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ABSTRACT: This study focuses on the design and validation of a behavior classification system for cattle using
behavioral data collected through accelerometer sensors. Data collection and behavioral analysis are achieved using
machine learning (ML) algorithms through accelerometer sensors. However, behavioral analysis poses challenges due
to the complexity of cow activities. The task becomes more challenging in a real-time behavioral analysis system with
the requirement for shorter data windows and energy constraints. Shorter windows may lack sufficient information,
reducing algorithm performance. Additionally, the sensor’s position on the cows may shift during practical use, altering
the collected accelerometer data. This study addresses these challenges by employing a 3-s data window to analyze cow
behaviors, specifically Feeding, Lying, Standing, and Walking. Data synchronization between accelerometer sensors
placed on the neck and leg compensates for the lack of information in short data windows. Features such as the Vector
of Dynamic Body Acceleration (VeDBA), Mean, Variance, and Kurtosis are utilized alongside the Decision Tree (DT)
algorithm to address energy efficiency and ensure computational effectiveness. This study also evaluates the impact of
sensor misalignment on behavior classification. Simulated datasets with varying levels of sensor misalignment were
created, and the system’s classification accuracy exceeded 0.95 for the four behaviors across all datasets (including
original and simulated misalignment datasets). Sensitivity (Sen) and PPV for all datasets were above 0.9. The study
provides farmers and the dairy industry with a practical, energy-efficient system for continuously monitoring cattle
behavior to enhance herd productivity while reducing labor costs.

KEYWORDS: Monitoring; behavior; classification; accelerometer; sensor; misalignment; leg-mounted; neck-mounted;
cow

1 Introduction
The livestock sector is one of the key pillars of agriculture, playing an important role in providing food

and raw materials for production [1–4]. Cow farming is a key component of livestock production, providing
meat, milk, and leather. It contributes significantly to the agricultural value chain and plays a crucial role in
supporting related industries. With the continuous advancement of science and technology, cow farming has
made remarkable progress, from applying high-tech solutions in cow management and care to improving
productivity and product quality [5–7].

Cow behavior plays a crucial role in managing, monitoring, and understanding livestock activity
patterns, enabling farmers to detect changes that may indicate abnormal conditions [5]. Behaviors such as
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Feeding, Resting, Standing-up, Lying-down, and Moving provide valuable information about cattle activity
and welfare. Therefore, monitoring cow behavior is essential for optimizing herd management, improving
productivity, and ensuring animal well-being [8]. While behavior classification does not directly assess cow
health, prolonged or unusual behavior patterns may serve as early indicators of potential issues, offering
a non-invasive, practical approach for supporting farm management decisions [9]. This study focuses
primarily on the classification of these key behaviors to provide a reliable foundation for behavior-based
monitoring systems.

Behavior recognition systems and other identification technologies are being rapidly researched, devel-
oped, and adopted to enhance farm management efficiency [5–7], offering optimal solutions for livestock
monitoring. These systems significantly reduce the labor requirements for monitoring and management,
particularly in intensive farming systems with large-scale operations and high numbers of animals. With the
advancement of the IoT and increasingly sophisticated sensor technologies, cow behavior monitoring can
now be fully automated [10,11]. To maximize cost-effectiveness and minimize disruption to animals’ daily
activities, these systems must be designed to be affordable and non-invasive.

There are two main types of behavior monitoring systems: those that rely on wearable devices [12–16]
and those that do not [17–19]. Several studies [20,21] have focused on classifying animal behavior using
cameras and non-wearable sensor systems. Camera-based monitoring systems combined with computer
vision techniques provide high accuracy in behavior classification and can even classify multiple objects
simultaneously [20,21]. However, their implementation is often complex and expensive. On the other hand,
wearable device-based systems, often incorporating sensor technology, are more cost-effective. Several
existing behavior monitoring systems using accelerometer technology have been developed to automatically
analyze cow behavior [22,23].

