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ABSTRACT: Recently, Network Functions Virtualization (NFV) has become a critical resource for optimizing
capability utilization in the 5G/B5G era. NFV decomposes the network resource paradigm, demonstrating the efficient
utilization of Network Functions (NFs) to enable configurable service priorities and resource demands. Telecommu-
nications Service Providers (TSPs) face challenges in network utilization, as the vast amounts of data generated by
the Internet of Things (IoT) overwhelm existing infrastructures. IoT applications, which generate massive volumes of
diverse data and require real-time communication, contribute to bottlenecks and congestion. In this context, Multi-
access Edge Computing (MEC) is employed to support resource and priority-aware IoT applications by implementing
Virtual Network Function (VNF) sequences within Service Function Chaining (SFC). This paper proposes the use of
Deep Reinforcement Learning (DRL) combined with Graph Neural Networks (GNN) to enhance network processing,
performance, and resource pooling capabilities. GNN facilitates feature extraction through Message-Passing Neural
Network (MPNN) mechanisms. Together with DRL, Deep Q-Networks (DQN) are utilized to dynamically allocate
resources based on IoT network priorities and demands. Our focus is on minimizing delay times for VNF instance
execution, ensuring effective resource placement, and allocation in SFC deployments, offering flexibility to adapt to
real-time changes in priority and workload. Simulation results demonstrate that our proposed scheme outperforms
reference models in terms of reward, delay, delivery, service drop ratios, and average completion ratios, proving its
potential for IoT applications.

KEYWORDS: Deep reinforcement learning; graph neural network; multi-access edge computing; network functions
virtualization; software-defined networking

1 Introduction
The Internet of Things (IoT) has increased rapidly in recent years, as it has birthed an immense chance

to transition from a conventional economy to a digital economy. As in an intrinsically distributed data-
centric system, IoT can gather and provide an enormous volume of data that can be processed, interpreted,
and analyzed into useful information and acknowledgment. Hence, in the context of IoT-based applications,
it involves creating huge and vast amounts of data that lead to resource constraints, increasingly vast
resource capacity in network performance, and resource congestion in terms of the urgent business on
time. However, Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) were
proposed to provision treated as the key enabler technologies to address dynamic and agile IoT networks
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[1–4]. SDN creates a programmable network by centralizing the control plan and data plan functionality
from physical routing devices, while NFV decouples various network resources to compose the Network
Functions (NFs) from physical network devices, running them as virtualization technologies [5,6]. By
adopting these technologies, SDN and NFV-enabled IoT networks considerably simplify the deployment of
NFs and improve network performance and service.

Upon closely providing the network resource management and orchestration of all data utilization,
Service Function Chaining (SFC) is used to indicate an ordered or sequential collection of Virtual Network
Functions (VNFs) to create service functions [6]. SFC propagates ordered NFs from ingress to egress (e.g.,
VNF1, VNF2, VNF3, and VNF-n); meanwhile, SFC requests must be rounded by specifying the typed and
listed VNFs in the specified order. On the other hand, the more appropriate representation is the VNF-
Forwarding Graph (VNF-FG), which is proposed by the European Telecommunications Standards Institute
(ETSI) [7,8]. In fact, Multi-access Edge Computing (MEC) architecture provides benefits in conducting the
proliferation of IoT networks. MEC provides efficient resource utilization and management mechanisms
by eliminating computation intensively to enhance the end user of the resource capacities in terms of
computation and communication on latency. However, placing and allocating virtual resources in network
resource management in MEC servers is essential for responding and adapting to the satisfaction of service
derived in complex network environments. Otherwise, VNFI employs resource computing techniques to
optimize resource placement and allocation, offering scalable, adaptable, and flexible real-time solutions.
However, efficient resource management is impacted by heterogeneous workloads to meet user demands
for dynamic and flexible service. Due to limitation of availability of those resource orchestration and
computation for diversity applications under MEC architecture, placement, and allocation of resources
adaptively lead to many challenges. These challenges arise, including resource constraints, latency, and
interoperability issues, during compute-intensive servers across heterogeneous IoT networks on applications.
The distributed significant environment of multi-service demands, and multi-vendor applications adds
complexity to allocating and placing the resource utilization.

