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ABSTRACT: Alzheimer’s disease (AD) is a significant challenge in modern healthcare, with early detection and
accurate staging remaining critical priorities for effective intervention. While Deep Learning (DL) approaches have
shown promise in AD diagnosis, existing methods often struggle with the issues of precision, interpretability, and class
imbalance. This study presents a novel framework that integrates DL with several eXplainable Artificial Intelligence
(XAI) techniques, in particular attention mechanisms, Gradient-Weighted Class Activation Mapping (Grad-CAM), and
Local Interpretable Model-Agnostic Explanations (LIME), to improve both model interpretability and feature selection.
The study evaluates four different DL architectures (ResMLP, VGG16, Xception, and Convolutional Neural Network
(CNN) with attention mechanism) on a balanced dataset of 3714 MRI brain scans from patients aged 70 and older. The
proposed CNN with attention model achieved superior performance, demonstrating 99.18% accuracy on the primary
dataset and 96.64% accuracy on the ADNI dataset, significantly advancing the state-of-the-art in AD classification.
The ability of the framework to provide comprehensive, interpretable results through multiple visualization techniques
while maintaining high classification accuracy represents a significant advancement in the computational diagnosis of
AD, potentially enabling more accurate and earlier intervention in clinical settings.
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1 Introduction
Mild Cognitive Impairment (MCI) represents a critical intermediate stage between normal cognitive

aging and dementia, characterized by cognitive decline that exceeds age-appropriate norms while preserving
functional independence. This condition manifests across multiple cognitive domains, including memory,
general cognitive ability, and executive function [1]. The significance of MCI lies in its potential role as a
precursor to Alzheimer’s Disease (AD), with annual conversion rates ranging from 10% to 15% [2]. The
scale of this public health challenge is critical, as evidenced by the Alzheimer’s Association estimate that
approximately 5.7 million Americans 65 years and older lived with Alzheimer’s dementia in 2018, projections
indicating that this number could more than double by the mid-century without therapeutic advances [3].

The lack of a definitive cure for AD underscores the critical importance of early detection and
intervention in MCI to optimize patient outcomes [4]. A primary challenge is to differentiate between
patients with MCI who will progress to AD and those who will remain stable. Although various biomarkers
and testing approaches have been proposed [5], their longitudinal predictive capacity remains controversial.
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The development of reliable prognostic tools could significantly improve clinical decision making for high-
risk MCI patients [6,7]. While traditional clinical evaluation has been the standard for differentiating
between converting (MCIc) and non-converting (MCInc) MCI patients, machine learning approaches now
offer enhanced diagnostic capabilities [8], leveraging comprehensive non-invasive data and facilitating the
identification of novel biomarkers such as NFL, BACE1, and neurogranin [9,10]. Recent developments
in Deep Learning (DL) have yielded significant improvements in AD diagnosis, progressing from 66%
accuracy using T1-weighted MRI scans [11] to 98.5% accuracy using CNN-LSTM algorithms for early
MCI detection [12]. Model interpretability remains critical, with eXplainable Artificial Intelligence (XAI)
methods such as Shapley scores and XGBoost providing insights into predictive mechanisms and critical AD
biomarkers [13].

This study proposes a framework integrates DL and XAI, offering both predictive accuracy and
interpretability for clinical application. We evaluate four DL models using standard performance metrics to
determine optimal task performance. The contributions of our study are summarized as follows. First, this
study introduces a CNN model enhanced with an attention mechanism, which significantly improves the
classification accuracy of AD stages. This model achieved an accuracy and F1-score of 99.18%, outperforming
other state-of-the-art models for early stage AD classification. Second, our study incorporates XAI methods
that use Gradient-weighted Class Activation Mapping (Grad-CAM), Local Interpretable Model-Agnostic
Explanations (LIME) and attention mechanisms to provide visual interpretations of the model’s predictions.
This enhances the reliability and clinical applicability of the model by elucidating the important areas of the
brain that contribute to the classification decisions. Third, we evaluate four different architectures, including
ResMLP, VGG16, Xception, and the proposed CNN with attention mechanism. The CNN with attention
mechanism demonstrated superior performance compared to the other models, highlighting its effectiveness
in AD stage classification. Fourth, the study addresses common challenges in AD diagnosis, such as class
imbalance and computational requirements, by proposing a model that is both accurate and efficient, making
it suitable for clinical settings. This novel approach advances both the detection of AD through MRI analysis
and the broader field of medical diagnostics by combining robust AI with interpretable decision frameworks.

The rest of this paper is organized as follows: Section 2 presents related work in AD classification
using DL approaches. Section 3 describes our proposed framework, including data preparation, model
architectures, and explainability techniques. Section 4 presents our experimental results and provides
detailed performance comparisons across different models. Section 5 concludes the study with a summary
of our findings and suggestions for future work.

