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ABSTRACT: This paper introduces a lane-changing strategy aimed at trajectory planning and tracking control for
intelligent vehicles navigating complex driving environments. A fifth-degree polynomial is employed to generate a
set of potential lane-changing trajectories in the Frenet coordinate system. These trajectories are evaluated using
non-cooperative game theory, considering the interaction between the target vehicle and its surroundings. Models
considering safety payoffs, speed payoffs, comfort payoffs, and aggressiveness are formulated to obtain a Nash
equilibrium solution. This way, collision avoidance is ensured, and an optimal lane change trajectory is planned.
Three game scenarios are discussed, and the optimal trajectories obtained are compared using the NGSIM dataset.
Comparison of trajectory tracking effects by the model predictive control (MPC) and linear quadratic regulator (LQR).
Finally, the left lane change, right lane change, and abort lane change operations are verified in the autonomous driving
simulation platform. Simulation and experimental results show that the strategy can plan appropriate lane change
trajectory and accomplish tracking in complex environments.
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1 Introduction
According to statistics, personal mistakes cause 94% of traffic accidents, including physical conditions

and operational issues [1]. The breakthrough and development of vehicle sensors strongly support the
development of autonomous driving technology to fully autonomous driving [2,3]. Therefore, the study of
vehicle motion control algorithms is an integral part of automated driving technologies [4,5].

The lane-changing motion control can be divided into a decision-planning layer and a control execution
layer [6,7]. Based on the algorithmic model, the decision planning layer determines the optimal driving
behaviour of the current vehicle. It plans the optimal trajectory of the vehicle, which is transmitted to the
control execution layer for implementation [8]. The control execution layer resolves the optimal trajectory
given by the decision planning layer based on specific algorithms. It transforms it into signals that can be
executed by the chassis power and steering systems [9]. The vehicle is guaranteed to execute the optimal
trajectory given by the decision-planning layer to complete the driving strategy.

Many geometric curve plans for lane transformation exist, such as trapezoidal acceleration curves,
sinusoidal curves, spline curves, and polynomial curves [10]. For planning based on trapezoidal acceleration
profiles, it is not possible to replan the trajectory during lane-changing [11]. The planning trajectory based
on sinusoidal curves is continuous and smooth, but the period and amplitude of the function are difficult to
determine [12]. The planning trajectory is smooth and continuous for spline curves, but it does not apply to
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dynamic environments with moving obstacles [13]. In contrast, the polynomial trajectory is computationally
inexpensive, and the polynomial order can be adjusted to obtain the desired trajectory performance [14]. Luo
et al. [15] first proposed a dynamic lane change trajectory planning model in which a time-based polynomial
curve is used to represent the lane change trajectory, which can respond dynamically to changes in the state of
surrounding vehicles. Yang et al. [16] investigated the problem of reprogramming lane-changing trajectories
in dynamic driving environments, using time-independent cubic polynomial curve representations of lane-
change trajectory to make it more realistic. Wei et al. [17] represented the lane change trajectory as a
sixth-degree polynomial curve. They solved the parameters by a nonlinear programming method, which
reduces the computational effort and applies to a wide range of road conditions.

The trajectory planning process of a vehicle always involves complex interactions between itself and
the surrounding obstacle vehicles. Kita [18] proposed combining game theory with vehicle lane-changing
behaviour using a non-cooperative game to describe the interaction process and calculate payoffs by
measuring time-to-collision and forward time. Ding et al. [19] applied the Stackelberg game to lane
choice between vehicles at roundabout entrances and exits. Yu et al. [20] constructed a lane-changing
controller for self-driving vehicles based on an incomplete information game model capable of estimating
the aggressiveness of surrounding vehicles online. Guo et al. [21] proposed a human-machine shared steering
approach incorporating non-cooperative game theory in a lane-changing environment. Lopez et al. [22]
combined game theory and deep reinforcement learning to achieve lane change decisions. Cheng et al. [23]
proposed a non-zero and non-cooperative game model for forced lane-changing in traditional environments
and analysed its applicability in the Internet environment.

In summary, this paper combines traditional lane change trajectory methods with game theory for
trajectory planning, modelling trajectory planning in the Frenet coordinate system based on fifth-degree
polynomials. Then, alternative trajectories are evaluated using the game payoff matrix to select the optimal
trajectory. The model predictive control (MPC) or linear quadratic regulator (LQR) is adopted for trajectory
tracking according to the driving state. Finally, an automated driving simulation platform is built based on
hardware-in-the-loop technology, and operations of right and left lane change and lane change abort are
realized. A complete operation simulation was carried out, from decision-making and planning to control
of the execution.

2 System Architecture
In the process of intelligent lane-changing of vehicle, not only the motion condition of the lane-changing

vehicle is considered, but also the operation condition of the surrounding vehicles, so as to finally select and
track the optimal lane-changing trajectory. Thus, this paper proposes a trajectory planning and trajectory
tracking strategy combined with game theory. The system structure of this paper is shown in Fig. 1.