This paper focuses on leveraging intelligent resource allocation and placement based on service priority
demands-driven resource management in IoT networks. By integrating Deep Reinforcement Learning
(DRL) based on Graph Neural Network (GNN) paradigms which use the graph structure of Message-Passing
Neural Network (MPNN) for embedding the nodes and link states of VNF [9–11], GNN solves the scalability
problem caused by MPNN variants in VNF-FG size. Moreover, DRL is implemented to determine the
policy charging on SDNC for adaptively aligning the optimal decision service provisioning in the network
fluctuation on IoT network. Fig. 1 leverages DRL based on GNN to increase near-optimal decision-making
in the dynamic service provisioning process. SDN controller captures the traffic flow in distributed IoT
networks in routing tables by using OpenFlow protocol for managing the flow entries. Meanwhile, NFVO
handles orchestrating and managing the resource instant for computing workload of IoT networks. On
the other hand, DRL-GNN framework ensures efficient techniques to align the controller for adaptive
self-configuration on VNF placement and resource allocation. Our main contributions are summarized
as follows:

• We propose DRL based on the GNN framework to support service requests simultaneously from
MEC resources, maximizing the SFC acceptance ratio while minimizing the MEC workload. By
addressing the complexities of resource allocation and VNF placement in SFC modules, our methods
ensure priority-driven resource management in IoT networks, optimizing resource utilization based
on service priorities. Once, NFVO abstracts the SFC placement in all the resource allocations to
address and guarantee various network services’ QoS requirements while offering minimum delay and
resource usage.
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• Leveraging a DRL-GNN algorithm, namely a priority-aware VNF deployment algorithm (PVD-GDR),
to set the threshold outperformance and satisfy IoT applications. The PVD-GDR framework enables the
capability to ensure resource preservation on VNF nodes and link embedding, which utilizes a message-
passing variant to propagate the feature information to its neighbors until a stable equilibrium is reached
optimally. We employ DQN algorithms to provide the capabilities to learn optimal policies in dynamic
settings for efficient priority-aware resource orchestration and adaptive resource utilization in SFC
deployment in assisted control data flow. Hence, DQN ensures that the update of value function in SFC
deployment and make flexibility decision for SFC requests arriving at real-time in difference setting
according to the optimal value function.

• Lastly, our scheme shows the performance matric, which compares the reference scheme in terms of
reward, end-to-end task execution delay of requested service, delivery ratios of requested service, task
drop ratios of requested service, and average completion ratios.

The remainder of the paper is aligned as follows: in Section 2, we illustrate the related work and the
current work. Section 3 describes the network system formulation in terms of computation and network
resource utilization. Section 4 presents DRL-GNN for service priority on IoT demands. Lastly, the proposed
scheme indicates its performance compared to the reference scheme.

Figure 1: Message-passing neural network embedding with SDNC/NFVO architecture
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2 Preliminary of Priority/Demanding in Resource Utilization
In this section, many studies have investigated resource placement and solved optimization problems.

However, efficient allocation and resource placement of the limited resource is the most impact-critical
component in MEC and its efficiency for orchestrating resource to satisfaction on different QoS. Hence,
minimum delay and resource cost are priorities for the end goal. Additionally, we comprehensively gather
previous studies on resource placement in MEC.

2.1 Enabling Resource Utilization Based on DRL
The utilization of resources plays a crucial role in demonstrating the efficiency of resource allocation and

computation. SFC deployment directly impacts specific network functions to achieve network service targets.
Moreover, compiling SFC formations for multiple sequential applications is a critical area that requires timely
processing [12–15]. DRL has been leveraged to address the challenges of SFC placement, particularly in terms
of service flexibility and diversity. However, existing DRL approaches struggle with handling a dynamic
number of objectives and suffer from unreliable training time consumption. To overcome this, researchers
have utilized divided sub-problem weight vectors to establish the relationship between solution positioning
and placement. By introducing a related zone decomposition model, the weighted vectors are trained in
parallel, leading to time savings and improved model quality. Furthermore, the dynamic objective placement
method ensures efficient training for high-dimensional models. In [16] with multi-objective optimization
problem was transformed into a single-objective Mixed Integer Linear Programming (MILP) problem,
aiming to maximize the acceptable flow rate while minimizing energy costs for multiple service chains. A
polynomial-time algorithm, based on linear relaxation and rounding, to approximate the optimal solution of
MILP. This approach achieved a weakly Pareto-optimal solution resulting in balancing acceptable flow rate
and energy cost, while ensuring easy implementation. Similarly, studies [17,18] utilized the DRL capability to
address the challenges in SFC placement in terms of service flexibility and diversity. With the existing DRL
lacking the ability in solving a dynamic number of objectives and unreliable training time consumption, the
author takes the advantage of divided sub-problem’s weight vectors to show the relation toward the solution
position of placement. By proposing related zone decomposition (MQDRL), the weighted vectors are trained
in parallel, resulting in time-saving and improving the quality of models. Then, the dynamic objective
placement method ensures the training with the high-dimension model. As a result, the proposal achieved an
improvement of the service acceptance ratio and the hyper-volume value in multi-objective SFC placement.
Reference [19] categorized two sub-classes of the task according to their real-time (type-0) and non-real-time
(type-1) requirements according to the priority level and latency demand. The author proposed two-phase
solutions. First, the PARS scheme prioritizes type-0 users and allows network operators to assist the resource
over the performance of SFC resource allocation. In the next phase, an adaptive algorithm, with two parts,
was created; the first part identifies the best candidate node for deploying VNF, then the second part evaluates
the best path connecting identified nodes using Dijkstra’s minimum cost path-finding algorithm.