2 Related Work
Early detection of AD is critical for patient care and disease management. DL has demonstrated superior

performance over traditional methods in AD diagnosis, attracting significant attention from medical
professionals [14]. Recent research has led to significant advances in DL-based AD diagnosis. Basheer
et al.’s [15] CNN model, CapNet, achieved 92.39% accuracy on the OASIS dataset. Liu et al. [16] combined
feature learning with stacked autoencoders and achieved 87.6% sensitivity and 76.5% accuracy in MCI-AD
discrimination. Ortiz et al. [17] developed an ensemble CNN model that achieved over 90% accuracy and
95% AUC in discriminating between normal controls (NC) and AD cases, with strong performance in MCI
cases [18]. Nawaz et al. [19] addressed class imbalance using AlexNet for feature extraction and achieved
99.21% accuracy with different classifiers. Basaia et al. [20] demonstrated DL’s ability to handle large datasets,
achieving 99.20% accuracy in AD classification using the ADNI dataset. Sun et al. [21] integrated spatial
transformation networks with non-local attention mechanisms and achieved 97.10% classification accuracy.
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Jain et al. [22] combined VGG16 with FreeSurfer preprocessing and achieved 95.73% accuracy using the PF
SECTL model.

Recent DL innovations in AD diagnosis show significant progress [23–25], with Feng et al.’s [26] 3D-
CNN with FSBi-LSTM achieving 94.82% accuracy for AD vs. NC classification, and Allioui et al.’s [27]
deep U-net approach achieving 92.71% accuracy. State-of-the-art models show varying levels of perfor-
mance (83%–99.21% accuracy), including CapNet (92.39%), stacked autoencoders (87.76%), and AlexNet
with Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Random Forest (RF) classifiers
(99.21%) [15,16,19]. While these advances are promising, challenges remain in accuracy, class imbalance,
computational efficiency, and interpretability. Table 1 summarizes state-of-the-art DL models in AD diagno-
sis. Recent surveys [28,29] provide extensive details on recent DL approaches in predicting AD.

Table 1: Summary of related work on Alzheimer’s disease detection using deep learning models

Ref. Model Dataset Performance Key findings
[15] CapNet (CNN) OASIS Accuracy: 92.39% Demonstrated significant

improvement in
classification accuracy

using a novel CNN
model. Ablation study

achieved 39% on limited
features.

[16] Stacked
Autoencoders with

Softmax Layer

Custom MCI and
AD Dataset

Accuracy: 87.76%,
Sensitivity: 88.57%,
Specificity: 87.22%

Improved MCI vs. AD
discrimination through

feature learning with
autoencoders.

[17] Ensemble CNN
with Softmax

Classifier

ADNI Accuracy: 83%,
Precision: 90%,

AUC: 95%

Achieved high AUC and
stability in classifying

NC, MCI converters, and
AD cases.

[19] AlexNet with
SVM, KNN, RF

Custom AD
Classification

Dataset

Accuracy: 99.21% Addressed class
imbalance in AD

classification using
AlexNet as a feature

extractor.
[20] Deep Neural

Network
ADNI Accuracy: 99.20% High performance in

differentiating between
healthy individuals and

AD patients.
[21] ResNet with

Spatial
Transformer

Networks (STN)

MRI Dataset Classification Rate:
97.10%

Achieved macro
precision, recall, and

F1-scores all above 95%.

(Continued)
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Table 1 (continued)

Ref. Model Dataset Performance Key findings
[22] VGG16 + PF

SECTL
(Pre-trained

Model)

ADNI Accuracy: 95.73% Applied transfer learning
with feature extraction

for multi-stage
classification of NC,
EMCI, and LMCI.

[25] Independent
Component

Analysis (ICA)

Diffusion MRI
Dataset

AUC: 89.60% Demonstrated strong
diagnostic potential using

ICA on diffusion MRI
data.

[30] 3D Multiscale DL
Model

Brain Scan Dataset Accuracy: 87.24%,
Testing Accuracy:

93.53%

Developed multiscale DL
model for brain scan

analysis with high testing
accuracy.

[26] 3D-CNN +
FSBi-LSTM

ADNI Accuracy: 94.82%
(AD vs. NC),

86.36% (pMCI),
65.35% (sMCI)

Proposed hybrid
architecture combining

CNN and LSTM for
improved AD diagnosis.

[27] Deep U-Net OASIS Accuracy: 92.71%,
Sensitivity: 94.43%,
Specificity: 91.59%

Effective MRI
segmentation for

detecting AD-related
brain damage.

[31] DL-Based
Approach +

Ensemble Learning

Kaggle and OASIS Accuracy: 94.45%
(Kaggle), 94%

(OASIS)

Segmented hippocampus
region to classify AD

severity with high
accuracy.

3 The Proposed Framework
The proposed framework aims to systematically evaluate the performance of various DL models on a

balanced dataset for AD classification. The process includes several key phases:

• Dataset Preparation: This initial phase involves gathering and preprocessing the data to ensure appro-
priate input formats for the models. A crucial aspect of this step is to balance the dataset to mitigate class
imbalances that could potentially bias the results.

• Model Implementation: Four different architectures are implemented: ResMLP, VGG16, Xception, and
the proposed CNN with attention mechanisms. Each model is trained independently on the balanced
dataset to allow a fair comparison of their performance.