As shown in Fig. 1, the first step is to generate alternative trajectory clusters for different boundary
conditions. Trajectory planning is carried out in the Frenet coordinate system using a fifth-degree polynomial
and generates clusters of feasible trajectories that satisfy the horizontal and vertical boundary conditions.

The next step is to select collision-free trajectories from the alternative trajectory clusters using a
collision avoidance algorithm based on game theory. A benefit matrix is constructed to measure the lane-
changing benefits, including safety benefits, comfort benefits and speed benefits. The optimal lane-changing
trajectories are selected to achieve vehicle collision avoidance at the trajectory planning level.

The final step is trajectory tracking by model predictive control (MPC) and linear quadratic regulator
(LQR). In Fig. 1, the first step is performed by a decision mechanism based on a driving behaviour decision
tree not discussed in this paper. It simplifies the vehicle operating state into three driving states: lane keeping,
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adaptive cruise and gaming lane-changing, analyses the lane-changing vehicles and the surrounding vehicles
in each driving state, and performs threshold calculations. When a lane-changing is determined based on
the threshold value, these three modules are executed sequentially with variable trigger times.

Figure 1: System framework for trajectory planning and tracking strategy
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3 Generation of Alternative Trajectory

3.1 Constructing Trajectory Planning Sets
Traditional vehicle system modelling relies on geodetic coordinate systems, body coordinate systems

and polar coordinates. As the motion trajectory of the self-driving vehicle grows, the trajectory becomes
more difficult to fit and the cumulative error of the calculation increases. The Frenet coordinate system has
excellent decoupling ability, which can plan the vehicle’s longitudinal and transverse motions independently
and separately [24]. It can drastically improve the performance of decision models.

The polynomial-based lane change trajectory computation requires only the initial and target states of
the vehicle. In the lane-changing scenario, there are FV (Front Vehicle) and RV (Rear Vehicle) in front and
rear of the target lane, PV (Preceding Vehicle) in front of the current lane, and LV (Lane-changing Vehicle)
in the current lane. Set Hfs as the safe lane-changing distance between LV and FV, Hfs = v⋅1.5⋅7/8; set Hrs
as the safe lane-changing distance between LV and RV, Hrs = v⋅1.5⋅5/8. v is the vehicle speed, and the time
interval between vehicles is 1.5 s. When the actual distances between LV, FV and RV are greater than the
safe lane-changing distances, lane-changing planning is performed. The vehicle state at this time is the initial
state. The target state is initially selected considering the predicted trajectory of the other vehicles in the
target lane. The target state is finally adjusted by the safety constraints described below. As shown in Fig. 2,
the boundary conditions in a complete lane-changing process can be expressed in terms of vertical and
horizontal constraints as follows:

{S (0) = s0, Ṡ (0) = vs0, S̈ (0) = as0, d (0) = d0, ḋ (0) = vd0, d̈ (0) = ad0
S (τ) = sτ , Ṡ (τ) = vsτ , S̈ (τ) = asτ , d (τ) = dτ , ḋ (τ) = vd τ , d̈ (τ) = ad τ

(1)

where S and d are the longitudinal and lateral distances of the vehicle along the reference path in the Frenet
coordinate system, respectively. τ is the lane-changing duration.

Figure 2: Trajectory planning constraint

To facilitate solving for the curvature of the planned trajectory, the lateral boundary conditions are
expressed by the geodetic to Frenet coordinate system transformation formula as [25]:

d (s0) = d0, ḋ (s0) =
vd0

vs0
, d̈ (s0) =

ad0 − ḋ (s0) ⋅ as0

vs0
, d (sτ) = dτ , ḋ (sτ) =

vd τ

vsτ
, d̈ (sτ) =

ad τ − ḋ (sτ) ⋅ asτ

vsτ
(2)
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The fifth-degree polynomial plan obtained by re-coupling the vertical and horizontal boundary
conditions is:

{ S (t) = a0 + a1 ⋅ t + a2 ⋅ t2 + a3 ⋅ t3 + a4 ⋅ t4 + a5 ⋅ t5

d (s) = b0 + b1 ⋅ s + b2 ⋅ s2 + b3 ⋅ s3 + b4 ⋅ s4 + b5 ⋅ s5 (3)

where S(t) and d(t) are the coordinates of the vehicle mass center at time t in the Frenet coordinate system.
a0, . . ., a5 and b0, . . ., b5 are the polynomial coefficients.

θh is the heading angle of the vehicle on the planning trajectory at any moment during the planning
period. kh is the curvature of the vehicle on the planning trajectory at any moment during the planning
period, which can be represented by Fig. 2 as:

tan (θh) = lim
t→0

d (n + t) − d (n)
S (n + t) − S (n) =

d (d (S))
dS

(4)

kh =
d′′ (S)

(1 + (d′ (S))2)
1.5 (5)

As shown in Fig. 3, different alternative target points can be taken before and after the target point (Sτ ,
dτ) to get the alternative trajectory set in trajectory planning.

