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ABSTRACT: Recently, many Sequential Recommendation methods adopt self-attention mechanisms to model user
preferences. However, these methods tend to focus more on low-frequency information while neglecting high-
frequency information, which makes them ineffective in balancing users’ long- and short-term preferences. At the
same time, many methods overlook the potential of frequency domain methods, ignoring their efficiency in processing
frequency information. To overcome this limitation, we shift the focus to the combination of time and frequency
domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,
namely HyTiFRec. Specifically, we design two hybrid filter modules: the learnable hybrid filter (LHF) and the window
hybrid filter (WHF). We combine these with the Efficient Attention (EA) module to form the dual-branch structure to
replace the self-attention components in Transformers. The EA module is used to extract sequential and global informa-
tion. The LHF and WHF modules balance the proportion of different frequency bands, with LHF globally modulating
the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency
bands. Furthermore, we use a time domain residual information addition operation in the hybrid filter module, which
reduces information loss and further facilitates the hybrid of time-frequency methods. Extensive experiments on five
widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.
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1 Introduction
In today’s era of information overload, using recommendation algorithms to provide users with person-

alized recommendations from massive data sets has become a research priority. Traditional recommender
systems [1,2] usually model user preferences in a static manner and capture only general interests. In contrast,
sequential recommendation accounts for the temporal characteristics of user behavior and captures user’s
evolved and dynamic preferences.

Early Sequential recommendation methods mainly relied on Markov chains [3] to predict user behavior
based on the transition probabilities between behaviors. With the development of deep learning, deep neural
network-based sequential recommendation systems (SRSs) have gradually become the focus of research.
Recurrent Neural Networks (RNNs) [4,5] effectively process sequential data through their recurrent struc-
ture, capturing long-term dependencies in user behavior sequences. Convolutional Neural Networks (CNNs)
model [6,7] user preferences by extracting local features through convolutional operations. Additionally,
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memory networks [8] and self-attention [9] mechanisms have also been introduced and have achieved
notable success. In recent years, the Transformer architecture has demonstrated superior performance in
Sequential recommendation tasks. Transformer-based approaches [10,11] leverage multi-head self-attention
layers to model complex interactions in long sequences to improve recommendation accuracy and leverage
its parallelization capabilities to significantly improve training efficiency.

However, recent studies [12,13] have shown that self-attention tends to preserve low-frequency signals
while diminishing high-frequency signals. As shown in Fig. 1, in recommendation systems, high-frequency
information typically involves items frequently purchased within short time intervals (e.g., milk or note-
books), reflecting users’ immediate needs or short-term preference changes. In contrast, low-frequency
information usually includes items purchased over long time intervals (e.g., cameras or smartphones),
representing users’ long-term preferences. This implies that sasrec [10] and its variants tend to ignore users’
short-term preference changes. Jannach et al. [14] highlight the necessity of considering both short- and
long-term preferences, and thus how to balance the two to overcome this limitation is insightful.

Figure 1: Illustration of high and low-frequency signals in SR

To achieve a better balance between users’ short-term and long-term preferences, LOCKER [15]
combines local encoder with global self-attention networks, enhancing its capability to capture recent
user dynamics while preserving the extraction of long-term user preferences. MPAN [16] employs an
innovative temporal attention mechanism to capture short-term preferences and utilizes a multi-head self-
attention module to derive long-term preferences from diverse semantic perspectives. DIARec [17] combines
the Intention Learning Module and the Preference Module to capture users’ multifaceted preferences.
FEARec [18] employs an adaptive frequency modulation mechanism to enhance self-attention, combining
temporal attention with spectral attention based on an autocorrelation mechanism to extract both high and
low frequency information as well as periodic features in user behavior.

