairness and security of

AI

Discussed the implications of
ML/AI in critical applications

Doshi, 2017 Theoretical approaches
to xAI

Theoretical exploration
of xAI

Discussed foundational
methods and approaches in

xAI

3 Background and Datasets
This section provides an overview of the enabling technologies and datasets employed in this study,

providing the foundational concepts for understanding the contribution of this work.

3.1 Explainable Artificial Intelligence
The focus of xAI is on creating methods that render ML models more transparent and interpretable,

ultimately enabling a human audience to comprehend their internal logic [22]. Various techniques fall under
the umbrella of xAI, but they can generally be categorized into three main groups:

• Feature importance: Approaches that pinpoint the most influential features in a model’s decision-
making process, assisting practitioners in understanding which inputs are driving predictions.

• Rule-based explanations: Techniques that distil complex model logic into human-readable rules,
thereby clarifying how certain outcomes are reached.

• Counterfactual explanations: Methods that determine the minimal input modifications needed to alter
a model’s output, shedding light on the underlying rationale and potential scenarios where different
predictions could emerge.

By employing these xAI strategies, cybersecurity professionals can gain deeper insights into how ML
models detect anomalies, recognize patterns, and differentiate between benign and malicious activities.
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This enhanced understanding helps to identify potential biases, troubleshoot unexpected behaviours, and
ultimately cultivate greater trust and confidence in the outputs of the models.

3.2 Random Forest Algorithm
The RF classifier is a robust ensemble learning method that integrates the strengths of multiple decision

trees. By applying bootstrap aggregation (bagging), it constructs numerous trees on randomly selected
subsets of the training data, fostering diversity in their learned patterns. This diversity enables the RF to
uncover complex relationships between features and the target variable. Each tree serves as a “weak learner,”
and their collective predictions are aggregated through majority voting [23,24], effectively creating a strong,
stable predictor. Owing to its ability to resist overfitting and model intricate interactions, the RF algorithm
has proven to be highly proficient in network intrusion detection tasks [25].

The rationale for employing RF algorithm is in its ability to achieve classification outcomes comparable
to those of more complex deep learning approaches on NIDS data. Crucially, in alignment with the objective
of reducing barriers to entry in security technology, RF algorithm offers a more straightforward configuration
process than their counterparts, such as neural networks. Being a supervised algorithm, it allows one to
perform xAI operations for rule derivation, facilitating the approach proposed in this paper.

3.3 Datasets Description
The proposed methodology was tested using two different datasets: CICIDS2017 (D1) [26], and WUSTL-

IIOT-2021 [27]. CICIDS2017 is a well-established benchmark dataset specifically designed for the evaluation
of IDSs and Intrusion Prevention Systems (IPSs) in the face of intricate and evolving network attacks. The
selection of this dataset was driven by the attention given to addressing the limitations commonly found in
other datasets. These limitations encompass outdated information, limited diversity, and the anonymization
of vital data. CICIDS2017 stands out for its ability to offer a realistic representation of actual network traffic.
It draws from Packet Capture (PCAPs) data and encompasses a wide spectrum of benign background traffic
and various attack scenarios. These scenarios include Brute Force FTP, Brute Force SSH, Heartbleed, Web
Attack, Infiltration, Botnet, and DDoS. In alignment with the research’s focus, the DDoS attack subset, in
conjunction with the benign traffic captured during that scenario, was leveraged for the experimental work.
The WUSTL-IIOT-2021 dataset emulates real-world industrial environments and is specifically designed to
address the security challenges faced by Industrial Internet of Things (IIoT) systems. It features a diverse
range of network traffic data, including both benign operations and various types of malicious activities,
representing common cyberattacks in IIoT settings. This dataset was created to support research on AI
and machine learning-based IDS, with a focus on modern threats targeting IIoT networks. Its realistic and
varied data provides a resource for evaluating AI-driven security models, particularly in areas like xAI and
distributed AI, ensuring robustness in identifying cyber threats in industrial contexts.