Figure 3: Alternative set of trajectories in Frenet coordinate system

3.2 Vehicle Dynamics Modelling in the Frenet Coordinate System
In order to clearly describe the motion law of the vehicle, as shown in Fig. 4, a two-degree-of-freedom

vehicle dynamics model is established as follows [26]:

[ ÿ
φ̈] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cα f + Cαr

mvx

aCα f − bCαr

mvx
− vx

aCα f − bCαr

Ivx

a2Cα f + b2Cαr

Ivx

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[ ẏ
φ̇] +

⎡⎢⎢⎢⎢⎢⎢⎣

−
Cα f

m
Cα f

I

⎤⎥⎥⎥⎥⎥⎥⎦

δ (6)

where vx is the component of v in the x-direction, Cαf and Cαr are the lateral stiffnesses of the front and
rear wheels, a and b are the distances of the vehicle’s center of gravity from the front and rear axles, I is the
rotational moment of inertia of the whole vehicle, and m is the vehicle mass. The vehicle parameters are
in Table 1. As shown in Fig. 4, αf and αr are the front and rear wheel lateral deflection angles, Fyf and Fyr are
the front and rear axle lateral forces, δ is the turning angle of the driving wheels, φ is the transverse pendulum
angle, and β is the lateral deflection angle of the center of mass. It is usually assumed that cos(δ) = 1.
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Figure 4: Two-Degrees-of-Freedom (2-DOF) vehicle dynamic model

Table 1: Vehicle model parameters

Parameters Value
m 1230 kg
I 1343.1 kg⋅m2

a 1040 mm
b 1560 mm

Cαf −120,000 N/rad
Cαr −120,000 N/rad

Once again, through the coordinate transformation, the vehicle system dynamics in the Frenet
coordinate system can be obtained as follows:

ėr = A ⋅ er + B ⋅ δ + C ⋅ θ̇r (7)

where

er = [ed ėd eφ ėφ] ′, u = δ, ed = d , eφ = φ − θr ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0
Cα f + Cαr

mvx
−

Cα f + Cαr

m
aCα f − bCαr

mvx
0 0 0 1

0
aCα f − bCαr

Ivx
−

aCα f − bCαr

I
a2Cα f + b2Cαr

Ivx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−
Cα f

m
0

−
a ⋅ Cα f

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
aCα f − bCαr

mvx
− vx

0
a2Cα f + b2Cαr

Ivx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

er is the new state variable, u is the control vector, ed is the lateral error, eφ the heading error, and θr is
the angle between the reference heading angle at the vehicle projection point and the x-axis of the Cartesian
coordinate system.

4 Selection of Optimal Trajectories

4.1 Revenue Matrix Design
Game theory can be classified into non-cooperative and cooperative games based on the ability to

form binding agreements between participants. Because vehicles travelling on non-smart networked roads
cannot share the driving strategies of other vehicles, the lane-changing game discussed in this paper is a non-
cooperative game. During the game, each participant prioritizes their payoffs. In such Prisoner’s Dilemma



Comput Mater Contin. 2025;83(2) 2009

situations, the Nash equilibrium is a suboptimal solution acceptable to all participants [27]. During lane-
changing, vehicles are concerned with metrics such as safety, comfort, and speed payoffs [28]. The payoffs
from adopting different strategies vary, so a payoff function needs to be designed to include the set of
strategies among all participants [29].

The LV’s lane change strategy is divided into two types, lane change and keep moving, which are set to
C and N, respectively. The corresponding probabilities are l1 and l2 (l1 + l2 = 1), respectively. FV and RV have
both incentive and disincentive strategies for lane-changing. Their corresponding probabilities are f 1, f 2 (f 1
+ f 2 = 1), r1, and r2 (r1 + r2 = 1), respectively. When LV makes different strategies, the payoff matrix is shown
in Table 2.

Table 2: Game strategy payoff matrix

Gaming vehicles LV

C (Lane-Changing) N (Keep driving)
Encouraging L11, F11, R11 L12, F12, R12
Discouraging L21, F21, R21 L22, F22, R22

When there is only FV or RV in the target lane, it is a two-party game. When both cars exist, to improve
driving safety and traffic efficiency, this model assumes that the two vehicles maintain goal consistency. It
can still be regarded as a two-party game, which simplifies the complexity of the game and also considers
the impact of FV and RV on lane changing. Table 2 shows the two-party game payoff matrix. The following
equation gives the payoffs for the three vehicles with different strategies:

⎡⎢⎢⎢⎢⎢⎣

Li j
Fi j
Ri j

⎤⎥⎥⎥⎥⎥⎦
= α
⎡⎢⎢⎢⎢⎢⎣

EsLi j
EsFi j
EsRi j

⎤⎥⎥⎥⎥⎥⎦
+ β
⎡⎢⎢⎢⎢⎢⎣

EvLi j
EvFi j
EvRi j

⎤⎥⎥⎥⎥⎥⎦
+ γ
⎡⎢⎢⎢⎢⎢⎣

EaLi j
EaFi j
EaRi j

⎤⎥⎥⎥⎥⎥⎦
(8)

where Lij, Fij, and Rij denote their payoffs. EsLij, EvLij, and EaLij denote LV’s safety, speed and comfort payoff,
respectively. FV and RV are similar to LV, α, β, and γ are regulation factors.