We observe the convenience and efficiency of processing frequency band information in the frequency
domain and the potential of hybrid methods to address this limitation. Thus, from the perspective of the
synergy between time domain and frequency domain methods, we propose a Hybrid Time-Frequency Dual-
Branch Transformer for Sequential Recommendation, named HyTiFRec. In HyTiFRec, we replaced the
self-attention layer in the Transformer block with a dual-branch structure, where each branch consists of a
time domain layer and a frequency domain layer. We define the time domain layer as a layer that directly
processes time domain signals containing sequential information, and the frequency domain layer as a layer
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that converts the time domain signals from the time domain to the frequency domain and processes it. The
user’s long-term interest reflects their overall preferences, providing a stable basis for recommendations.
Therefore we employ the efficient attention mechanism [19] in the time domain layer to capture the temporal
dependencies in the user’s historical behavioral sequences. Efficient attention is mathematically equivalent
to dot-product attention with scaling normalization, but it can better capture global information. In order
to preserve high-frequency information, we use residual connection in the time domain layer to retain the
original information. In the frequency layer, we design a learnable hybrid filter module and a window hybrid
filter module. Specifically, the two modules are used to adjust and balance the frequency information by
using the filtering method that modulates all frequency components of the spectrum using learnable filters
and retains specific local frequency components, respectively. The combination of the time domain and
frequency domain layers, along with the synergy between the two branches, enables HyTiFRec to effectively
capture and balance users’ global and recent preferences. This, to some extent, addresses the limitation of
many attention-based methods in overlooking users’ short-term interests. It is worth noting that, although
many models [20,21] employ learnable filters, our proposed learnable hybrid filter module is unique in that it
adaptively incorporates certain time domain information into the filtered output, reducing information loss
and achieving a time-frequency fusion effect. We also apply this same design principle to the window hybrid
filtering module.

We conduct comprehensive experiments on five real-world datasets from diverse scenarios to assess
the effectiveness of our model. The results indicate that our approach surpasses seven baseline methods in
recommendation performance.

2 Preliminary
This section outlines the problem statement and provides relevant background on the Fourier transform

and efficient attention mechanism, which will facilitate a detailed explanation of the proposed HyTiFRec.

2.1 Problem Statement
The task of sequential recommendation is to estimate the probability distribution of the potential

next interaction based on the user’s chronological interaction history. Let U = {u1 , u2, ..., u∣U ∣} and I =
{i1 , i2, ..., i∣I∣} denote the sets of users and items, where ∣U ∣ and ∣I∣ represent the number of users and items,
and each u and i correspond to a user and an item, respectively. The interaction sequence of a user u ∈ U
with items, ordered chronologically, is represented as Su

1∶n = {i1 , i2, ..., in}, where n is the sequence length.
The task is to estimate the probability of the next interacted item given the historical interactions of the user,
formulated as p (iu

1∶n+1 = i∣Su
1∶n).

2.2 Fourier Transform
The Discrete Fourier Transform (DFT) [22,23] is a critical algorithm in the field of signal analysis

and processing. This study utilize 1D DFT to project sequential feature signals from the time domain
to the frequency domain. Given a digital sequence {x [n]}, 0 ≤ n < N , the transformation extracts its
frequency-domain representation as follows:

x̂ [k] =
N−1
∑
n=0

x [n] e−i 2π
N nk , 0 ≤ k < N (1)

where i is the imaginary unit, and e is the base of the natural logarithm. This transformation is denoted

as x̂ = F (x), with x̂ [k] representing the frequency spectrum of x [n] at frequency ωk =
2πk
N

. By applying
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the DFT, signals are transformed from the time domain to the frequency domain, allowing us to study the
spectral structure and variation patterns of the signal. The sequence x̂ [k] obtained from the DFT can be
restored to the original signal x [n] using the Inverse Discrete Fourier Transform (IDFT):

x [n] = 1
N

N−1
∑
k=0

x̂ [k] e i 2π
N nk , 0 ≤ n < N (2)

The Fast Fourier Transform (FFT) [24,25] is an algorithm that efficiently computes the DFT and its
inverse. Calculating the DFT for a sequence of length n has a computational complexity of O (n2), while
the FFT reduces this to O (n log n). The IDFT, being an inverse operation of the DFT, can also be computed
with the FFT, referred to as the Inverse Fast Fourier Transform (IFFT). In this paper, we employ the FFT to
perform time-frequency domain transformations on the signal.

2.3 Efficient Attention
Efficient Attention (EA) is an optimized implementation of the attention mechanism. In EA, the feature

matrix X ∈ Rn×d is projected through three linear transformations to obtain the queries Q ∈ Rn×dk , the keys
K ∈ Rn×dk and the values V ∈ Rn×dv . The specific implementation is as follows:

EA(Q , K , V) = fq (Q) Fg = fq (Q) ( fk (K)T V) (3)

where fq applies softmax across the rows of Q, and fk applies it across the columns of K. EA provides a new
interpretation for the attention mechanism. Instead of gathering similarities for each position to generate
attention maps, EA treats the keys K as dk attention maps KT

i . Each KT
i represents a global attention map,

reflecting one semantic aspect of the entire input. These dk attention maps KT
i are used to aggregate the

values V through weighted summation, forming a global feature map Fg . The computational complexity
decreases from O (n2) for (QKT)V to O (dkdv) for Q (KT V), where n represents the input size, and dk
and dv denote the dimensions of the key and value, respectively. As the sequence length n increases, the
computational cost of dot-product attention grows quadratically. Therefore, Efficient Attention significantly
alleviates the computational overhead for long sequences or large datasets.