Owing to the notable class imbalance present in the original datasets, a preliminary data preprocessing
phase was performed. To mitigate the skew in the class distribution, the Synthetic Minority Over-sampling
Technique (SMOTE) was adopted, following the approach outlined in [28]. Any records containing missing
values or duplicates were subsequently removed.

Following the cleaning process, dimensionality reduction was undertaken using the SelectKBest
method from the scikit-learn library. This procedure employs a univariate statistical test based on the
Analysis of Varience (ANOVA) F-value to gauge how features relate to their labels. Analysing the feature
importance scores revealed that, beyond the first 14 features, subsequent scores display a substantial decline.
Correlation checks were also conducted to eliminate overlaps, thereby retaining only those features with the
most representative information.
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4 Proposed Method for SIEM Rules Enhancement
This section outlines the innovation of the proposed method to enhance SIEM rules using xAI, detailing

the procedural steps and the rationale behind the integration of ML models and xAI techniques. It introduces
the novel strategy for deriving SIEM rules through explainability. The process begins with defining a set of
traditional static rules. It then proceeds with mining an enhanced rule set by examining the decision trees
empirically, then by using SHAP [29], and ANCHORS [30]. All resulting rules from both approaches have
been validated with an RF classifier, and the corresponding experimental outcomes are detailed in Section 5.
The pipeline of rule derivation is showcased in Fig. 1.

Figure 1: The pipeline of deriving rules from ML classifiers with xAI

4.1 Definition of Static SIEM Rules
The following subsection delineates how the static SIEM rules were formulated.
LetX represent the set of features in the original dataset D, and let y = {DDoS , BENIGN} be the

corresponding labels. The aim is to identify xrul e and use it as discrimination criteria between DDoS and
BENIGN samples. As shown in Eq. (1), the difference between the original set of labels and the SIEM-labelled
one must be minimized, in order to minimize the number of mislabelled samples.

xrul e ∈ X ∶ minxrul e ∣ysi em/y∣ (1)

Within the present research, four different correlation rules have been generated for D1. The correlation
criteria have been defined through a linear correlation analysis between the dataset features and the DDoS
label. Let C be the correlation index and xi be the ith feature in the dataset. The linear correlation analysis
selects the feature xi with the highest correlation index, as shown in Eq. (2):

j = argmaxi(C( fi , DDoS)) (2)

After this analysis, the FlowDuration, BwdPacketLengthMean, and FwdPacketLengthMean fea-
tures have been selected and used as a foundation to build discrimination criteria, as shown in the following.
The four versions are the results of the correlation rules shown in Eqs. (3)–(6). In the equations, the
features BwdPacketLengthMean and FwdPacketLengthMean are represented as BPLengthMean and
FPLengthMean, respectively.

ys1 = {
DDoS i f FlowDuration ≥ TF l ow Durat ion

BENIGN otherwise (3)

ys2 = {
DDoS i f BPLengthMean ≥ TBPLeng thMean

BENIGN otherwise (4)

ys3 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

DDoS i f BPLengthMean ≥ T1
and

FPLengthMean ≤ T2
BENIGN otherwise

(5)
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ys4 = {
DDoS i f BPLengthMean ≥ TM × FPLengthMean

BENIGN otherwise (6)

The thresholds TF l ow Durat ion and TBwd Packe tLeng thMean have been set equal to the mean value of the
selected feature for all the samples of the original dataset. The thresholds T1 and T2 have been obtained as
shown in Eq. (7).

T = k ⋅ σ (7)

where σ is defined as shown in Eq. (8), considering individual standard deviations for the entire dataset,
DDoS, and BENIGN instances. The k parameter represents the coefficient used to adjust the thresholds based
on standard deviation. Its value has been determined through an empirical trial-and-error method.

σ =
√
(σtotal)2 + (σDDoS)2 + (σBE N IG N)2

3
(8)

The same logic has been applied considering BwdPacketLengthMean and FwdPacketLengthMean
respectively for T1 and T2. The ThresholdMultipl ier (TM) parameter has been obtained by calculating the
average BwdPacketLengthMean to FwdPacketLengthMean ratio for DDoS instances.