4.2 Payoff Function Design
The positions of the vehicles participating in the game before and after the lane-changing are shown

in Fig. 5. Taking LV as an example, L0 and Lτ denote the position of LV before and after the change of channel.

Figure 5: Position of participating vehicles in the game before and after lane-changing



2010 Comput Mater Contin. 2025;83(2)

Es is the safety payoff and is understood as the safety space expansion factor for the corresponding
vehicle before and after lane-changing. Similarly, Ev is the speed payoff and is embodied as the spatial
potential for acceleration of the corresponding vehicle before and after the adoption of the corresponding
strategy. Es and Ev are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EsL = min (∣Lτ − Rτ ∣ , ∣Lτ − Fτ ∣ , ∣Lτ − Pτ ∣)
min (∣L0 − R0∣ , ∣L0 − F0∣ , ∣L0 − P0∣)

EsF = min (∣Fτ − Rτ ∣ , ∣Fτ − Lτ ∣)
min (∣F0 − R0∣ , ∣F0 − L0∣)

EsR = min (∣Rτ − Fτ ∣ , ∣Rτ − Lτ ∣)
min (∣R0 − F0∣ , ∣R0 − L0∣)

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EvL = ∣Fτ − Lτ ∣
∣P0 − L0∣

EvF = EvL + EvR
2

EvR = ∣Lτ − Rτ ∣
∣F0 − R0∣

(10)

where vL and vR are the LV and RV vehicle speeds, respectively. Because the speed payoff for FV is not
probable, the average speed payoff for LV and RV is assigned to EvF. Ea is the comfort payoff, which expresses
the change in acceleration of the vehicle when the strategy is taken and is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

EaL = 1

∫
T

0
...
d (t)2 dt + ∫

T
0

...
S (t)2 dt

EaF = 0
EaR = 0

(11)

The overall payoffs before and after changing lanes are focused on LV, the size of which is determined by
EsL and EvL. When EsL = 1 and EvL = 1, there are no payoffs to safety space and acceleration space potential,
regardless of whether the vehicle changes lanes. Thus, the lane-changing strategy probability is obtained by
ab normalization.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, (EsL ⋅ EvL ≤ lD)
EsL ⋅ EvL − lD

lU − lD
, (lD < EsL ⋅ EvL < l U)

1, (lU ≤ EsL ⋅ EvL)
l2 = 1 − l1

(12)

where lU > 1, 0 < lD < 1. lU and lD are the maximum and minimum values set during the normalization process.
LV’s lane-changing aggressiveness is determined by its values; the smaller all values are, the more this vehicle
tends to change lanes in the game.

The respective strategy probability for FV and RV is calculated similarly for LV. The relative position
change between vehicles measures the strategies adopted by competing vehicles. At the initial stage of lane
change the changes in the position, velocity, and acceleration of the LV are small and complex. The PV will
not actively respond to the behavior of the LV, and the stability of the PV can be obtained through the onboard
sensors. Using PV instead of LV as the calculation anchor can also express relative distance changes. And
enlarge the calculation target and improve the calculation efficiency.
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As shown in Fig. 6, the position of each vehicle change in a short period after the LV gives the intention
to change lane is used to calculate the strategy probabilities of FV.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, (F f ≤ fD)
F f − fD

fU − fD
, ( fD < F f < f U)

1, ( fU ≤ F f )
f2 = 1 − f1

F f = EsF ⋅ EvF ⋅ ∣Pt − Rt ∣
∣P0 − R0∣

(13)

where f U and f D are the extremes set during the normalization process. Strategy probability for RV is
calculated in the same way. Their value determines the tolerance of competing vehicles for lane-changing
aggressiveness; the closer the upper and lower limits are, the more sensitive the aggressiveness judgements
of competing vehicles becomes.