3 Method
This section elaborates on the proposed method in three components, as illustrated in Fig. 2: Embedding

Layer, Encoder, and Prediction Layer.

3.1 Embedding Layer
For a user interaction sequence Su

1∶N = {i1 , i2, ..., iN}, we create an item embedding matrix M ∈ R∣I∣×d

and obtain the input embedding matrix Eu ∈ Rn×d by retrieving the corresponding embeddings from M. For
sequences with more than n interactions, only the first n items are considered, while sequences with fewer
than n interactions are left-padded with a constant zero vector 0 to reach a length of n. We add a learnable
positional embedding P ∈ Rn×d to Eu to better utilize the order information between items. Additionally,
layer normalization [26] and dropout [27] are implemented:

Eu = Dropout (LayerNorm (Eu + P)) (4)
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Figure 2: Illustration of HyTiFRec. HyTiFRec constructs item representations by combining item and position
embeddings in the embedding layer, and then employs a proposed dual-branch structure based on time-frequency
hybrid to replace the self-attention layer for extracting user preferences

3.2 Hybrid Time-Frequency Encoder
We construct the item encoder by stacking multiple Hybrid Time-Frequency (HyTiF) blocks. The

HyTiF block generally consists of the dual-branch structure and the point-wise Feed-Forward Network
(FFN). We employ the efficient attention layer as the time domain layer for the branches, and the proposed
Learnable Hybrid Filter (LHF) and Window Hybrid Filter (WHF) layers as the frequency domain layers for
the branches. Accordingly, we refer to these two branches as the LHF branch and the WHF branch.

3.2.1 Time Domain Layer
In the time domain layer, we use an attention mechanism to extract features. Considering that the

feature map Fg of Efficient Attention (EA) explicitly aggregates global information, while classic self-attention
primarily focuses on pair-wise relation, we adopt EA to better capture global information. Multi-head
Efficient Attention (MEA) is the multi-head version of EA. In MEA, we execute the attention computations
in parallel, generating d-dimensional outputs, which are concatenated and then projected to yield the final
result. Let Cl denote the input to the l-th layer, where C0 = Eu :

Ĉ l = MEA(Cl) = Concat (head1 , . . . , headh)W O , headi = EA(Cl W Q
i , Cl W K

i , Cl W V
i ) (5)

where W Q
i ∈ Rdmod e l×dk , W K

i ∈ Rdmod e l×dk , W V
i ∈ Rdmod e l×dV and W O ∈ Rhdv×dmod e l are the projection matrices.

To mitigate the problem of vanishing gradients and unstable training, and also to preserve the original
information, we perform residual connection, layer normalization, and dropout:

Ĉ l = LayerNorm (Cl + Dropout (Ĉ l)) (6)

The outputs of the time domain layers in the LHF branch and the WHF branch are denoted as Ĉ l
L ∈ Rn×d

and Ĉ l
W ∈ Rn×d , respectively.
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3.2.2 Learnable Hybrid Filter
For the frequency domain layer of the LHF branch, we propose a Learnable Hybrid Filter. LHF performs

filtering operations on each dimension of the spectrum of Ĉ l
L , followed by residual connection and layer

normalization. FFT is first applied along the item dimension to transform Ĉ l
L into the frequency domain:

X l
L = f (Ĉ l

L) ∈ Cn×d (7)

where f (⋅) represents the 1D FFT. After applying FFT to Ĉ l
L , we obtain a complex tensor X l

L , which represents
the frequency spectrum of Ĉ l

L . Then, we set a learnable filter K ∈ Cn×d to modulate X l
L :

X̃ l
L = K ⊙ X l

L (8)

where ⊙ denotes the element-wise multiplication. The learnable filter K essentially weights the frequency
components, and its weights are updated during each training epoch using the Adam optimization algorithm,
achieving adaptive filtering. The modulated frequency spectrum signal is then converted back to a time
domain using the 1D IFFT:

C̃ l
L = f −1 (X̃ l

L) ∈ Rn×d (9)

where f −1 (⋅) represents the 1D IFFT. The filter K is a learnable filter that can effectively preserve the user’s
complete information in the frequency domain. During the model optimization process, the learnable filter
can adaptively represent any filter in the frequency domain. However, to prevent it from becoming overly
biased towards representing a specific filter and thus ignoring some important frequency information, we
obtain the residual information from the time domain and add it to the filtered output C̃ l

L with a learnable
scaling factor:

C̃ l
L = C̃ l

L + α (Ĉ l
L − C̃ l

L) (10)

where α is a learnable tensor. We acquire this residual information from the time domain instead of the
frequency domain to achieve time-frequency synergy, which is why we term this frequency layer as the hybrid
filter layer. The residual information is directly derived from the initial input of the filter, which helps mitigate
the distortion caused by operations in the frequency domain and better preserves the original sequence
information. We balance the global patterns in the frequency domain and the local correlations in the time
domain through a weighted summation with the learnable weight α. Additionally, we apply the residual
connection, layer normalization, and dropout.