In [20], the authors addressed the resource competition of utilizing collaborative edges by proposing a
prioritized queuing scheme with task dependency (PQTD) to allow the task with high priority to jump the
queue, which addressed the resource competition in the edge with the drawback of implementing algorithms
first come first served (FCFS) and other benchmark schemes. In addition, a joint DAG-queue delay model
was proposed to address the complication in delay change due to queue-jumping by analyzing the chain
reaction of delay changes. As a multi-task assignment problem, PQTD with Monte Carlo Tree Search
algorithm is proposed to maximize the average satisfaction degree framework and avoid local optimization
dilemmas. To address the resource constraints in IoT devices, the study in [21] introduces IRATS, a PPO-
based intelligent algorithm for priority- and deadline-aware resource allocation and task scheduling, aimed
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at enhancing computational workloads and communication capabilities. By modeling resource allocation as
an MDP, IRATS minimizes task waiting time and delay, using a multi-level queue scheduler to prioritize tasks.

2.2 DRL-GNN Method-Based Resource Utilization in IoT
Although deep learning (DL) can effectively capture patterns in Euclidean data, the complexity of

network topology and data generation in IoT networks presents significant challenges, as conventional DL
algorithms struggle to handle non-Euclidean data effectively. For that reason, researchers found that GNN
is one of the up-to-date methods to extract network properties in network environments and utilize in SFC
deployments according to superiority of GNN in graph features extraction.

For instance, Zhang et al. [22] employed GNNs alongside a multitask regression layer to analyze
VNF-FG topologies and predict future resource requirements. Similarly, reference [23] explored resource
allocation and task scheduling for edge machine learning, integrating heuristic algorithms, GNNs, and
Multi-Agent Reinforcement Learning (MARL). While heuristic approaches lack scalability in dynamic envi-
ronments, GNN-based models effectively capture task-device dependencies. Furthermore, MARL enhances
decentralized decision-making, allowing multiple agents to collaboratively optimize resource usage. Building
on these advancements, our work combines GNNs and MARL to overcome limitations in scalability
and adaptability, achieving enhanced task placement and resource efficiency. Additionally, reference [24]
proposed DRL-based on GNN approach to optimize resource consumption in elastic optical data center. This
reinforcement learning method integrated Graph Convolutional Networks (GCNs) with temporal-difference
learning. This method leverages GCNs to capture and provide detailed insights into the network state, aiming
to maximize the long-term average revenue while enabling real-time deployment decisions for SFC requests.

In summary, existing research has primarily focused on resource utilization and placement. While
previous studies have made significant contributions to their respective domains [25–29], challenges remain
in addressing the diverse critical service priorities of real-time computation in IoT networks. Specifically,
there is a need to achieve convergence between autonomous resource allocation, placement, and the mapping
of service criticality.

In this paper, we investigate how to handle priority-demanding resource management using an effective
solution which utilizes the GNN model for effective extraction of network in IoT network. MPNN executes
through three steps: hidden layer, aggregation, and readout in network topologies. Subsequently, our model
integrates with DQN-enabled NFV architecture to ensure efficient priority-aware resource orchestration
and adaptive resource utilization in SFC deployment. This work has two objectives minimizing short delay
time on executing VNF instances and ensuring resource utilization properly for resource placement in
SFC deployment.