To further validate the proposed methodology, an additional baseline rule was extracted using the same
approach on D2. As a result, the following rule was defined (Eq. (9)), where SrcRate represents the source
packets per second:

ys5 = {
DDoS i f SrcRate ≥ TSrcRate

BENIGN otherwise (9)

Similarly to the previous set of rules, the threshold TSrcRate has been set equal to the mean value of the
selected feature for all the samples of the original dataset.

4.2 Novel Method for SIEM Rules Mining via xAI
The application of xAI on the RF for the D1 has revealed a set of complex nested rules.
All the extracted rules are used for binary classification, dividing network traffic into two classes:

Cl ass ∶ 0 (benign) and Cl ass ∶ 1, which represents DDoS attacks. The decision rules in the trees are based on
network traffic features.

Many of the conditions in the trees involve numerical thresholds. For example, a common pattern is to
check if a particular feature is greater than or less than a certain threshold value. If the condition is met, the
traffic is classified as benign (Cl ass ∶ 0); otherwise, it proceeds to the next condition. While some conditions
are simple comparisons with single features, others are more complex.

Numerous conditions combine multiple features or rely on logical operators such as “and” to form
compound criteria. In certain instances, these conditions include both “greater than” and “less than”
thresholds, which increases the complexity of the decision logic. Nodes within the trees frequently adopt an
“If...Then...Else” structure, where the tree follows the “Then” branch and assigns a traffic label if a condition
is met, or proceeds to the “Else” branch for further evaluation if it is not.

A prominent observation is that most decision pathways culminate in a benign (Cl ass ∶ 0) classification,
indicating a strong emphasis on identifying benign or non-malicious traffic. Despite this shared objective,
the exact conditions and threshold values for defining benign traffic differ from one tree to another.
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The decision tree outputs were initially examined to select a subset of rules suitable for conversion into
a nested SIEM rule. This consolidated rule is presented in Eq. (10) in a streamlined format to enhance clarity.
The thresholds within this rule are highly precise, having been extracted from recurrent values observed
in the forest. These thresholds are denoted as Tp parameters, where p corresponds to the relevant feature.
Where possible, the features themselves are abbreviated to maintain a concise representation.

Subsequently, the SHAP values have been extracted and analyzed, leading to the following SIEM rule
(Eq. (11)). The features with the highest SHAP values have been considered and employed in the definition
of discriminatory criteria. In the Equation, the threshold TTPL used for the TotalBackwardPackets feature
has been set equal to the mean value of the feature for the entire dataset. The threshold for FlowDuration
is the same employed in Eq. (3). The Whitel ist and Bl ackl ist have been derived by checking the exclusive
values of DestinationPort for BENIGN and DDoS labes, respectively.

yr f m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BENIGN i f FlowDuration ≤ TFL
or

ACKFl agCount ≤ TACK
or

PLengthMean ≤ TPL
or

SY NFl agCount > TSY N
or

Idl eMean ≤ TIM
or

DestPort ≤ TDP
or

BPLengthMean ≤ TBP
or

MinPacketLength ≤ TMP
or

FPLengthMean > TFP
DDoS otherwise

(10)

yr f m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BENIGN i f DestPort ∈Whitel ist
DDoS i f DestPort ∈ Bl ackl ist

or
TotBWDP ≤ TTPL

or
FlowDuration > TF l ow Durat ion

BENIGN otherwise

(11)

Finally, a third rule has been derived using explainability features provided by ANCHORS. The rule is
formalized in Eq. (12), where T1, T2, and TP L have been defined previously, while a and b have been set equal
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to the minimum and maximum values of the feature for BENIGN samples, respectively:

yr f m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BENIGN i f a ≥ FPLengthMean > b
DDoS i f BPLengthMean ≥ T1

or
FPLengthMean < T2

or
PLengthMean > TPL

BENIGN otherwise

(12)