• Explainability Integration: The method incorporates explainability techniques, namely Grad-CAM,
LIME, and attention mechanisms, into the evaluation process. This allows for visual interpretations of
the models’ decision-making processes, and provides insight into the regions of the brain scans that
contribute most significantly to classification decisions.

The proposed methodology evaluates different DL models for AD classification, as shown in Fig. 1. The
process begins with dataset preparation and preprocessing, followed by implementation of four different
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architectures: ResMLP, VGG16, Xception, and CNN with attention mechanisms. Each architecture is trained
on the balanced dataset to ensure a fair performance comparison. The evaluation framework combines
accuracy metrics and multi-class metrics, complemented by XAI visualizations that highlight brain regions
that influence decisions, thereby improving diagnostic transparency. The following sections analyze the
role of architectural components and evaluate both technical performance and clinical relevance in AD
DL models.

VGG16 XceptionResMLP

PreprocessingData Collection

Train
Data Test Data

CNN with
Attention

Resize
Normalize
SMOTE  

Deep Learning ModelsEvaluation  & Explainability

Figure 1: The scheme of the proposed framework

3.1 Data Collection
This study utilizes a dataset of 3714 MRI brain scans from the OMS Radiology Clinic1, categorized

as NonDemented (834), MildDemented (1824), and VeryDemented (1056) cases. The dataset includes
participants aged 70+ years and is optimized for the detection of Alzheimer’s-related brain degeneration.
All scans were anonymized and normalized to preserve critical structures such as hippocampal atrophy and
enlarged cerebrospinal fluid spaces, ensuring optimal preprocessing for DL model training and evaluation
in dementia stage classification.

3.2 Data Balancing
To address the class imbalance in our three-class dataset (NonDemented, MildDemented, and VeryDe-

mented), we implemented the Synthetic Minority Oversampling Technique (SMOTE). SMOTE generates
synthetic samples for minority classes by interpolation between existing samples, preserving the inherent
structure of the data while balancing class distributions. The preprocessing pipeline included resizing MRI
images to 224 × 224 pixels, flattening them into 1D vectors compatible with SMOTE, and encoding class
labels as integer values. The sampling strategy was set to “auto” to ensure equal representation across classes,
as shown in Fig. 2. After SMOTE application and image reconstruction, the balanced dataset was partitioned
into training (80%) and test (20%) sets to improve the robustness and generalization capabilities of the model.

1This process was carried out in collaboration with Dr. Omar M. Sultan, a highly qualified specialist and renowned radiologist.
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Figure 2: Class distribution of the original (imbalanced) and balanced dataset after applying SMOTE

3.3 The Proposed CNN with Attention Model
The proposed model integrates a CNN architecture with an attention mechanism. It accepts 224 ×

224 RGB images as input, as shown in Table 2. The model integrates three convolutional blocks with attention
mechanisms to optimize feature extraction for AD staging. Each design choice is justified as follows:

• Convolutional blocks with increasing filter sizes (64, 128, 256): The three-level hierarchical structure
progressively increases filter sizes (64→ 128→ 256) to capture low-level to high-level features. This
design is consistent with established CNN architectures (e.g., VGG16), where deeper layers model
complex patterns such as cortical atrophy, while shallower layers detect edges and textures. Increasing
filters ensure sufficient capacity to encode spatially varying AD biomarkers.

• Attention Mechanism: Each convolutional block is augmented with an attention module to prioritize
diagnostically critical regions (e.g., hippocampus, entorhinal cortex). Global average pooling compresses
spatial features into channel-wise descriptors, followed by dimensionality reduction (to 8/16/32 units)
and restoration.

• Dropout Layers (0.3 and 0.5): Dropout is applied after the third block (rate = 0.3) and before the softmax
layer (rate = 0.5) to mitigate overfitting. Higher dropout in deeper layers counteracts noise in high-
dimensional feature maps, while the final dropout regularizes the dense layer. This strategy balances
generalization and specificity, which is critical for medical imaging with limited data.

• Dense Layer (256 units): The 256-unit dense layer after flattening serves as a nonlinear combiner of high-
level features. This dimensionality balances computational efficiency and discriminative power, avoiding
underfitting (too few units) or overparameterization (too many units).

• Softmax Output: A three-unit softmax layer corresponds to the three AD stages (NonDemented,
MildDemented, VeryDemented), providing probabilistic class assignments suitable for clinical staging.