Accelerometers have proven effective in collecting motion data and monitoring cow behavior [2]. The
effectiveness of behavior monitoring depends on the placement of the accelerometer on the animal’s body [7].
Studies [2,3] using accelerometers mounted on the neck have demonstrated high accuracy in classifying
Eating and Drinking behaviors. Meanwhile, studies [16,18,19] using accelerometers attached to the legs
achieved better results in monitoring Standing and Lying behaviors. Although accelerometer-based systems
have shown potential in accurately classifying cow behaviors [24], systems that rely on a single accelerometer
often face limitations in classification accuracy and can only recognize a narrow range of behaviors [25].
Integrating data from multiple accelerometers, such as devices placed on both the neck and legs, has been
proposed in research to improve performance; however, this method requires further study to validate
its effectiveness.

Behavior classification systems using accelerometer sensors have achieved high performance, signifi-
cantly aided by advancements in ML algorithms [26]. These ML algorithms are categorized into two types:
(i) supervised, and (ii) unsupervised. Studies [27–29] have applied various ML algorithms to monitor
behavior, yielding impressive results. Wang et al. in their studies [21,22] used AdaBoost for classifying
cattle behavior, achieving classification accuracy exceeding 0.9 across all behaviors. Similarly, Phung et al.
applied Gradient Boosted Decision Trees (GBDT) in their research [23], achieving overall performance
metrics with macro-average at 0.96 and micro-average at 0.97. Additionally, the study by Tran et al. [5]
utilized Random Forest (RF) and achieved high classification accuracy. However, energy consumption of
the devices remains a critical factor in behavior classification tasks. Energy efficiency is a key concern in the
design of real-time IoT systems [5]. The high computational complexity in behavior classification algorithms
leads to significant energy consumption, which reduces the operational lifespan of devices and increases
the frequency of maintenance or battery replacement. This is impractical for large-scale cattle herds [5].
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In study [30], García-Martín et al. highlighted the significant energy consumption of ML algorithms,
particularly deep learning.

The time window is a key factor in behavior classification, crucial for accurately extracting features from
data. Selecting an appropriate window size impacts model performance and enables more accurate behavior
recognition, particularly when handling rapidly changing signals over time. Studies [5,21] that require
comprehensive information for better classification performance often use long data windows, sometimes
up to 60 s. Optimizing the data window remains a challenge, as both overly short and overly long windows
can reduce classification accuracy. In practice, using long data windows may result in behavior classification
errors, as these windows can encompass multiple activities within a single data segment.

Additionally, device misalignment relative to its initial position cannot be overlooked during behavior
classification. Cattle activities can cause sensor misalignment. Using three-axis (x, y, z) to collect acceleration
data, any misalignment of the sensor alters the collected data, affecting classification performance [5].
Arcidiacono et al. [3] proposed a classifier using acceleration thresholds on accelerometer axis to classify
Standing and Feeding behaviors. While such systems are computationally simple, sensor rotation can severely
impact classification performance. Therefore, evaluating the effects of sensor misalignment on behavior
classification errors is a critical aspect of this research.

The work of this paper focuses on evaluating the behavior classification capability of the proposed
system using an accelerometer worn on cows. Additionally, it examines the impact of device misalignment
on behavior classification results. Below are the main challenges encountered during the research on the
behavior monitoring system:

– Challenge 1: Limited classification accuracy when using accelerometers. Systems with a single accelerom-
eter can only accurately recognize a limited number of behaviors.

– Challenge 2: Energy issues in designing real-time IoT systems. Algorithms with high computational
complexity significantly increase energy consumption, directly affecting the device’s operational time.

– Challenge 3: Optimizing the data window (shortening it). Insufficient or excessive data related to animal
behavior when using a data window leads to poor behavior classification performance.

– Challenge 4: Device misalignment on the animal. When collecting accelerometer data along the
x-axis, y-axis, z-axis, any misalignment of the sensor changes the collected data, adversely affecting
classification performance.

This study proposes the design of an IoT-based behavior classification system to identify cow behaviors
in a real-time scenario. The evaluation of sensor misalignment during cow behavior execution is also
considered to assess the system’s feasibility in practical applications. The main contributions of this research
are summarized as follows:

– Contribution 1: We integrate data from accelerometers attached to the neck and leg of the cow in
the behavior monitoring system. By utilizing data from both accelerometers, the behavioral patterns
are more clearly represented. The proposed system can predict a wider range of behaviors with
higher accuracy.