Additional experiments were conducted on D2. In particular, SHAP and ANCHORS were employed
to mine the following rule (Eq. (13)). In the Equation, Protot denotes the network protocol, SrcLoss and
DstLoss the Source/Destination packets respectively that are re-transmitted and/or dropped, while TcpRtt
indicates the TCP connection setup round-trip time.

yr f m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

BENIGN i f Proto ∈Whitel ist
DDoS i f SrcLoss > DstLoss

or
TcpRtt < ε

Benign otherwise

(13)

The Whitel ist parameter has been derived by checking the exclusive values of the Prot feature for
Benign and DDoS labels, respectively. Finally, the ε parameter is defined as shown below (Eq. (14)):

ε → 0 (14)

This value has been selected as the threshold for the TcpRtt feature, as it has been observed that this
feature was close to zero, on average, for DDoS samples only.

5 Experimental Setup and Results
The following section presents the setup of the performed experiments and the detailed results obtained,

as the empirical evidence of the effectiveness of the proposed approach.
The results of the experimental approach are summarized in Tables 3 and 4. The metrics in Table 3 have

been extracted by training the ML classifier using the SIEM-labelled datasets, where the labels were assigned
through the correlation rules described previously, and using the ground truth dataset for testing. The ones
in Table 4 were obtained using the SIEM-labelled dataset obtained from the rules extracted through xAI
from the RF Model (RFM) for training, and the ground truth dataset for testing.

Table 3: Summary of classification reports for SIEM detection implemented using initial correlation rules

Rules Precision Recall F1-score Accuracy BA MCC G-mean

BENIGN DDoS BENIGN DDoS BENIGN DDoS
Eq. (3) 0.79 0.62 0.46 0.88 0.58 0.73 0.67 0.66 0.36 0.62
Eq. (4) 0.73 0.98 0.98 0.63 0.84 0.76 0.77 0.8 0.66 0.79
Eq. (5) 0.72 0.91 0.94 0.63 0.81 0.75 0.79 0.78 0.59 0.77
Eq. (6) 0.73 0.99 1 0.63 0.84 0.77 0.81 0.81 0.67 0.79
Eq. (9) 0.62 0.99 0.99 0.49 0.77 0.57 0.70 0.74 0.78 0.74
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Table 4: Classification report for SIEM detection implemented using RF rules derived through xAI

Rules Precision Recall F1-score Accuracy BA MC G-mean

BENIGN DDoS BENIGN DDoS BENIGN DDoS
Eq. (10) 1 0.82 0.78 1 0.88 0.9 0.91 0.89 0.8 0.88
Eq. (11) 1 0.93 0.92 1 0.96 0.96 0.96 0.96 0.92 0.96
Eq. (12) 1 0.96 0.96 1 0.98 0.98 0.98 0.98 0.96 0.98
Eq. (13) 1 0.99 0.99 1 0.99 0.99 0.99 0.99 0.99 0.99

The tables show a summary of the classification report based on Precision (15), Recall (16), F1-Score (17),
Accuracy (18), Balanced Accuracy (BA) (19), Matthews Correlation Coefficient (MCC) (20), and Geometric
Mean (G-mean) (21). In the following equations, for the sake of brevity, True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) are denoted using the acronyms.

Precision = TP
TP + FP

(15)

Recall = TP
TP + FN

(16)

F1 Score = 2 × Precision × Recall
Precision + Recall

(17)

Accuracy = Number of Correct Predictions
Total Number of Predictions

(18)

BA = Sensitivity + Specificity
2

(19)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FP)

(20)

G-mean =
√

Sensitivity × Specificity (21)