3.2.3 Window Hybrid Filter
For the frequency domain layer of the WHF branch, we propose a Window Hybrid Filter. FFT is first

applied along the item dimension to transform Ĉ l
W into the frequency domain:

X l
W = f (Ĉ l

W) (11)

After obtaining the spectrum X l
W of Ĉ l

W through FFT, instead of performing frequency modulation
across all dimensions like in the learnable filter, we only truncate the spectrum Xl

W along the item dimension
to retain the frequency bands within a specified window:

X̃ l
W =W (X l

W) (12)
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where W (⋅) represents the frequency band values retained within the spectral window (U , V), with the rest
set to 0. U and V represent the lower and upper bounds of the frequency components to be preserved in the
spectrum. We execute IFFT to convert the filtered frequency domain signal back to the time domain:

C̃ l
W = f −1 (X̃ l

W) ∈ Rn×d (13)

We refer to this filtering method as the Window-Pass Filter (WPF). Depending on the selected strategy,
WPF can represent a low-pass, high-pass, or band-pass filter in the frequency domain. WPF captures signals
within a specified frequency band; however, since valuable information exists across all frequency bands, we
aim to balance both low- and high-frequency signals and reduce information loss. To achieve this, we adopt
residual information addition from a time-frequency hybrid perspective, the same as the approach used in
the Learnable Hybrid Filter:

C̃ l
W = C̃ l

W + β (Ĉ l
W − C̃ l

W) (14)

where β is a learnable tensor. Residual connection, layer normalization, and dropout are also applied. LHF
uses a learnable filter K with dimensions matching those of the spectrum to modulate its global frequency
components, while WHF primarily extracts local frequency components from the spectrum. We combine
the outputs of LHF and WHF using the hyperparameter γ, where 0 < γ < 1:

C̃ l
H = γC̃ l

L + (1 − γ) C̃ l
W (15)

LHF leverages adaptive frequency-domain weighting to flexibly adjust to different preference patterns.
It can effectively capture long-term preferences while also making adjustments to account for short-term
fluctuations in user preferences to a certain extent. WHF, on the other hand, emphasizes specific frequency
bands by adjusting the window position, thereby highlighting either long-term or short-term preferences.
This proactive intervention, combined with its complementary role to LHF, enhances the model’s flexibility
and effectiveness in balancing short-term and long-term dependencies.

3.2.4 Point-Wise Feed-Forward Network
We use the GeLU activation function and linear transformations to form the point-wise feed-forward

network, which introduces non-linearity to the model. This computation is defined as:

C̃ l = FFN (C̃ l
H) = (GeLU (C̃ l

HW1 + b1))W2 + b2 (16)

where W1, W2, b1, b2 are learnable parameters. Finally, we also apply residual connection, layer normalization,
and dropout.

3.3 Prediction Layer
After extracting information from the user interaction sequence, we compute the relevance score of

item i at step (t + 1):

ŷi = p (it+1 = i∣i1∶t) = eT
i C̃L

t (17)

where ei represents the embedding of item i in MI , and C̃L
t represents the output of the L-layer HyTiF blocks

at step t in the interaction history. We optimize the model parameters using the Cross-Entropy (CE) loss
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function. The objective function of Sequential recommendation is formulated as:

L = − log
exp ( ŷg∈∣I∣)

∑∣I∣i=1 exp ( ŷi)
(18)

where g ∈ ∣I∣ is the ground truth item, and ŷg∈∣I∣ is the model’s predicted score for g.

4 Experiment
This section outlines our experimental setup and presents the empirical results. We design the

experiments to investigate the following research questions:

RQ1: How does HyTiFRec perform compared to current state-of-the-art sequential recommendation
methods?

RQ2: What is the influence of various component designs in HyTiFRec?
RQ3: How do different hyperparameters affect HyTiFRec’s performance?
RQ4: Can the proposed method improve the model’s ability to capture and balance users’ long-term

interests with short-term interest changes?