Table 2: Hyperparameters of the proposed CNN with attention and pre-trained models

Parameter CNN with
attention

ResMLP VGG16 Xception

Input shape (224, 224, 3) (224, 224, 3) (224, 224, 3) (224, 224, 3)
Pretrained

weights
– – ImageNet ImageNet

Architecture
details

Conv1: 64 filters
(3 ×3)

MLP Block Dim:
512

Last 2 Conv
Layers

Last 2 Conv
Layers

(Continued)
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Table 2 (continued)

Parameter CNN with
attention

ResMLP VGG16 Xception

Conv2: 128 filters
(3 × 3)

Expansion
Factor: 4

Dense1: 512 units Dense1: 256 units

Conv3: 256 filters
(3 × 3)

Activation:
GELU, ReLU

Dense2: 256
units

Dense2: 128 units

Attention Units:
64, 128, 256

Dense3: 128 units

Pooling type – – Average Pooling Average Pooling
Dropout rates Conv3: 0.3 0.1 Dense1&2: 0.1 0.3

Dense: 0.5 Dense3: 0.3
Final activation Softmax (3

classes)
Softmax Softmax (3

classes)
Softmax (3

classes)
Optimizer Adam Adam Adam Adam

Loss function Categorical Categorical Categorical Categorical
Crossentropy Crossentropy Crossentropy Crossentropy

3.4 Other Pre-Trained Transfer Learning Models
3.4.1 ResMLP (Residual Multi-Layer Perceptrons)

The ResMLP model processes 224 × 224 × 3 RGB images through three ResMLP blocks, as detailed
in Table 2, each containing:

• Two dense layers: the first expands the dimensionality 4x with GELU activation, the second restores the
original dimensions.

• Dropout layers and layer normalization for regularization.
• Residual connections to address vanishing gradients.

The architecture concludes with a 128-unit dense layer (ReLU activation) and a three-neuron softmax
layer for AD classification. The model uses 512-dimensional blocks and optimized dropout rates to balance
accuracy and simplicity.

3.4.2 VGG16
The model adapts the VGG16 architecture for AD classification, processing 224 × 224 RGB images

through 13 convolutional layers (five blocks with 3 × 3 filters), as shown in Table 2. While maintaining
ImageNet pre-trained features, the architecture modifies the fully connected layers to include:

• First dense layer: 512 units, ReLU activation, dropout (0.1).
• Second dense layer: 256 units, ReLU activation, dropout (0.1).
• Third dense layer: 128 units, dropout (0.3).
• Output layer: 3-unit softmax for AD classification.

The model implements Adam optimizer and categorical cross-entropy loss, and uses transfer learning
to improve disease stage identification.
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3.4.3 Xception
The adapted Xception architecture with depth-separable convolutions, which decomposes traditional

operations into channel-wise filtering and 1 × 1 convolutions for efficient pattern recognition, as shown
in Table 2. The network processes 224 × 224 RGB images using pre-trained ImageNet weights, with frozen
layers except for the final convolution block, followed by two dense layers (256 and 128 units) with ReLU
activation, dropout (0.3), and a three-unit softmax layer for AD stage classification, implementing Adam
optimizer and categorical cross-entropy loss.

3.5 Explainable Artificial Intelligence (XAI)
XAI represents a critical advance in the development of transparent DL models for medical imaging,

particularly in the context of neurodegenerative disease diagnosis [32]. While DL approaches have achieved
satisfactory performance in medical image analysis, their inherent opacity poses significant challenges for
clinical implementation. To address these limitations and provide comprehensive model interpretability,
we employ multiple XAI methods. Our framework integrates Grad-CAM for continuous gradient-based
visualization and LIME for complementary region-based explanations, along with attention mechanisms.
This approach to explainability allows for both global and local interpretations of the model’s decision
process, facilitating more reliable clinical validation.

3.5.1 Gradient-Weighted Class Activation Mapping (Grad-CAM)
XAI provide the reasoning behind the model’s diagnostic decisions. We use Grad-CAM technique that

serves as a pivotal component of our XAI framework, enhancing the interpretability of the ViT-GRU model
in diagnosing AD. Grad-CAM utilizes the gradients of the target class, flowing into the final convolutional
layer of the model, to produce a localization map that highlights important regions in the input images, thus
offering insights into the model’s decision-making process [33]. The Grad-CAM score for a given class c at a
spatial location (x , y) can be mathematically represented as follows:

Grad-CAM(x , y) = ReLU(∑
k

αc
k Ak(x , y)) (1)

In this equation, Ak(x , y) denotes the feature map from the final convolutional layer corresponding
to the k-th feature, and αc

k is the weight associated with the k-th feature for the target class c, calculated as
follows:

αc
k =

1
Z ∑i

∑
j

∂yc

∂Ak(i , j) (2)

where Z is the number of pixels in the feature map Ak and yc represents the output score for
class c. By applying the ReLU function, we ensure that only the positive influences on the class score are
retained, effectively filtering out the regions that do not contribute positively to the model’s prediction.
The Grad-CAM visualization supports medical diagnostic interpretation by generating heat map overlays
that highlight influential brain regions in Alzheimer’s stage prediction, with particular emphasis on crit-
ical areas such as the hippocampus and cortical regions. This explanatory AI approach enhances model
transparency and facilitates AI-clinician collaboration, enabling evidence-based diagnosis and improved
pathological understanding.
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3.5.2 Local Interpretable Model-Agnostic Explanations (LIME)
To complement the Grad-CAM visualization and address its limitations in explaining complex MRI

features, we incorporate LIME as an additional interpretability technique. LIME creates interpretable repre-
sentations by approximating the model’s behavior locally around each prediction. For MRI analysis, LIME
segments the image into superpixels and learns a locally linear model that approximates how the CNN makes
predictions in that specific region. Unlike Grad-CAM, which focuses on class-specific activation maps, LIME
provides feature-level explanations by identifying which segments of the brain image most strongly influence
the model’s decision. This approach is particularly valuable for analyzing complex MRI patterns, where
Grad-CAM’s activation maps may not fully capture the nuanced structural changes associated with different
stages of AD. LIME generates explanations by perturbing the input image and observing how the model’s
predictions change, providing insight into which regions are most critical for classification decisions.