Figure 6: Prediction of aggressiveness

4.3 Nash Equilibrium
The mixed expected payoffs under each strategy combination are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EL (l , f , r) =
2
∑
i=1

li [(
2
∑
j=i

f j ⋅ Li j) + (
2
∑
j=i

r j ⋅ Li j)]

EF (l , f , r) =
2
∑
i=1

li (
2
∑
j=i

f j ⋅ Li j)

ER (l , f , r) =
2
∑
i=1

li (
2
∑
j=i

r j ⋅ Ri j)

(14)

where EL, EF , and ER denote their mixed expected payoffs. When the set of strategies is finite, there must exist
an optimal solution for the game model, where all participants can achieve maximum returns when adopting
these strategies. The maximum value of each participant’s expected payoff can be computed by Eq. (15). By
letting the mixed probability of maximum payoff be (l*, f *, r*), the following equation can be obtained:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EL (l∗, f ∗, r∗) ≥ EL (l , f ∗, r∗)
EF (l∗, f ∗, r∗) ≥ EF (l∗, f , r∗)
ER (l∗, f ∗, r∗) ≥ ER (l∗, f ∗, r)

(15)
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The resulting l*, f *, and r* are the Nash equilibrium solutions for the three vehicles in the game’s current
state. Focusing only on LV’s payoff during lane-changing, the maximum payoff table for all optimal strategies
in the strategy set of LV can be obtained. The maximum payoff determines the lane-changing strategy and
optimal trajectory.

4.4 Validity Verification
There are three types of game participants in this article: (1) only FV (2) only RV, (3) both FV and

RV. Trajectory planning from initial to target state, with the subject vehicle speed of 60 km/h and the
curvature of 1/300 m−1 on the bend. Difine the individual payoff weights and aggressiveness prediction
parameters, lU = 1.2, lD = 0.8, f U = 1.3, f D = 0.8, rU = 1.3, rD = 0.7.

(1) The first scenario is ‘on FV’. In this scenario, there is FV ahead of the target lane, indicating that the
presence of acceleration space is crucial for lane-changing behaviour. The payoff of safety, speed, and
comfort are respectively: α = 0.3, β = 0.5, γ = 0.2. The payoff matrix for this vehicle can be obtained
by performing a blended expected payoff calculation from the payoff matrices of all strategies, as
shown in Tables 3 and 4. The optimal trajectory is the alternative trajectory #4, with the largest payoff
during the lane-changing game. LV has the best safety, comfort, and acceleration potential in this
condition. Fig. 7 shows the performance of the optimal trajectory in different coordinate systems. In
curved road scenarios, the Frenet coordinate system can simplify complex path problems. In the initial
stage, the Cartesian coordinate system is converted to the Frenet coordinate system, and the conversion
error is taken into account. It is particularly suitable for the set highway scene and can achieve higher
trajectory tracking accuracy. The Cartesian coordinate system more clearly shows the actual planned
trajectory and driving trajectory. It is more intuitive and easier to determine whether a collision occurs.

(2) The second scenario is ‘on RV’. This scene only has rear vehicles in the target lane, and the priority of
acceleration space is lower than in the previous scene. The payoffs of safety, speed, and comfort are
respectively: α = 0.3, β = 0.3, γ = 0.4. At this point, it is a two-car game, hence Fij = 0, as shown in Table 5.
The game result is that the optimal trajectory is the alternative trajectory #5. It was verified that the
model can change weights to generate different driving strategies. In practice, the weights in the payoff
matrix can be dynamically adjusted through machine learning methods to adapt to different driving
scenarios. Compared to the previous scenario, the alternative trajectory sets are denser in Fig. 8a, which
is consistent with the calculation results presented in Table 4.

(3) The third scenario is ‘both FV and RV’. When there are cars in front and behind the target lane,
the space at the beginning of the game is relatively small. The presence of the vehicle in front of the
target lane makes the importance of acceleration space the same as in scenario 1. The presence of a
vehicle behind makes the potential danger of lane change higher than that of a single-vehicle scenario.
Therefore, the payoffs of safety, speed, and comfort are respectively: α = 0.35, β = 0.5, γ = 0.15, as shown
in Table 6. Fig. 9 and Table 4 show that the strategy can effectively calculate the optimal trajectory.

Table 3: Game strategy payoff matrix (partial)

FV LV

C N
Encouraging 8.3652, 7.5457, 0 3.7250, 8.7286, 0
Discouraging 5.5768, 5.0305, 0 3.7250, 8.7286, 0
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Table 4: Total payoff of the subject vehicle

Alternative trajectory FV RV FV and RV
1 5.0593 4.357 5.5289
2 6.8054 3.7395 5.0789
3 7.2621 3.2705 4.5634
4 13.0125 4.5878 4.8211
5 11.1501 7.4016 8.5309
6 5.3716 4.9592 5.4955
7 4.2875 4.9247 5.3684
8 3.6508 4.5551 4.9931
9 3.1628 4.3497 4.4079
10 2.8196 4.4378 3.9818
11 2.4211 5.0484 3.8372

Figure 7: (a) Cartesian coordinate system planning trajectories; (b) Frenet coordinate system planning trajectories

Table 5: Game strategy payoff matrix (partial)

RV LV

C N
Encouraging 4.4386, 0, 11.9670 5.1162, 0, 10.0973
Discouraging 2.9591, 0, 7.9780 5.1162, 0, 10.0973

Figure 8: (a) Cartesian coordinate system planning trajectories; (b) Frenet coordinate system planning trajectories
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Table 6: Game strategy payoff matrix (partial)