4.1 Experimental Setup
4.1.1 Dataset

We evaluate HyTiFRec on five real-world and widely used benchmark datasets. These datasets differ
in scenario, size, and sparsity, and are commonly used for evaluating sequential recommendation methods.
For all datasets, we exclude users and items with fewer than five interactions [28,29]. Table 1 presents the
dataset statistics.

(a) Beauty and Sports are domain-specific datasets extracted from the Amazon Review dataset.
(b) Yelp is a business recommendation dataset from the Yelp open dataset.
(c) ML-1M is a movie rating dataset provided by MovieLens.
(d) LastFM is a dataset from the Last.fm music platform that contains user activity records.

Table 1: Statistics of the datasets after preprocessing

# Users # Items # Interactions Avg. length Sparsity
Beauty 22,363 12,101 198,502 8.9 99.93%
Sports 25,598 18,357 296,337 8.3 99.95%
Yelp 30,431 20,033 316,354 10.4 99.95%

LastFM 1,090 3,646 52,551 48.2 98.68%
ML-1M 6,041 3,417 999,611 165.5 95.16%

4.1.2 Baselines
We compare HyTiFRec with the following baseline methods:

(a) GRU4Rec [4]: An RNN-based approach that leverages gated recurrent units (GRUs) for modeling user
interaction sequences.

(b) SASRec [10]: A Transformer-based approach that employs self-attention to capture long-range depen-
dencies within user behavior sequences.
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(c) BERT4Rec [30]: A bidirectional Transformer-based method that leverages BERT [31] to capture
bidirectional dependencies in user interaction sequences.

(d) FMLP-Rec [20]: A MLP-based method that uses filter-enhanced MLP to filter noise and learn
user preferences.

(e) DuoRec [32]: A contrastive learning-based method that improves item embedding distribution
through the uniformity property of contrastive learning.

(f) FEARec [18]: A Transformer-based method that combines attention mechanisms in the time and
frequency domains to capture users’ evolving preferences over time.

(g) BSARec [33]: A Transformer-based method that leverages the Fourier transform to capture inductive
biases from frequency information and employs a frequency rescaler to address the issue of over-
smoothing.

4.1.3 Implementation and Hyperparameter Settings
We implement all models using PyTorch. The other hyperparameters for each model are tuned based

on recommendations from their respective papers. The experiments are conducted with the following
hyperparameters: embedding size d is set to 64. Considering computational cost and the fact that users’
excessively early preferences may not accurately reflect their current needs, the sequence length n is set to
50. For the upper limit V and lower limit U of the window in the WHF, U is set to 0, and V is selected
from {1, 2, 3, 4, 5}, corresponding to the indices of the frequency components in the spectrum. To keep
the model complexity and computational cost at an appropriate level, the number of HyTiF blocks L is
tuned within {1, 2}. A lower learning rate significantly slows down the convergence speed, while a higher
learning rate may lead to instability during the optimization process. Therefore, we select a moderate and
commonly used range of learning rates, {5 × 10−4, 1 × 10−3}. For the number of heads in the multi-head
attention mechanism, increasing the number of heads allows the model to extract diverse patterns from the
input sequence. However, considering that small d is not suitable for decomposition into excessively small
subspaces [10], we tune the number of heads h within {1, 2, 4}. The optimizer is the Adam optimizer, and
the batch size is set to 256.

4.1.4 Evaluation Metrics
We use standard top-K ranking evaluation metrics, Hit Ratio@K (HR@K) and NDCG@K, to score the

ranked lists of each method. HR@K is a recall-based metric that focuses on whether the items the user is
interested in appear in the top K recommended items. NDCG@K is a ranking-based metric that focuses on
the ranking of items in the recommendation list, providing a better evaluation of the ranking quality of the
recommendation system. By default, K is set to 5, 10, and 20. As suggested by [34,35], we evaluate model
performance using a full ranking approach, where rankings are computed across the entire item set without
negative sampling.

4.2 Recommendation Performance (RQ1)
To demonstrate the sequential recommendation performance of HyTiFRec, we conduct a comparison

with several state-of-the-art methods. Table 2 shows the results of different methods across five datasets. On
all five datasets, Transformer-based methods outperformed CNN-based Caser and RNN-based GRU4Rec,
demonstrating the efficiency of the Transformer architecture and self-attention mechanism in modeling
user interaction sequences for sequential recommendation tasks. FMLP-Rec removes the self-attention
component from Transformer and enhances MLP with a learnable filter, achieving better performance than
SASRec across most datasets, indicating the research potential of frequency domain methods in sequential
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recommendation. The performance of FEARec, which also utilizes frequency domain methods, further
supports this conclusion. Furthermore, DuoRec and FEARec, which incorporate contrastive learning,
significantly outperform methods that do not use contrastive learning, validating that contrastive learning
is useful for improving performance. BSARec, which utilizes self-attention mechanisms and a frequency
rescaler, outperforms other baselines in overall performance.