3.5.3 Attention Mechanism
Attention mechanisms are fundamental components in DL architectures, enabling selective focus on

important input features [34]. This cognitive-inspired approach improves model performance in domains
ranging from computer vision to natural language processing by dynamically weighting input elements based
on their relevance. While widely implemented in various fields, the application of attention mechanisms as
an explanatory tool remains relatively unexplored in medical imaging, particularly in disease diagnosis [35].
In AD detection, transformer-based models employ attention mechanisms to analyze neuroimaging data
through a query key value framework, where input segments are weighted according to their diagnostic
significance. In this study, two types of attentional mechanisms were used: spatial attention for region-specific
feature identification, and dense-layer attention for pixel-wise weight distribution visualization. This process
facilitates the identification of critical biomarkers, such as hippocampal atrophy and cortical thinning, while
providing interpretable insights for clinical decision making.

4 Results and Discussion

4.1 Experimental Setup
The study implemented mathematical models in Python 3.11 (Anaconda), using an 80-20 train-test split

on 3714 samples. Images were standardized to 224 × 224 pixels (OpenCV), converted to NumPy arrays,
and preprocessed using label encoding and one-hot transformations (Keras). Class imbalance was addressed
using SMOTE. Four architectures (ResMLP, VGG16, Xception, and a CNN with attention) were trained using
Adam optimization and categorical cross-entropy loss in Keras, with epoch configurations of 8, 14, 10, and
7, respectively. Computational efficiency was evaluated on an NVIDIA V100 GPU (Google Colab Pro) and
an Intel i5-11400H/32 GB system. Training included SGD optimization (50 epochs, batch size = 32), sparse
categorical cross-entropy loss, and softmax classifiers. Model interpretability was enhanced using Grad-
CAM and attention mechanisms, with OpenCV and scikit-learn supporting preprocessing and evaluation.
Execution times ranged from 22.23 to 420.8 s, reflecting GPU-accelerated efficiency.

4.2 Evaluation Metrics for AD Classification
The evaluation of DL models in AD classification employs multiple performance metrics, includ-

ing accuracy, precision, recall, F1-score and ROC curves, each offering distinct insights into model
performance [36].
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4.3 The Proposed CNN with Attention Model Results and Evaluation
The CNN with Attention model demonstrated significant improvements in accuracy and effective loss

reduction during training and evaluation, as shown in Fig. 3. Initially, the model had a training accuracy
of 42.71% and a loss of 1.0702, with a validation accuracy of 63.34% and a loss of 0.8539, indicating initial
learning but a need for better feature extraction. In the second epoch, the training accuracy improved
to 66.86% and the validation accuracy to 83.54%, reflecting the influence of the attention mechanism in
focusing on essential features. In the third epoch, training accuracy reached 84.14% and validation accuracy
climbed to 93.52%, with reduced losses indicating improved error correction. In the fourth epoch, training
accuracy is 91.21% and validation accuracy is 98.50%, with a significant decrease in validation loss, suggesting
robust generalization. In the fifth epoch, training accuracy increased to 96.22% and validation accuracy to
98.75%. The final epoch yielded an impressive training accuracy of 98.17% and validation accuracy of 99.00%,
demonstrating the model’s ability to extract informative features through its attention mechanism.

Figure 3: Training and validation performance curves for the CNN with attention model

The CNN with Attention architecture demonstrated exceptional discriminative ability, achieving an
overall accuracy 99.18%. The classification performance, as presented in Table 3. The model showed robust
performance across the classes (VeryDemented and MildDemented), with precision, recall and F1-score
metrics consistently above 98%. Specifically, the NonDemented class achieved perfect (100%) accuracy with
precision, recall and F1-score metrics, validating the model’s effectiveness in classifying AD stage. These
results indicate that the CNN with Attention model successfully distinguished between different dementia
stages with high precision and recall, making it a reliable classifier for our dataset.