3 System Model and Problem Formulation
At this stage, NFV architecture integrated with DRL-GNN are given to address DQN with agent policy

formulation for determining service pooling and orchestrating resource. Therefore, forwarding decisions
and rules obey the optimal SFC orchestration policy. In VNF-FG, descriptor is cooperated with leveraging
the Topology and Orchestration Specifications for Cloud Applications (TOSCA) template in NFV [30].
We introduce the system model, including the substrate physical resource in the MEC server of the
network model, SFC request model, and resource allocation. Then, we aim to offer a formulation method to
represent our proposed scheme, including constraints, and minimize the execution cost and delay in system
architecture. The key notation of our system model is in Table 1.
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Table 1: Notation of system models

Notations Descriptions
G = V , E Physical substrate topology

V Set of the number of MEC nodes V = {1, 2, . . . , v},∀v ∈ V
E Set of the number of links E = {1, 2, . . . , e} ,∀e ∈ E

BW Bandwidth capacity of links between nodes (e ∈ E)
PD Propagation delay of (e ∈ E)
Cv

i The capacity of type resource of node vi ∈ V
Cmax

v Upper-bound capacities of physical node (CPU, memory, disk)
Ce

j The unit cost of bandwidth in links (i , j)
T Number of timeslots t ∈ T

Service request
F Set of the number of service request f ∈ F
V Set of nodes of VNFs {1, 2, . . . , v} ,∀v ∈ V
E Set of virtual links {1, 2, . . . , e} ,∀e ∈ E

vi ∈ V Set of the number V
e j ∈ E Set of the number link of E

Qr
v i

Required of r − type resource of VNF v f

C f ,t
v The request of the resource capacity at time − t (CPU, memory, disk)

Be f , j Required of bandwidth of the link e f
Decision variable

xv
v f , i

(t) Equals 1 if VNF v f of service request f is deployed at node v at time – t
ye

e f , j
(t) Equals 1 if link i, j is used to build the path of virtual link e f of service request at time − t

3.1 System Architecture
We use the undirected graph to represent the physical resource. G = (V , E) , represents a network with

NFV, where V is the set of MEC server nodes and Eis the set of the physical edge, with v denotes the v − th
server and e denotes the number of the u − th physical edge number. Each MEC server can instantiate the
virtual machines (VMs) to support the multiple type VNFs. Each server has a maximum computing resource
capacity, i.e., Cmax

v = [cpumax
v , mmax

v , dmax
v ] represented the amount of CPU, memory, and disk resources,

respectively. Therefore, the physical edge, e j ∈ E, connects two servers. The physical edge e j represented by
the cluster of quaternions (source, destination, bandwidth, and propagation delay), where vsrc and vd es ∈ V
are denoted the node of source and destination of e j, respectively. Propagation delay is the term of delay
between physical edge denoted by Pe .

3.2 SFC Request Model
We assume the set of service requests is denoted by SF = { f , Cv

i } representing SFC request in the
network, where f denotes the chain of the network service functions. Cv

i denotes the type of network resource
capacity or node attributed (e.g., CPU, memory, and disk).
Decision Variables

In this case, optimized time is divided into multiple sequential discrete time slots. It provides optimal
VNF placement and virtual link mapping, minimizing cost, resource usage, and delay.
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• Binary variable xv
v f , i

(t) equals to 1 if the VNF vi from service f is deployed on a physical node v at
time − t, and 0 otherwise. By determining the specific placement of VNFs, xv

v f , i
(t) facilitates efficient

utilization of the computational resources, including CPU, memory, and storage, available under the
physical resource nodes.

• Binary variable ye
e f , j

(t), equals to 1 if the physical link is leveraged to establish the path for the virtual
link e j at time-t and 0 otherwise.

3.3 Resource Allocation
3.3.1 Node Resource

The node ensures the maximum capacity of a physical MEC server is not eclipsed by the resources in
VNFs. Every server possesses limited computational resources, such as CPU, memory, and disk components.
The resource demands of the VNFs are added up for all service requests that are assigned to servers. This
constraint prevents overloaded physical nodes from receiving too many requests while protecting the quality
of services and the system’s overall stability. Resource demand of a specific VNF vi denotes as Qr

v i
, while

considered in terms of physical node’s capacity denoted by Cmax
v .

∑
f ∈F

∑
v f , i

Qr
v f , i

xv
v f , i

(t) ≤ Cmax
v , r ∈ {CPU , memor y, disk} ,∀v ∈ V , t ∈ T (1)

3.3.2 Link Bandwidth
In a particular defined bandwidth constraint, a set of links denoted as E = {1, 2, . . . , e} . The cost

required of bandwidth of link denote by e f as in Eq. (2) to ensure that the sum of bandwidth allocated to
virtual links mapped onto a single physical link does not exceed its available bandwidth.