Table 2: Performance comparison of various methods across five datasets. The highest evaluation score in each row is
highlighted in bold, and the second-best score is underlined. ‘Improv.’ indicates the relative improvement over the best
baseline performance

Datasets Metric GRU4Rec SASRec BERT4Rec FMLP-Rec DuoRec FEARec BSARec HyTiFRec Improv.
Beauty HR@5 0.0169 0.0283 0.0438 0.0342 0.0694 0.0669 0.0705 0.0732 3.82%

NDCG@5 0.0103 0.0184 0.0285 0.0219 0.0498 0.0477 0.0504 0.0517 2.57%
HR@10 0.0294 0.0456 0.0694 0.0561 0.0955 0.0963 0.0986 0.1009 2.33%

NDCG@10 0.0144 0.0240 0.0368 0.0289 0.0582 0.0572 0.0595 0.0606 1.84%
HR@20 0.0466 0.0733 0.1036 0.0897 0.1318 0.1338 0.1342 0.1384 3.12%

NDCG@20 0.0187 0.0310 0.0454 0.0374 0.0673 0.0666 0.0684 0.0701 2.48%
Sports HR@5 0.0105 0.0159 0.0265 0.0186 0.0388 0.0402 0.0404 0.0421 4.20%

NDCG@5 0.0067 0.0108 0.0170 0.0120 0.0275 0.0276 0.0281 0.0289 2.84%
HR@10 0.0181 0.0263 0.0441 0.0293 0.0558 0.0569 0.0575 0.0597 3.82%

NDCG@10 0.0091 0.0142 0.0216 0.0155 0.0329 0.0330 0.0336 0.0346 2.97%
HR@20 0.0291 0.0417 0.0641 0.0457 0.0798 0.0815 0.0821 0.0841 2.43%

NDCG@20 0.0119 0.0180 0.0274 0.0196 0.0389 0.0392 0.0398 0.0407 2.26%
Yelp HR@5 0.0133 0.0150 0.0234 0.0175 0.0260 0.0267 0.0255 0.0272 1.87%

NDCG@5 0.0085 0.0092 0.0147 0.0108 0.0164 0.0169 0.0158 0.0171 1.18%
HR@10 0.0221 0.0256 0.0396 0.0301 0.0438 0.0440 0.0436 0.0462 5.00%

NDCG@10 0.0113 0.0126 0.0200 0.0149 0.0221 0.0224 0.0217 0.0232 3.57%
HR@20 0.0382 0.0422 0.0656 0.0494 0.0714 0.0702 0.0716 0.0750 4.74%

NDCG@20 0.0153 0.0168 0.0265 0.0197 0.0290 0.0290 0.0287 0.0304 4.82%
LastFM HR@5 0.0229 0.0367 0.0330 0.0376 0.0440 0.0422 0.0560 0.0587 4.82%

NDCG@5 0.0159 0.0258 0.0211 0.0256 0.0309 0.0284 0.0376 0.0384 2.12%
HR@10 0.0349 0.0606 0.0541 0.0596 0.0606 0.0606 0.0761 0.0771 1.31%

NDCG@10 0.0197 0.0334 0.0280 0.0326 0.0361 0.0344 0.0441 0.0442 0.02%
HR@20 0.0495 0.0872 0.0835 0.0899 0.0890 0.0881 0.1073 0.1193 1.11%

NDCG@20 0.0233 0.0401 0.0354 0.0402 0.0433 0.0413 0.0519 0.0548 5.58%
ML-1M HR@5 0.1055 0.1414 0.1422 0.1288 0.1891 0.1816 0.1911 0.2043 6.90%

NDCG@5 0.0674 0.0912 0.0935 0.0834 0.1264 0.1212 0.1268 0.1382 8.99%
HR@10 0.1806 0.2192 0.2187 0.2086 0.2699 0.2651 0.2720 0.2889 6.21%

NDCG@10 0.0917 0.1162 0.1180 0.1091 0.1524 0.1480 0.1527 0.1654 8.31%
HR@20 0.2815 0.3182 0.3230 0.3257 0.3733 0.3677 0.3806 0.3982 4.62%