The ROC curves of the CNN with Attention model illustrated in Fig. 4. It performs well across all classes,
with each class achieving an AUC of 0.99. These results indicate the model’s robust ability to distinguish
between NonDemented, MildDemented, and VeryDemented stages of AD. The high AUC values reflect
minimal false positives and false negatives, underscoring the effectiveness of the attention mechanism
in improving feature extraction and classification accuracy. Overall, the model shows a strong ability to
accurately identify cognitive states.
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Table 3: The performance of the CNN with attention model

Class Precision (%) Recall (%) F1-score (%)
NonDemented 100.00 100.00 100.00
MildDemented 98.86 98.58 98.72
VeryDemented 98.70 98.96 98.83

Overall 99.19 99.18 99.18
Accuracy 99.18

Figure 4: ROC curves of the CNN with attention model

4.4 ResMLP Model Results and Evaluation
The ResMLP model showed substantial convergence over eight epochs, as shown in Fig. 5, with training

and validation accuracies improving from 38.02% and 50.37% to 95.79% and 96.01%, respectively. The
validation loss decreased significantly from 1.0270 to 0.1262, demonstrating effective optimization and
generalization without overfitting.

The model achieved an overall accuracy of 94.70%, with robust performance across all classes, as shown
in Table 4. Class-specific metrics showed exceptional discrimination, particularly in the VeryDemented
classification (precision: 98.03%), while the MildDemented and NonDemented classes showed strong recall
rates of 97.49% and 100%, respectively. The model’s overall metrics (F1-score: 94.65%) and consistent
convergence patterns (Fig. 5) confirm its effectiveness in AD stage classification.

The ResMLP model showed superior discriminative ability as evidenced by the ROC curves, as shown
in Fig. 6, achieving AUC values greater than 0.99 in all classes (NonDemented: 0.9937, MildDemented:
0.9951, VeryDemented: 0.9977). The proximity of the curves to the ideal upper left corner validates the
effectiveness of the model in classifying AD stage.
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Figure 5: Training and validation performance curves for the ResMLP model

Table 4: The performance of the ResMLP model

Class Precision (%) Recall (%) F1-score (%)
NonDemented 96.69 100.00 98.32
MildDemented 90.65 97.49 93.95
VeryDemented 98.03 86.13 91.69

Overall 95.12 94.54 94.65
Accuracy 94.70

Figure 6: ROC curves of the ResMLP model
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4.5 VGG16 Model Results and Evaluation
The VGG16 architecture showed consistent optimization over 15 epochs, as shown in Fig. 7, with

training and validation accuracies improving significantly from initial values of 37.71% and 54.11% to final
performances of 95.55% and 94.51%, respectively. The model showed a steady error reduction from an initial
training loss of 2.2924, validating its effective convergence and generalization capabilities.

Figure 7: Training and validation performance curves for the VGG16 model

The VGG16 model demonstrated exceptional discriminative ability with an overall accuracy of 97.26%
on the test set, as shown in Table 5. Class-specific metrics showed robust performance across all categories,
with the NonDemented class achieving 98.87% precision, VeryDemented showing balanced metrics (96.95%
for precision, recall, and F1-scores), and NonDemented showing strong recall (98.25%).

Table 5: The performance of the VGG16 model

Class Precision (%) Recall (%) F1-score (%)
NonDemented 98.87 100.00 99.43
MildDemented 97.45 95.98 96.71
VeryDemented 95.40 95.95 95.68

Overall 97.24 97.31 97.27
Accuracy 97.26

The VGG16 model demonstrated superior discriminative ability as evidenced by the ROC curves
shown in Fig. 8, achieving excellent AUC values greater than 0.99 across all classes (NonDemented: 0.9978,
MildDemented: 0.9986, VeryDemented: 0.9962), validating its effectiveness in AD stage classification.
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Figure 8: ROC curves of the VGG16 model

4.6 Xception Model Results and Evaluation
The Xception architecture demonstrated consistent optimization over 10 epochs, as shown in Fig. 9,

progressing from an initial training accuracy of 38.50% to final training and validation accuracies of 93.83%
and 94.01%, respectively. The synchronized improvement between training and validation metrics confirms
the model’s effective learning and generalization capabilities.

Figure 9: Training and validation performance curves for the Xception model

The Xception model demonstrated robust classification performance, achieving 91.87% accuracy on
the test set (Table 6). Class-specific analysis showed high precision (≥83.46%) for the MildDemented and
VeryDemented categories, with exceptional recall (99.43%) for the NonDemented class. The discriminative
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ability of the model is further validated by ROC analysis (Fig. 10), which showed high AUC values for all
classes (NonDemented: 0.9825, MildDemented: 0.9914, VeryDemented: 0.9904).

Table 6: The performance of the Xception model

Class Precision (%) Recall (%) F1-score (%)
NonDemented 98.31 99.43 98.87
MildDemented 94.81 82.66 88.32
VeryDemented 83.46 94.80 88.77

Overall 92.19 92.30 91.99
Accuracy 91.87

Figure 10: ROC curves of the Xception model

4.7 Ablation Study
We conducted a comprehensive ablation study to evaluate the contribution of each key component in

our proposed CNN with Attention framework. This analysis helps to understand the impact of different
architectural choices and preprocessing steps on the performance of the model. Table 7 presents the results of
removing different components from our framework, with the full model achieving 99.18% accuracy, 99.19%
precision, 99.18% recall, and 99.19% F1-score.