∑
f ∈F

∑
e f , j

Be f , j y
e
e f , j

(t) ≤ BW ,∀e ∈ E , t ∈ T (2)

3.4 Delay Constraint
3.4.1 Communication Delay

Communication captures the delay caused by data transmission over physical links. Hence, commu-
nication delay for virtual links relies on the propagation delay from ingress to egress by chaining the VNF
nodes. Otherwise, we need to make sure in ensuring that the service request meets the latency requirement.

PD = ∑
e∈E

Pe ye
e f , j

(t) (3)

3.4.2 Computation Delay
Now, we need to make sure that computation delay for processing a VNF on a MEC server ensures that

VNFs are executed within reasonable time limits. Eq. (4) expresses the computation allocation in MEC for
executing V NF − i. The CPU demand of each VNFs denote as Qc pu

v i
and CPU capacity of the MEC servers

denotes as Qc pu
v .

Dcom p =
QCPU

v i

QCPU
v

(4)
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Minimizing the total execution delay is a key objective, which achieved by optimally allocating sufficient
computational resources, ensuring adequate bandwidth for the NFV-enabled node − i, and accurately
predicting the performance of VNFs along the ordered path. Eq. (5) expresses the execution delay, which
includes modification delay to reconfigure the chain descriptor by following the agent policy, computation,
and communication delays, representing the total time required to process a service request. This constraint
ensures that the delay is minimized for optimal service performance in any required interval:

D f (t) = ∑
v i

(Dcom p (vi , v) + PD) . (5)

The objective is to minimize the total cost and delay in embedding service requests. The total cost
includes computing resources, bandwidth usage, and propagation delay. The delay encompasses computation
and communication delays for VNFs.

min ∑
t∈T

⎡⎢⎢⎢⎢⎢⎣
∑
f ∈F

⎛
⎜
⎝
∑
v i

∑
v∈V

Cv
i xv

v f , i
(t) + ∑

e j∈E
∑
e∈E

Ce
j ye

e f , j

⎞
⎟
⎠
+ ∑

f ∈F
D f (t)

⎤⎥⎥⎥⎥⎥⎦
. (6)

s.t. (1)–(5).

4 Graph Reinforcement Learning-Based Solution in SFC
In this section, we present the design of DRL-GNN algorithms to address the proper handling of

resource allocation and VNF placement for provisioning resource priority on demands. Firstly, we introduce
the GNN framework that interacts with network environments. GNN embedded the service functionality in
VNF nodes as a directed graph by leveraging Message Passing Neural Network (MPNN) variant. Meanwhile,
the DRL framework is feasibly defined as the agent policy to select resource utilization regarding the VNF-FG
placement problem. It significantly decomposes the creation of a realistic networking environment to make
a policy charging for network configuration. GNN gathers network states and readout as node embedding,
link level, and MEC graph. After gaining output from the GNN operation, DRL will define the action, and
DQN will decompose the target q-network and online network as in Fig. 2.

Figure 2: An architecture of DRL-GNN embedding in SDNC-NFVO for service priority
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4.1 Priority-Awareness-Based Approach
We study the significance of resource management MEC servers-assisted in SDN/NFV controller

that enhances the orchestration and management flow entries of IoT workload. SDN/NFV-assisted MEC
environment, where it allocates the resource cost, link, bandwidth, and required resource to instantiate per
VNFs. We propose leveraging a GNN-enabled DRL algorithm, namely a priority-aware VNF deployment
algorithm (PVD-GDR).

4.1.1 State
State spaces indicate the significance of gathering which consists of Crem

v as the remaining resources of
a physical MEC server node v ∈ V at time − t. It is a vector that tracks the amount of CPU, memory, and
disk resources that are still available at node − v. In service mode, a set of service requests (VNFs and VLs)
that have not yet been deployed or fully embedded into the substrate network denotes as PR at time − t.

st = {Crem
v , BW rem

v , Be f , j , PR} (7)

4.1.2 Action
The decision-maker and flow selection, xv

v f , i
(t), defines the status of deploying VNF in service requests,

which can be a variable decision, adjustable between 0 and 1, to determine placement. It considers key factors
such as service workloads, application criticality, and network congestion. Similarly, ye

e f , j
(t) is also defined

as a decision variable for virtual link between VNFs, which outputs 0 and 1.

at = {xv
v f , i

(t), ye
e f , j

(t)} (8)