NDCG@20 0.1168 0.1412 0.1443 0.1384 0.1785 0.1738 0.1802 0.1930 7.10%

Our proposed HyTiFRec is a novel transformer architecture that leverages the synergy of time domain
and frequency domain methods. It outperforms SASRec, which uses only time domain attention; FMLP-
Rec, which employs only frequency domain filters; and FEARec, which incorporates both time domain
and frequency domain attention along with contrastive learning. Our method demonstrates relatively
larger improvements compared to most baselines on datasets with lower sparsity and longer interaction
sequence lengths (i.e., LastFM and ML-1M), indicating that HyTiFRec is more effective in capturing complex
temporal patterns. On datasets with higher sparsity and shorter sequence lengths (i.e., Beauty, Sports,
and Yelp), it shows certain improvements. Through the learnable frequency filtering, HyTiFRec can weigh
information from different frequencies, effectively suppressing noise and enhancing the accuracy of user
preference modeling.
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4.3 Ablation Studies (RQ2)
To investigate the effectiveness of HyTiFRec’s components, we conduct several ablation studies. The

ablation studies examine HyTiFRec and its four variants across three datasets. The four variants are derived
from HyTiFRec by removing the frequency domain layer LHF (w/o LHF), removing the frequency domain
layer WHF (w/o WHF), removing the time domain layer EA (w/o EA), and removing the operation of adding
time domain residual information in the frequency domain layers (w/o RIAdd).

Table 3 presents the evaluation results. When the time domain layer is removed, that is, when the EA
component is removed, the model’s performance decreases. This suggests that the EA is used to extract
preliminary features and provide global information, which provides a solid foundation for subsequent
filtering and integration of information using frequency domain methods. Removing either the LHF or
WHF module also leads to performance degradation. The LHF globally modulates the spectrum, and
the WHF retains local frequency components from the spectrum for integration. These two different
frequency domain methods can effectively extract and integrate frequency domain information. Both the
time domain and frequency domain layers are important, reflecting the potential of combining time domain
and frequency domain methods. When the addition of time domain residual information is removed, the
model’s performance drops significantly. This suggests that adding time domain residual information to the
output after frequency domain filtering helps reduce the loss of important information.

Table 3: Ablation studies of HyTiFRec with HR@5 and NDCG@5 metrics across ML-1M, Yelp and Beauty datasets.
The best results are in bold

Methods ML-1M Yelp Beauty

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5
HyTiFRec 0.2043 0.1382 0.0272 0.0171 0.0732 0.0517
W/O EA 0.1904 0.1278 0.0262 0.0160 0.0716 0.0508

W/O LHF 0.1974 0.1343 0.0260 0.0161 0.0704 0.0495
W/O WHF 0.1962 0.1325 0.0255 0.0162 0.0695 0.0495
W/O RIAdd 0.1937 0.1296 0.0253 0.0160 0.0681 0.0482

4.4 Hyperparameter Studies (RQ3)
In this section, we investigate the effect of two key hyperparameters on HyTiFRec: the balance coefficient

γ for the dual-branch structure and the upper truncation limit V in WHF. When analyzing each of these
hyperparameters, all other hyperparameters are kept at their optimal settings.

4.4.1 Balance Coefficient γ
As shown in Fig. 3, HyTiFRec achieves the best performance on the ML-1M and Beauty datasets when

γ = 0.3. On the Yelp dataset, HyTiFRec performs well at γ = 0.5 and γ = 0.7, but it receives the lowest
evaluation score on the ML-1M dataset when γ = 0.7. These results suggest that the two branches in the
HyTiF block contribute differently across datasets, highlighting their respective importance. Identifying the
optimal balance between the two can enhance HyTiFRec’s overall performance. Among the three datasets,
Yelp is the most sparse, followed by Beauty and ML-1M. When assigning an appropriately higher weight to
the LHF branch, the model performance slightly improves on Yelp, slightly declines on Beauty, and drops
more significantly on ML-1M. We believe this is because the noise attenuation capability of the LHF branch
is crucial for highly sparse datasets like Yelp. However, for less sparse datasets, the contribution of LHF
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diminishes, and assigning it a greater weight may lead to performance degradation. To some extent, adjusting
the weight balance between the LHF and WHF branches based on the sparsity of the dataset can effectively
improve the overall performance of HyTiFRec.