Removing the attention mechanism resulted in a modest decrease in performance (1.11% decrease in
accuracy), with similar decreases in precision (98.13%) and recall (98.06%). Although the effect was less
dramatic than originally hypothesized, it demonstrates that the attention mechanism contributes to the
overall effectiveness of the model.

When SMOTE balancing was removed, accuracy decreased by 2.94% (to 96.23%), with similar decreases
in precision and recall. This confirms that proper data balancing is critical for robust AD stage classification.
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Table 7: Impact of model components on classification performance

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
Full model 99.18 99.19 99.18 99.19

Without attention mechanism 98.06 98.13 98.06 98.06
Without data balancing 96.23 95.28 96.65 93.23
Without dropout layers 97.62 97.67 97.63 97.63

Basic CNN only 98.44 98.55 98.38 98.45

Removing dropout layers resulted in a 1.55% decrease in accuracy (to 97.62%), with corresponding
decreases in precision (97.67%) and recall (97.63%). This moderate impact suggests that dropout plays an
important role in preventing overfitting and maintaining model generalization.

Interestingly, the basic CNN architecture performs relatively well, achieving 98.44% accuracy, which is
only 0.73% lower than the full model. This suggests that while our enhancements improve performance, the
underlying CNN architecture is already quite effective for this classification task.

While individual elements contribute to model performance, their collective effect turned out to be
less pronounced than originally hypothesized. Data balancing emerged as the most critical element, while
the attention mechanism and dropout layers provided smaller but meaningful improvements to overall
system performance.

4.8 The Proposed Model Explainability Analysis Using Multiple Visualization Techniques
This study employs multiple visualization techniques to provide a comprehensive explainability of

the model’s decision process. We use both Grad-CAM and LIME to identify salient image regions that
drive model predictions, as these methods provide complementary insights into the model’s areas of focus.
Grad-CAM-generated attention maps align with clinical understanding by highlighting relevant anatomical
structures such as the hippocampus and cortex regions known to show AD-related deterioration. At the same
time, LIME provides a complementary explanation by segmenting regions that most strongly influence the
model’s classifications, providing a more granular view of feature importance.

As shown in Fig. 11, we compare original MRI scans with both Grad-CAM and LIME visualizations
across multiple cases. Grad-CAM (middle column) provides a continuous heat map where red indicates
maximum contribution, effectively highlighting the gradients of importance across brain regions. LIME
explanations (right column) provide a binary segmentation of influential regions, shown in yellow, providing
a more precise delineation of areas the model considers critical for classification. The combination of
these techniques improves model interpretability by providing both gradient-based (Grad-CAM) and
segmentation-based (LIME) perspectives on feature importance. While Grad-CAM reveals the continuous
spectrum of regional importance through color gradients, LIME’s binary segmentation helps validate these
results by explicitly identifying the most critical regions. This dual visualization approach improves the
interpretability of medical image analysis and provides medical experts with complementary tools to validate
the model’s decision-making process against their clinical knowledge.

The attention mechanism was also applied to reveal distinct patterns of focus across brain regions,
as shown in Fig. 12. The figure shows the attention heatmaps and weight distributions for our dataset,
highlighting the key areas that contributed most to the model’s classification decisions. The heatmaps show
strong localized attention around specific brain structures, indicating that the model effectively focuses
on regions relevant to disease detection. These results highlight the role of the attention mechanism in
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improving interpretability by pinpointing the most influential regions for classification. The observed
variation between datasets highlights the adaptability of the attention-based model, while suggesting the
need for dataset-specific tuning to optimize its performance.

Figure 11: MRI scan visualizations using Grad-CAM and LIME explanability techniques for our dataset
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Figure 12: Attention heatmaps and weight distributions for our dataset

4.9 Comparison and Discussion
The performance comparison of different models, as shown in Table 8, shows remarkable differences

in accuracy, precision, recall, and F1-score. The proposed CNN with Attention model emerged as the top
performer, achieving an impressive accuracy, along with perfect precision, recall, and F1-scores of over 99%.
The VGG16 model, on the other hand, showed strong results with an accuracy of 97.26% and an F1-score of
97.27%. The ResMLP and Xception models showed comparatively lower scores, with accuracies of 94.70%
and 91.87%, respectively, indicating a less effective performance in classifying the target categories. These
results indicate that CNN with Attention architecture is the optimal choice for AD stage classification on
our dataset.

Table 8: Comparison of models performance on our dataset

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
ResMLP 94.70 95.12 94.54 94.65
VGG16 97.26 97.24 97.31 97.27