4.1.3 Reward
The evaluation of agent and SDNC/NFVO control policy from overall open flow that maximize the long-

term reward expectation by experience from each iteration. In our proposed method, the reward, denoted
as rt , is a compete formulation for resource utilization on computational resource, delay, allocation resource,
and placement virtual links.

rt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
f ∈F

⎛
⎜
⎝
∑

v i∈V
∑
v∈V

Cv
i xv

v f , i
(t) + ∑

e j∈E
∑
e∈E

Ce
j ye

e f , j

⎞
⎟
⎠
+ ∑

f ∈F
D f (t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(9)

4.1.4 Optimal Policy Selection
Q-value and loss optimization concentrate on improving long-term goals and adjusting parameters for

deep neural networks that act as function approximators. The target network utilizes replay batch parameters
throughout the training process. Nevertheless, the loss values can vary during each training session,
sometimes higher or lower than the intended level. The loss is calculated using the mean squared error (MSE),
which assesses the squared difference between the target Q-value Q(s, a) and the predicted Q-value. By
attaining an optimal approximation of the Q-value, the agent can make choices that boost the performance
of real-time services while maintaining long-term efficiency. Optimal π (t)∗ maximizes the expected
cumulative reward over the time − t, which is presented in Eq. (10). The value function defines the expected
cumulative reward obtained by following Eq. (11), which calculated by the bellman equation.
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π (t)∗ = argmax
π

Eπ [∑
t∈T

γtrt] (10)

Q∗ (s, a) = Es′ [rt + γ argmax
a′

Q∗ (s′, a′)] (11)

4.2 GNN-Based Resource Embedding
In primary GNN, an input feature was received from SDN/NFV-assisted MEC entities. GNN model

defines three phases: message passing, aggregation and update, and readout. Resource capacities (e.g., create
the sequential of VNFs and VLs), which appended into hidden state ht

i , ht
j. It includes the feature of the

link et
i j, which provides a combined message into an aggregated message mt

i . After that, M (.) encodes
information with connected nodes in graph. The function updates the node states, U (.)produces state vector
ht+1

i , as the transition from the connection between VNF nodes is updated. After GNN proceeds, message-
passing iterations are used to propagate information from node − 1 to node−i. In the readout of the last
processing in the GNN phrase, GNN produces output prediction features two output types: node-level and
link-level.

4.3 DQN-Based MEC Resource Pooling
For network environments and agent initiatives, frameworks are leveraged to design and implement

including the primary algorithm of DRL-GNN, which uses DQN in online networks and target network
optimization. Algorithm 1 presents the PVD-GDR function in approximating Qv al ue and selects the optimal
action in the policy setting. The current state gathered from MEC servers’ information through the
environment interface is represented as [si

t , s j
t]. The initial GNN weight and architecture, which sets up the

GNN model by initializing its weight and defining its architecture, including the number of types, which
consist of layers, activation functions, and other parameters. Through exploration and exploitation (epsilon
greedy), the environment is observed as graph topology and state information. Within this loop, action is
selected randomly after obtaining (st+1 , rt), which leads to a new state, and the reward is stored in the replay
memory. It regularly appends a mini-batch size of experiences from buffer memory to enhance the online Q-
network by applying gradient descent on the difference between the predicted and target Qv al ue . The target
Q-network is updated periodically to align with the online network and ensure stable learning. This cycle is
carried out over several episodes, as it will continue fine-tuning the policy and identifying the optimal action
a∗t , thereby ensuring that the algorithm aligns with the development of an effective resource allocation and
VL placement. It enables the MEC server to develop and improve resource allocation methods, ultimately
providing the best action for each time slot according to the acquired policy.

Algorithm 1: DRL-GNN optimizes policy in priority resource

Require: MEC server resources [si
t , s j

t]
Output: Optimal at action selection and update ∅onl ine , ∅tar ge t

1: For each episode do
2: Observe state of MEC servers [st

t , st
t] using env_int

3: while not done do
4: Construct GNN from st
5: Pass GNN
6: Approximate Qv al ue

(Continued)
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Algorithm 1 (continued)
7: If exploration
8: each at do
9: Observe (st+1 , rt) after executing at to environment

10: Store (st , at , rt , st+1) in replay memory B
11: Update GNN with st+1
12: Construct GNN from the state (t + 1)
13: GNN passes (t + 1)
14: Qv al ue ← comput.Qv al ue (st , rt)
15: else if exploitation do
16: Select action at = argmaxa Q(st , at)at , ∅onl ine

17: Update weight ∅tar ge t and ∅onl ine

18: Optimal action a∗t = argmaxa Q(st , at)at , ∅onl ine

19: end if
20: end while
21: end

5 Simulation and Discussion

5.1 Simulation Parameter and Specification
Simulation parameters and specifications in network scenarios are used to define the operation in

terms of resource utilization and optimization for intended resource management to achieve satisfaction
based on resource priority and demands. Hence, the parameter is conducted with primary parameters,
and hyperparameters used in this softwarization and virtualization framework are described in Table 2.
Specifically, Mininet and TensorFlow are used to conduct our proposed.