Figure 3: Performance of HyTiFRec on three datasets with different balance coefficients

4.4.2 Upper Truncation Limit V
As shown in Fig. 4, the models with V = 1 and V = 5 perform poorly across the three datasets, while

the model with V = 3 achieves the best performance. This result indicates that the information retained by
WHF in the frequency domain should be moderate; simply increasing the WHF window size to capture more
frequency bands does not necessarily yield better performance. Instead, an excessively large window may
cause the model to lose balance in focusing on users’ long-term and short-term preferences, and similarly,
retaining too little information has a similar effect on performance.

Figure 4: Performance of HyTiFRec w.r.t different upper truncation limit on three datasets

4.5 Performance Comparison Based on Transition Frequency (RQ4)
We evaluate HyTiFRec and SASRec on test samples with varying item transition frequencies using

the NDCG@20 metric. The item transition frequency of each sample sequence is calculated based on
the transition from the validation item (the second-to-last item) to the test item (the last item) in the
sequence. Fig. 5 presents the evaluation results on two datasets. Whether on test samples with zero item
transition frequency or those with high item transition frequency, HyTiFRec consistently outperforms
SASRec. This suggests that HyTiFRec, compared to SASRec, has a deeper grasp of short-term changes in
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user interests without reducing its ability to model long-term user preferences. By better balancing users’
short-term and long-term preferences, HyTiFRec achieves higher prediction accuracy.

Figure 5: Performance of two methods w.r.t item transition frequency on two datasets

5 Related Work

5.1 Sequential Recommendation
sequential recommendation methods aim to predict users’ future preferences based on their historical

interaction sequences [36]. Early sequential recommendation approaches were primarily based on Markov
Chains. With the development of deep learning, research in SRSs has increasingly focused on deep learning
methods. GRU4Rec [4] employs Gated Recurrent Units (GRU). Caser [6] utilizes horizontal and vertical
convolutional filters. Models like SASRec [10] and BERT4Rec [30] adopt unidirectional and bidirectional
encoders, respectively, to capture contextual information from user interaction sequences. TiSASRec [28]
uses a novel self-attention to explicitly capture the timestamps of items in a sequence. These self-attention
models focus more on long-term preference modeling. HAFLS [37] combines a hierarchical attention
structure with a multi-head self-attention mechanism and adopts a joint learning mechanism to integrate
users’ current interests and general preferences. DIARec [17] introduces a time-aware attention mechanism
to model interest shifts and employs GRU to extract sequential selection patterns in short-term interaction
items. However, these studies predominantly focus on the time domain, overlooking the exploration of
frequency domain methods.

5.2 Frequency Domain Learning
There are many works related to frequency domain methods in the fields of natural language process-

ing [38,39] and computer vision [40,41]. Recently, sequential recommendation has also started to recognize
the effectiveness of frequency domain methods. FMLP-Rec [20] is the first to introduce frequency filter
into sequential recommendation to address the noise issue in the data, proposing a fully MLP architecture
with a learnable filter. To tackle the problem of self-attention underrate high frequency signals [18,42],
leverage frequency domain methods and contrastive learning to improve the model’s ability to capture high-
frequency information and enhance overall performance. BSARec [33] injects inductive bias by considering
fine-grained sequential patterns and addresses the oversmoothing issue by utilizing a frequency rescaler.
Our proposed HyTiFRec replaces the self-attention layer in the Transformer module by serially combining
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LHF and WHF with EA. It improves the model’s flexibility and the ability to balance high-frequency and
low-frequency signals through adaptive filtering and emphasizing specific frequency components.

6 Conclusion and Future Work
In this paper, to address the limitations of many sequential recommendation methods based on

self-attention mechanisms in balancing users’ long-term and short-term interests, we design a novel
Transformer-based model, HyTiFRec. Instead of the self-attention component in the Transformer, we
employ a hybrid time-frequency dual-branch structure. HyTiFRec utilizes efficient attention to extract initial
features and global information. We propose a learnable hybrid filter module and a window hybrid filter
module to perform frequency tuning for full-band frequency domain signals and to extract local frequency
components from frequency domain signals, respectively, ensuring a balance between components across
different frequency bands. After filtering in the filter module, time domain residual information is incorpo-
rated to mitigate information loss during the filtering process. Our model demonstrates superior sequential
recommendation performance compared to seven baseline methods across five datasets, effectively improv-
ing the modeling of users’ long-term preferences while enhancing sensitivity to short-term preference
changes. Our method has certain limitations. The adjustable filter window size and position in WHF make
the model more flexible but also introduce a significant tuning workload. Additionally, its filtering method
is relatively simple and coarse, lacking a more refined and effective utilization of frequency components. In
response to these limitations, in future work, we will conduct a more in-depth study on frequency-domain
methods, particularly in aspects such as the partitioning and sampling of frequency components.
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