FV and RV LV

C N
Encouraging 4.2140, 6.6987, 1.7774 6.3659, 5.2519, 3.2929
Discouraging 2.8093, 4.4658, 1.1849 3.9175, 4.7267, 3.7045

Figure 9: (a) Cartesian coordinate system planning trajectories; (b) Frenet coordinate system planning trajectories

To evaluate whether the optimal trajectory is applicable to real traffic, the NGSIM data is used for
validation. NGSIM is a general tool that collects video to capture real traffic information and verify the
effectiveness of trajectory planning. The data used mainly includes road data and status data of related
vehicles. A series of vehicles with lane-changing behaviors are selected as target vehicles in NGSIM. The
evaluation is performed by calculating the overlap rate and similarity between the actual trajectory and the
planned trajectory.

Fig. 10 shows a representative trajectory planning diagram. The red curve is an actual left lane change
trajectory in the NGSIM dataset. Select the target vehicle, surrounding vehicles, and road status information
when the lane change starts. The blue curve represents the trajectory planned by substituting this information
into the model. Find overlapping points by computing the closest point match between two trajectory point
sets. The distance threshold is set to 0.3 m. Points less than this threshold are considered to be overlapping
points. The overlap rate of the two trajectories shown in Fig. 10 is 88.7%. The Euclidean distance between
two trajectory points is calculated, and the root mean square error (RMSE) is used to quantify the difference
between the trajectories. The smaller the RMSE, the more similar the trajectories are. The RMSE of the
planned trajectory shown in Fig. 10 is 0.1371. Trajectories with overlap greater than 80% and RMSE less than
0.2 were considered usable plans. Table 7 shows that there are 110 trajectories available for this model, and
the lane-changing accuracy is 82.7%.



Comput Mater Contin. 2025;83(2) 2015

Figure 10: Trajectory comparison

Table 7: Trajectory accuracy comparison

Data source Number of experiments Available trajectories Accuracy
NGSIM dataset 133 133 100%
This model data 133 110 82.7%

5 Trajectory Tracking Control Algorithm

5.1 LQR Tracking Algorithm
Since the actual system is discrete, Eq. (7) needs to be converted to a discrete-time model. Defining the

sampling time as Tsa and the time step as k, the discrete-time model is expressed as:

e (k + 1) = A ⋅ e (k) + B ⋅ u (k) (16)

where A = A ⋅ Tsa + I, B = B ⋅ Tsa , I is the unit matrix. Define the cost function:

JL = ∑
+∞

k=0 (e (k)
T ⋅ Q ⋅ e (k) + u (k)T ⋅ R ⋅ u (k)) (17)

where Q and R are the state weighting matrix and control weighting matrix, which influence the rate at which
deviations converge to zero and the magnitude of the control inputs.

For closed-loop control, construct the Hamiltonian function. Multiplying the front of the constraint
equation by the covariance matrix λ yields the Hamilton function as follows:

H (k) = e (k)T ⋅ Q ⋅ e (k) + u (k)T ⋅ R ⋅ u (k) + λ (k + 1)T ⋅ (A ⋅ e (k) + B ⋅ u (k)) (18)

Performance metrics rewritten according to system constraints and design control laws.

JL = ∑
n−1
k=0 (H (k) − λ (k + 1)T ⋅ e (k + 1)) + e (k)T ⋅ Q ⋅ e (k) (19)

u (k) = −R−1 ⋅ BTsa ⋅ λ (k + 1) (20)
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Construct the Riccati differential equation, where P(k) is a semi-positive definite symmetric matrix,
λ (k) = P (k) ⋅ e (k).

PA+ ATP − PBR−1BPT + Q = 0 (21)

The control law and final state feedback control are calculated as follows:

u (k) = −R−1 ⋅ BT ⋅ P (k) ⋅ e (k) (22)
UL = −K ⋅ er (23)

where K is a 1 × 4 matrix, denoting the gain of the LQR controller.
Solving the Riccati differential equation offline improves the speed of solving the system controller.

Create a look-up table of feedback gain coefficients for different vehicle speeds. This offline look-up
table approach improves the system computation speed and enhances the real-time performance of the
control system.

5.2 MPC Tracking Algorithm
On this basis of Eq. (17), the equations for predicting the future system output can be derived. In order

to unify e(k) and u(k − 1), let ξ(k) be the new state variable and η(k) be the system output η(k), which leads
to the state space expression:

{ ξ (k + 1) = Ã ⋅ ξ (k) + B̃ ⋅ Δu (k)
η (k) = C̃ ⋅ ξ (k) (24)

where ξ (k) = [ e (k)
u (k − 1) ] , Δu (k) = u (k) − u (k − 1) , Ã = [ A B

0 I ] , B̃ = [ B
I ] , C̃ = [ I 0 ]

Hp is the system prediction time domain, and Hc is the control time domain, where k = Hc, Hc + 1, . . .,
Hp − 1. The prediction model is obtained by iteration.