According to the results, the rules derived from RF through xAI outperform SIEM detection rules in
multiple aspects. As shown in Table 4, the rule defined in Eq. (12) achieved a Precision of 1.0 for the BENIGN
class, and 0.96 for the DDoS class, Recall of 0.86 for the BENIGN class, and 1.0 for the DDoS class, F1-score
of 0.98 for both classes, Accuracy, BA and G-mean of 0.98, and MCC of 0.96. The best SIEM detection rule
(Eq. (6)), on the other hand, achieved a Precision of 0.73 for the BENIGN class, and 0.99 for the DDoS class,
Recall of 1.0 for the BENIGN class, and 0.63 for the DDoS class, F1-score of 0.84 for the BENIGN class, and
0.77 for the DDoS class, and overall Accuracy of 0.81. The same performance trends were observed when
using the dataset D2, with near-perfect results using the xAI-mined rule, reaching a Precision of 1.0 for the
BENIGN class and 0.99 for the DDoS class, along with a Recall of 0.99 for the BENIGN class and 1.0 for the
DDoS class. This led to an F1-score of 0.99 for both classes, an overall Accuracy and BA of 0.99, an MCC of
0.99, and a G-mean of 0.99. These results surpass the best-performing SIEM detection rule (Eq. (9)), which
had a Precision of 0.62 for the BENIGN class and 0.99 for the DDoS class, a Recall of 0.99 for the BENIGN
class and 0.49 for the DDoS class, and a lower F1-score of 0.77 and 0.57 for BENIGN and DDoS classes,
respectively. The xAI-derived rules demonstrate superior performance, but also highlight the ability of ML
models to extract more nuanced patterns in IIoT data, resulting in significantly improved detection rates
for cyberattacks. The classification reports show that the usage of xAI to derive discriminatory criteria from
RFM holds the potential to improve classic SIEM detection rules. The higher F1-score also indicates a better
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balance between Precision and Recall. In comparison with traditional static rules, the nested rule brings the
knowledge of more complex relationships between features.

6 Discussion and Lessons Learnt
This section analyzes the outcomes, discusses the scalability and generalizability of the proposed

method, and reflects on the lessons learned from the application of xAI in enhancing cybersecurity practices.
The experimental findings demonstrate that SIEM rules generated through the RF model using xAI

methods can surpass the performance of conventional SIEM detection rules. As shown in Table 4, the rule
specified in Eq. (10) attains considerably higher Precision and Recall scores in classifying both BENIGN
and DDoS samples. Specifically, a Precision of 1.0 for the BENIGN class reflects near-perfect accuracy in
identifying benign traffic, while a Recall of 1.0 for the DDoS class indicates the detection of nearly all
actual DDoS instances. This equilibrium between Precision and Recall is also evident in a high F1-score,
underscoring the rule’s effectiveness in accurately classifying both classes. Moreover, the elevated BA, MCC,
and G-mean suggest that the rule remains robust even under imbalanced data conditions.

Subsequent refinement of the SIEM rule, shown in Eq. (11) and informed by SHAP values, yields
further improvements, notably in terms of DDoS Precision and BENIGN Recall, as well as F1-score for both
classes. This rule also achieves higher overall Accuracy, BA, MCC, and G-mean. The third rule, derived
through ANCHORS and presented in Eq. (12), exhibits near-optimal performance across all metrics, thereby
surpassing the preceding two.

By contrast, the strongest of the initial SIEM rules (Eq. (6)) maintains a high Precision for the DDoS
class but suffers from a considerably reduced Recall for that class. Consequently, although the rule precisely
identifies DDoS when triggered, it misclassifies a non-negligible number of malicious instances as benign,
leading to a diminished F1-score and lower Accuracy. Despite achieving the best BA, MCC, and G-mean
among the original SIEM rules, it still performs markedly below the xAI-derived rules in these measures.