Xception 91.87 92.19 92.30 91.99
CNN with attention 99.18 99.19 99.18 99.18

We tested the proposed model using the widely established Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset [37]. This dataset contains 16,200 MRI scans with a resolution of 224 × 224 × 3. The
dataset is categorized into multiple AD stages, including CN (Cognitive Normal), EMCI (Early Mild
Cognitive Impairment), LMCI (Late Mild Cognitive Impairment), MCI (Mild Cognitive Impairment), and
AD (Alzheimer’s Disease). This large-scale dataset provides a diverse representation of AD progression,
complementing the our dataset and enhancing model generalization. Analyzing the stage-wise performance
in Table 9, our model demonstrates robust classification capabilities across different stages of AD progression.
The model performs exceptionally well in distinguishing EMCI and LMCI stages, achieving F1-scores of
99.44% and 99.87%, respectively, which is crucial for early intervention. For established AD cases, the
model maintains high precision (97.00%) and recall (95.88%) with specificity (99.19%), indicating reliable
identification of advanced disease states. The slightly lower performance in MCI classification (F1-score:
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94.34%) reflects the inherent challenge in detecting this transitional stage, although the high specificity
(98.76%) suggests minimal false positives. The model’s strong performance in CN classification (precision:
97.87%, specificity: 99.54%) demonstrates its reliability in identifying healthy controls. Our model effectively
captures progression across the AD spectrum and performs well in identifying early-stage cognitive decline.

Table 9: The classification performance for each class of the proposed CNN with attention model

Class Precision (%) Recall (%) Specificity (%) F1-score (%)
AD 97.00 95.88 99.19 96.43
CN 97.87 94.70 99.54 96.26

EMCI 99.55 99.34 98.69 99.44
LMCI 99.87 99.87 99.64 99.87
MCI 95.05 93.60 98.76 94.34

The comparative analysis shown in Table 10 demonstrates the strong performance of recent DL
approaches for AD classification on ADNI dataset. According to the results on the table,while the hybrid
Xception and Fractalnet-based DL model achieved slightly higher accuracy at 99.1%, and the entropy-based
data selection approach using AlexNet showed strong performance at 98.8% accuracy, our model shows
excellent balanced performance at 96.6% accuracy, 96.7% precision, and 96.9% recall. This is a significant
improvement over traditional machine learning approaches such as XGBoost (84.2% accuracy) and Random
Forest (78.7% accuracy). The balanced precision and recall metrics indicate our model’s robust and reliable
classification capabilities across all stages of Alzheimer’s disease, a critical factor for clinical applications.
Our model also demonstrates competitive performance against the ensemble transfer learning approach
(96.5% accuracy), while offering a more streamlined single-model architecture. These results validate the
effectiveness of our attention-based approach and suggest its strong potential for clinical applications in
Alzheimer’s diagnosis. While direct comparisons between studies should be interpreted with caution due to
differences in experimental design, our model shows competitive performance (96.6% accuracy) compared
to results of other approaches. These results suggest the effectiveness of our attention-based approach,
although we acknowledge that standardized evaluation protocols would be needed for accurate performance
comparisons across methods.

Table 10: Comparative analysis of performance with similar studies on ADNI dataset*

Ref. Model/Technique Precision (%) Recall (%) Accuracy (%)
[38] Hybrid Xception and Fractalnet-based DL 99.7 98.3 99.1
[39] Entropy-based data selection using AlexNet 99.1 97.7 98.8
[40] XGBoost Classifier 85.0 79.0 84.2
[40] Random Forest Classifier 78.0 79.0 78.7
[41] Ensemble transfer learning with vision transformer 93.7 89.7 96.5

This study CNN with Attention 96.7 96.9 96.6

Note: * Results for other models are reported in their publications, which are referenced in the Ref. column. Note
that cross-study comparisons require caution due to differences in experimental setups, implementation details,
and evaluation protocols.
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5 Conclusion
This study has demonstrated the effectiveness of integrating multiple explainability techniques and

attention mechanisms into DL frameworks for AD classification. Through a comprehensive evaluation of
four different architectures (CNN with attention, ResMLP, VGG16, and Xception), our study establishes
several significant findings in the field of computational AD diagnosis. The proposed CNN with attention
model achieves superior performance metrics, with an accuracy of 99.18% on our dataset and 96.64%
on the ADNI dataset, outperforming several recent approaches. This performance improvement can be
attributed to three key innovations: the implementation of an attention mechanism that effectively identifies
important features in brain MRI scans, the successful addressing of class imbalance through SMOTE
preprocessing, and the integration of multiple XAI techniques (Grad-CAM and LIME) for comprehensive
model interpretability.

The ablation study revealed the relative importance of different architectural components, with data
balancing emerging as the most critical element (2.94% impact on accuracy), followed by dropout layers
(1.55% impact), and the attention mechanism (1.11% impact). These results suggest that while individual
components contribute incrementally to model performance, their collective implementation is essential for
optimal results.

These findings suggest several promising directions for future research. First, the integration of multi-
modal data sources, including genomic information and cognitive assessment results, could further enhance
the diagnostic capabilities of the model. Second, exploring more sophisticated attentional mechanisms could
improve feature selection and interpretation. Finally, the framework’s success in overcoming class imbalance
and interpretability challenges provides a foundation for applying similar approaches to other neurological
disorders. In conclusion, this study advances both the technical capabilities and clinical applicability of AI-
based diagnosis of AD. The framework’s ability to maintain high accuracy while providing interpretable
results represents a significant step toward the practical implementation of AI systems in clinical settings,
potentially enabling earlier and more accurate AD diagnosis and intervention.
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