Y (k + 1∣k) = Φ ⋅ ξ (k) +Θ ⋅ ΔU (k) (25)

Similar to Eq. (20), the cost function in the prediction process is defined as:

JM = Y (k)T ⋅ QQ ⋅ Y (k) + ΔU (k)T ⋅ RR ⋅ ΔU (k) (26)

QQ and RR are the state weighting matrix and control weighting matrix. The following are essential
regarding vehicle driving effects: steering angle constraints, steering angle increment constraints, and
acceleration constraints. Considering the need to improve the smoothness of the vehicle travelling and to fit
the desired path, the amount of control and the control increments are also constrained.

{umin (k + i) ≤ u (k + i) ≤ umax (k + i) , i = 0, . . . , Hc − 1
Δumin (k + i) ≤ Δu (k + i) ≤ umax (k + i) , i = 0, . . . , Hc − 1 (27)

On this basis, the quadratic objective function can be obtained as follows [30]:

JM = ΔU (k)T ⋅Ht ⋅ ΔU (k) +Gt ⋅ ΔU (k) (28)

where Ht = ΘT ⋅ QQ ⋅Θ + RR , Gt = 2 (Φ ⋅ ξk)T ⋅ QQ ⋅Θ.
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The optimal sequence of ΔU(k) is obtained by solving for the minimum value of JM under con-
straints Eq. (27). The control input for time step k is obtained by iteration:

u (k∣k) = u (k − 1∣k) + [ 1 0 ⋅ ⋅ ⋅ 0 ] δU∗ (k) (29)

where ΔU*(k) denotes the optimal sequence of ΔU(k).

6 Simulations and Discussion
This section first verifies the effectiveness of the LQR and MPC trajectory tracking controllers. The

simulation platform of MATLAB and CarSim is built for simulation verification, and the vehicle parameters
are shown in Table 1. The single shift line in the straight road environment and the single shift line trajectory
in the curved road environment were used as reference trajectories. Further experimental tests were
conducted on a driving simulator. The feasibility and effectiveness of the proposed lane-changing strategy
under complex working conditions are verified. The feasibility and real-time implementation capability of
the proposed algorithm are demonstrated.

6.1 Verification of Single Shift Line on Straight Road
Experimental validation was carried out under straight road single shift line conditions, as shown

in Fig. 11. In straight-line scenarios, the Cartesian coordinate system is used directly for planning and control.
The coordinate conversion step can be omitted, which reduces errors and optimizes calculation speed. Where
the speed of the subject vehicle is 100 km/h, the road friction coefficient is 0.75, the lane width is 3.6 m, and
the sampling time is 0.01 s. Fig. 11a shows the lateral displacement of the subject vehicle relative to the road
edge line Y. Fig. 11b–d illustrates the yaw angle, front wheel angle of rotation, and lateral acceleration of the
subject vehicle, respectively.

Figure 11: (a) Lateral displacement; (b) Yaw angle; (c) Front wheel angle; (d) Lateral acceleration
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In detail, the black line represents the planning trajectory, the blue line represents the simulation of
LQR tracking, and the red line represents the simulation of MPC tracking. The lateral displacement shows
that the LQR and MPC controllers do well in tracking the planned trajectory. Compared to the LQR control,
the vehicle lateral error under MPC control is greater, up to a maximum of 0.2 m. The vehicle sway angle
shows that the vehicle controlled by the MPC controller has a smaller peak sway angle and better stability
during lane-changing. The front wheel angle of the vehicle shows that the vehicle starts to change lanes at
20 m and completes the change at around 85 m. In this case, the front wheel angle of the vehicle controlled by
the MPC controller is smoother, with a sudden change in the initial phase of lane-changing and a maximum
value of no more than 1○ during the process. In contrast, the control of the front wheel angle by the LQR
controller suffers from the jitter phenomenon. The lateral acceleration curve shows that both the LQR and
MPC controllers have lateral acceleration within 0.3 g during vehicle lane-changing. Moreover, the lateral
acceleration profile of the vehicle controlled by the MPC controller is smoother, indicating good comfort.

6.2 Verification of Single Shift Line on Curved Road
Similar to the straight road, the vehicle state response curve under single shift condition of constant

curvature curved road can be obtained in Fig. 12. The radius of curvature of the road is 300 m.

Figure 12: (a) Lateral displacement; (b) Yaw angle; (c) Front wheel angle; (d) Lateral acceleration

Like state response curve for a curved road would result in proportional compression if the identical X
is taken as the transverse axis, so the longitudinal displacement S in the Frenet coordinate system is taken
as the transverse axis in describing the vehicle’s transverse swing angle, front wheel angle of rotation, and
transverse acceleration.