The initial SIEM rules and the RF rules extracted via xAI, used for the definition of the SIEM rules
shown in Eqs. (10) and (11), present both similarities and differences. The main similarity is the core logic:
conditions are set to determine the final decision, following a binary classification. On the other hand, the
RF rules have a more complex structure with multiple conditions and branches, whereas the SIEM rules
are simpler and typically involve a single feature comparison for each rule. In the RF rules, conditions are
often based on specific feature values, while the SIEM rules use wider and more generic threshold values
to make decisions. The SIEM rules have more human-readable conditions, making it easier for someone to
understand the logic behind the rules. Another key difference is that the RF rules prioritize the detection of
benign traffic, classifying as anomalous all the samples that do not follow the pattern considered innocuous.
On the other hand, the traditional SIEM rules set conditions to detect malicious traffic, labelling as benign
every sample that does not follow the pattern considered anomalous. Additionally, unlike certain SIEM
rules, specifically, Eq. (6), in RF rules features are never compared between each other. Another remarkable
difference is that the SIEM rules consider a small subset of features among the most relevant ones, while
the RF rules have a wider variety of relevant features taken into consideration. The SIEM rules derived
from xAI look to find the common ground between the two sets, by implementing a more complex and
accurate correlation logic, while still maintaining human readability and enabling practical implementation
in common rule-based SIEM systems. As shown previously, this approach holds the potential to improve
traditional SIEM rules’ reliability in detecting network anomalies.

The results using the D2 dataset further confirm the effectiveness of the xAI-derived rules. In particular,
the rule from Eq. (13) achieved near-perfect performance, with Precision, Recall, and F1-score all consistently
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high, reaching 0.99 or higher for both BENIGN and DDoS classes. This shows the rule’s capability to
accurately identify both benign and malicious traffic in a complex IIoT environment. Compared to the
traditional SIEM rule (Eq. (9)), which struggled with significantly lower Recall for the DDoS class (0.49), the
xAI-derived rule demonstrated superior balance between detecting threats and minimizing false positives.
The improved results from D2 reinforce the advantages of using xAI to refine detection rules in IIoT systems,
especially in scenarios where traditional approaches fall short.

7 Threats to Validity and Possible Future Works
While the current study effectively demonstrates the application of xAI-enhanced SIEM systems

specifically for DDoS attacks, it acknowledges certain limitations regarding the scope of dataset diversity
and validation under dynamic network conditions. Furthermore, the primary focus has been to explore the
novel integration of xAI within the context of NIDS, emphasizing the utility of xAI-derived rules not for their
intrinsic explainability to end-users but for their capability to distill complex ML insights into actionable,
reliable rules within SIEM systems. The goal is to enhance detection capabilities and operational efficiency,
even if the security analysts may not fully comprehend the underlying complexities of the ML model. This
approach recognizes that in operational environments, the practical applicability and reliability of detection
rules often take precedence over the detailed understanding of their derivation, aligning with the primary
needs of cybersecurity professionals. Future work will aim to address these limitations by extending the
validation of our approach to more varied real-world environments and incorporating a broader spectrum
of cyberthreats beyond DDoS. This will involve testing the xAI-enhanced SIEM system across multiple
datasets that reflect a wider range of network conditions and attack scenarios, thereby strengthening the
generalizability and robustness of our findings. Furthermore, comparative analysis with other cutting-edge
methods will also be pursued to benchmark the effectiveness and efficiency of the proposed xAI application
in cybersecurity.

8 Conclusions
This paper is the significant extension of our previous work presented at ACIDS conference [17]. This

study investigates the integration of xAI and RFM to enhance traditional SIEM detection rules, with an
emphasis on classifying network traffic. A new rule-mining methodology has been introduced, alongside a
proof-of-concept implementation for detecting DDoS attacks using two distinct benchmark datasets. The
evaluation compares SIEM rules generated through xAI with conventional static rules, highlighting the
advantages of the proposed framework. The results indicate that the xAI-derived rules achieve notably
superior performance metrics compared to traditional rules. These advanced rules integrate multiple
conditions and branches, offering more detailed and refined insights. Such higher complexity allows them
to capture intricate relationships between features, leading to more accurate and sophisticated detection
criteria. The outcomes of this research underline the potential of xAI and RFM as effective tools in
cybersecurity, particularly for anomaly detection and security monitoring. Incorporating these techniques
into current practices can strengthen organizations’ abilities to identify and address network anomalies,
thereby safeguarding their digital infrastructure and assets.
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