• Mininet and mini-NFV: it creates realistic network topologies and resource management for network
environments [31,32]. Ryu creates the flow manager over OVS [33]. The number of edge devices is
300 connected to 5 MEC servers and the maximum delay on a link is allowable, which ranges from
5–15 ms per ISF (inference service function). MEC servers are utilized to handle computation in closed-
to IoT devices which allocate the resource for computing tasks to address the latency and avoid the traffic
congestion. Hence, the placement of resources in instantiating VNF is 4 in each service request. Setting
upper-bound bandwidth is 20 MHz [34].

• TensorFlow setup: it provides the design for relevance for running GNN and DRL models by defining
the functionality to initialize the environment [35,36]. The episode is set to 500, the replay memory size
is set to 50,000, and the batch size is set to (64, 128, 256). The learning rate, discount factor, hidden layer,
and exploration rate are set to 0.001, 0.95, (32–256), and 0.5, respectively.

With the above given simulation scenarios, we dive to address our management approach and reference
approach in the controller to evaluate the performance. Network performance is conducted in several key
performance indicators such as the cumulative reward evaluation on metrics, end-to-end task execution
delay of requested service, delivery ratio tasks of requested service, and task drop ratio of requested service.
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Table 2: Determine the simulation setting and hyperparameter

Parameters Specification Parameters Specification
MEC servers 5 Edge devices 300

Service priority 3 Network conditions 10
Payload size 1024 bytes Mininet/Mini-NFV RYU/TOSCA NFV template

VNF length per SFC (4–10 VNFs) Episode 500
Upper-bound delay on the link 5–15 ms per ISF Upper-bound bandwidth 20 MHz

Traffic rate 1000–5000 pkt/s Simulation times 500 s
Replay memory sizes 50,000 Batch size (64, 128, 256)

Hidden layer (32–256) Learning rate 0.001
Discount factor 0.95 Exploration rate 0.5

In our proposed scheme, the suggested approach collects state features and the experienced path
to dynamically modify critical weight to address the unpredictability of congestion and performance
fluctuations. The designated simulation parameters are conducted with simulation scenarios randomly from
normal to heavy congestion. To demonstrate the performance efficiency of the proposed approach, three
reference schemes are chosen for experimentation and comparison as follows:

• Load-balancing shows about dedicating network selection which calculates the target network selection
and workloads evenly across available resources to optimize system performance and prevent resource
overloading. This approach assigns VNFs to SFC deployment based on their priority levels, ensuring
critical functions are handled with higher preference while balancing the overall system load. However,
it cannot overcome the priorities constraints of VNFs in priority demands.

• Greedy approach is a conventional approach that leads to finding the optimal policy in terms of cost or
resource allocation. While greedy approach can be effective for smaller networks or scenarios with less
complexity, it may struggle in large-scale, dynamic environments.

• Deep Q-learning (DQL) indicates the sole reinforcement learning-based SDNC method, where a single
Q-learning algorithm is utilized to manage the MEC network resource. The agent acquires knowledge via
trial and error, refining its policy by repeatedly querying through the Q-learning process (for instance,
by employing q-table).

5.2 Performance Evaluation and Discussion
This sub-section presents the results of both the proposed and reference schemes based on five key