The tracking effect of curved roads is similar to that of straight roads. Fig. 12b–d shows that the vehicle
starts to change lanes at 40 m and completes the change at around 140 m, in which the front wheel angle of
the vehicle controlled by the MPC controller is stable in the interval of 1○–2○ change during the initial phase
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of the lane-changing. The LQR controller’s front wheel angle judder is still present and severe. The lateral
acceleration change is slightly larger than the straight line but still within control. Furthermore, MPC control
is still better than LQR control. Therefore, a dual controller trajectory tracking approach is used, with the
MPC controller for the lane-changing process and the LQR controller for the road-holding process. It can
effectively increase the speed of calculation.

6.3 Lane-Changing Strategy Verification under Complex Road Conditions
In this subsection, the effectiveness of the lane-changing strategy is further validated through hardware-

in-the-loop driving simulator experiments. The hardware-in-the-loop driving simulator shown in Fig. 13
consists of a model Lenovo ThinkCentre M910t-D158 host computer, a model HP Compaq DC7700p CMT
implementation target machine, five joint flat-screen displays, sensors, motors, and acquisition cards. The
real-time system is built with LabVIEW Real-Time module as the software core.

Figure 13: Autopilot simulator

In the experiment, the driving route was set up as an S-shaped road with straight and left and right
curves. In order to validate the effectiveness of the driving scheme, game lane-changing, adaptive cruise,
lane-changing abort, and direct lane-changing are implemented continuously for four working conditions.

Fig. 14 shows that the black line is the expected steering wheel angle, and the red line is the actual
steering wheel angle. The steering wheel angle during lane-changing can achieve a better tracking effect. In
conjunction with the in-software timer, at 6.392 s, the following threshold is calculated to be zero, the lane-
changing speed threshold to be one, and the lane-changing distance threshold to be zero. The game lane
change is performed, as shown in Fig. 14a, and the lane change is performed at 6.392~9.557 s.

At 9.557 to 23.712 s, the calculation of the following and lane-changing speed threshold is zero. In the
process, the subject vehicle enters the curve and gets closer to the vehicle in front of it, but there is no
opportunity to change lanes. Adaptive cruise is maintained to follow the vehicle in front based on driving
behaviour decisions. The actual and desired steering wheel angle is within 1○, as shown in Fig. 14b.

At 23.712 s, by calculating the thresholds, this vehicle again generates the intention to change lanes and
starts a two-sided game with the vehicle behind the target lane. 24.6–25.8 s, the speed of the vehicle behind
the target lane increases from 90 to 110 km/h. At 25.843 s, based on the calculation of the abort threshold of
1, the lane-changing abort command is triggered, and the vehicle immediately returns to the original lane.
The steering wheel angle deviation is not more than 1.5○, as shown in Fig. 14c. The actual tracking effect is
satisfactory for sudden changes in steering wheel angle within 0.5 s.
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Figure 14: (a) Steering wheel angle in game changing lane; (b) Steering wheel angle in adaptive cruise control; (c)
Steering wheel angle in lane-changing stop; (d) Steering wheel angle in direct lane change

At 29.829 s, by calculating the lane-changing distance threshold, which is zero, indicating that there are
no gaming vehicles, this vehicle adopts a direct lane-changing strategy. As shown in Fig. 14d, the two curves
coincide, and the steering wheel angle changes smoothly during the lane-changing.

The simulations were run on a desktop computer with an Intel Core i7-12700KF (3.6 GHz), 32.0 GB
RAM, Microsoft Windows 10 (64-bit), and MATLAB 2016b (64-bit). The key indicators are shown in Table 8.
Lane-changing conditions are divided into the straight road and the curved road. The maximum safety
distance meets the safe driving conditions. The maximum acceleration on curved roads is less than 0.52○,
ensuring driving stability. The average error is within the controllable range of 0.5 m. The total computation
time for the two cases including planning and control is 0.642 and 0.813 s, respectively.

Table 8: Simulation data

Straight road Curved road
Maximum lateral acceleration 0.24○ 0.52○

Minimum safety distance during lane-changing 64.1029 m 81.7957 m
Average control error 0.342 m 0.477 m

Computation time 0.642 s 0.813 s

The LQP controller has a small amount of calculation while the MPC controller has a higher calculation
complexity. In most cases, the LQR controller provides good performance in real-time systems. The MPC



Comput Mater Contin. 2025;83(2) 2021

controllers require stronger computing resources. Adaptive optimization algorithms and machine learning-
assisted optimization controller design and parameter selection are future research directions.

7 Conclusion
This paper proposes a lane change decision system for trajectory planning and tracking control of

intelligent vehicles. The quintic polynomial is used for vehicle trajectory planning on straights and curves.
On this basis, the trajectories are evaluated according to a game-theoretic approach. An automated driving
simulation platform is built based on hardware-in-the-loop technology, and automated driving in simple
traffic is achieved. The experimental results show that the strategy can plan an optimal lane change trajectory
with collision avoidance capability while balancing safety, acceleration, and comfort. Future works will
focus on optimizing the algorithms and the driving simulator’s data communication architecture to improve
real-time performance further.
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