performance metrics. Each scheme adheres to the simulation configuration for the overall topologies. Fig. 3a
demonstrates how the agent explored and exploited. The evaluation illustrates how each algorithm performed
throughout the episodes in terms of effectively exploring and exploiting resources. In the initial episodes, the
greedy algorithm recorded a negative reward of −20.51, considerably lower than DQL and load-balancing
which achieved −10.01 and −15.12, respectively. Furthermore, the PVD-GDR algorithm exhibited a positive
reward of 1.29, showcasing its ability to adapt to resource exploration and exploitation early on. At the final
episode, PVD-GDR reaches a cumulative reward of 40.08, indicating optimal exploitation and effective
prioritization of SFC deployments under varying resource constraints. PVD-GDR reaches a reward of
40.08, which is 33.07, 27.69, and 18.74 of load-balancing, greedy, and DQL, respectively. The PVD-GDR
algorithm successfully balances the trade-offs among costs, latency, and resource utilization while adapting
to congestion states. Its multi-faceted weighted reward guarantees that priority-aware deployment of SFCs
can manage complex, real-time IoT service requests with different priority classes. The algorithm reduces
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non-optimal orchestrations, ensuring reliable and scalable SFC deployments for various use cases, especially
in settings that require dynamic adaptability and efficient resource allocation. In Fig. 3b, in the initial stages,
the load-balancing algorithm achieved a delay of 12.02 ms, which was slightly higher than greedy of 11.19 ms
and DQL of 11.16 ms. PVD-GDR algorithm shown delay of 10.12 ms, reflecting its ability to manage task
execution more efficiently from the outset. As the simulation progressed, PVD-GDR continued to maintain
relatively stable and lower delays. At the final simulation timeslot, PVD-GDR algorithm excels in reducing
the task execution delay by effectively balancing resource utilization and delay optimization. This makes
PVD-GDR the most effective and reliable choice for managing real-time SFC in a dynamic and large-
scale network environment. Fig. 3c presents in processing for real-time applications on IoT devices, QCI
establishes the necessary upper-limit tolerable delays lower than those for lower critical application. In the
initial stages, PVD-GDR achieved a delivery ratio of 99.9985% at 50 ms, PVD-GDR maintained a high
delivery ratio, reaching 99.9001% at 500 ms. This result is greater than load-balancing, greedy, and DQL of
0.1675%, 0.0804%, and 0.2802%, respectively. The proposed PVD-GDR algorithm excels in delivering high
success rates for service tasks due to its proactive resource management, ensuring that VNFs are appropriately
positioned and efficiently allocated. Fig. 3d shows the task drop ratio of requested service where network
states are configured in succession based on increasing congestion levels and the complexity of application
tasks. We assess the flexibility of the agent by examining the variations in results in relation to the diversity
of intense tasks and congestion conditions. Results demonstrate that PVD-GDR significantly outperforms
load-balancing, greedy, and DQL in minimizing the task drop ratio over increasing simulation times. While
greedy struggles with consistently high task drops and DQL shows moderate improvement, PVD-GDR
ensures minimal task drops even under increasing workloads. This highlights its robustness and reliability
for efficient task allocation in dynamic and resource-constrained environments.

Figure 3: (Continued)
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Figure 3: Result of proposed and reference schemes on (a) cumulative reward evaluation metric, (b) end-to-end
execution delay, (c) delivery ratio, and (d) task drop ratio of requested service

Fig. 4 presents the average completion ratios of the requested service tasks throughout the simulation
timeslots. PVD-GDR continues to demonstrate exceptional performance, reaching 99.88% at the final
timeslot, which is higher than load-balancing, greedy, and DQL, thereby maintaining a steady and high
completion ratio throughout. The superior performance of PVD-GDR can be attributed to its efficient
handling of resource allocation, ensuring that tasks are completed successfully even under dynamic network
conditions. PVD-GDR optimizes the completion of service tasks, making it an ideal choice for environments
that require high reliability and low-latency performance.

Figure 4: Average completion ratio of requested services
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6 Conclusion and Future Works
This paper presented a priority-aware resource allocation for VNF deployment in MEC environments

for IoT devices. The proposed scheme utilized MEC servers and SDN/NFV to capture traffic flow control
and manage the resource orchestration to achieve scalable resource computation. We proposed DRL-GNN
algorithm called the Priority-Aware VNF Deployment Algorithm (PVD-GDR) integrated with SDN/NFV
architecture. Additionally, GNN is leveraged to execute the network environment in three phases: hidden
layer, aggregation, and readout. On the other hand, we designed resource allocation and placement in
SFC deployment to execute massive resource constraints in IoT services aligned with their priority level
based on DQN. This PVD-GDR approach effectively prioritizes high-priority tasks while minimizing the
impact on lower-priority tasks, ensuring QoS for critical applications. Finally, we conduct a simulation to
evaluate efficiency of PVD-GDR, demonstrating its superior performance compared to reference schemes.
Our proposed enhances efficient resource utilization and optimizes for diversity service priority on IoT
device demands. In future work, we aim to extend simulation to an MEC-enabled O-RAN system, supporting
diversity platforms. Additionally, we explore MARL to handle different criticalities in IoT networks.
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