– Contribution 2: We address the energy challenges of the system by employing a classification algorithm
with low computational complexity. DT does not require data normalization and can handle both
numerical and categorical data, making it an excellent choice. Fortunately, with accelerometer data, DT
can be easily implemented in real-time with low computational costs. Combined with features such as
VeDBA, Mean, Variance, and Kurtosis, the proposed approach delivers excellent classification perfor-
mance.



2528 Comput Mater Contin. 2025;83(2)

– Contribution 3: We evaluate the classification performance of the system across various window sizes
(3, 6, 9, 12, and 15 s). The proposed system achieves consistent classification performance across different
window sizes. Therefore, it is well-suited for a 3-s window, aligning perfectly with the study’s objectives.

– Contribution 4: Using the data collected, we simulate sensor misalignment to assess its impact on
behavior classification results. The comparison with cases where the sensor is correctly aligned shows
minimal differences. This demonstrates that, with the proposed system, sensor misalignment does not
significantly affect classification performance.
The remainder of the paper is organized as follows: Section 1: Discusses related works and identifies key

research challenges. Section 2: Presents the behavior recognition system using accelerometers attached to the
neck and leg, with a short data window. The proposed method utilizes VeDBA, Mean, Variance, and Kurtosis
features, and the DT algorithm is employed for classification. A sensor misalignment simulation is also
introduced to evaluate its impact on behavior classification results. Section 3: Evaluates the performance of
the proposed system for four primary cow behaviors: Feeding, Lying, Standing, Walking. Section 4: Provides
discussions and comparisons with related works. Section 5: Concludes the study.

2 Materials and Methods

2.1 IOT System Monitors Behavior
An IoT-based livestock behavior monitoring system can provide early warnings of abnormal health

conditions in animals to farmers. Fig. 1 illustrates the IoT system used for monitoring behavior, where
accelerometer-equipped devices are attached to the cow’s neck and legs to measure motion data, and a
surveillance camera is used to record video footage of the cow’s behavior. Using image data from the camera,
behavioral labels can be accurately assigned to the motion data collected from the accelerometers [31].

Figure 1: IoT system monitors behavior

The cows in the study are raised and grazed under the climate conditions of the Northern Vietnam Plain.
The climate is characterized by a tropical monsoon, with hot and humid summers and cold, dry winters. The
average temperature in summer ranges from 28○C to 35○C, while in winter it ranges from 10○C to 15○C. All
the cows selected for the study were adult cows, aged between 24 and 36 months. They were all in good health,
with no diseases or injuries that could affect their natural behavior. Their weight ranged from 200 to 250 kg.
Two ADXL345 accelerometers [32] were used to measure motion data for each cow (Fig. 2). The ADXL345
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is capable of measuring acceleration along three-axis in Cartesian coordinates. With a measurement range
of ±2, ±4, ±8, and ±16 g, the ADXL345 is well-suited for motion recognition, tilt measurement, and real-
time activity tracking. Operating within a temperature range of −40○C to +85○C, the ADXL345 ensures
reliable performance even in extreme environmental conditions. Since raw data from the ADXL345 typically
contains noise, the accelerometers used in this study were equipped with Kalman filters to denoise the signal
and improve accuracy.

Figure 2: The cows in the study area were equipped with devices on their necks and legs

The motion data collected from the two accelerometers attached to the cow were transmitted to two
ATmega328 microcontrollers [33]. Leveraging its advanced RISC architecture, the ATmega328 executes most
instructions in a single clock cycle, offering superior processing efficiency. The ATmega328 also supports
an operating voltage range of 1.8 to 5.5 V and a temperature range of −40○C to +85○C, ensuring robust
performance under harsh environmental conditions.

Once the accelerometer data was transmitted to the microcontroller, it underwent preprocessing
to remove high-frequency noise using a low-pass filter. This step retained low-frequency components
containing key information. Subsequently, the processed data were framed at the microcontroller, which
featured an integrated LoRa communication module for data transmission. Fig. 3 shows the device worn on
the cow’s neck and legs.

Figure 3: Device on the cow’s neck and legs
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The labeling of cow behaviors was conducted directly on the farm. Table 1 provides a detailed descrip-
tion of the behaviors observed and labeled in this study. Visual observations were utilized to accurately
synchronize the behavior labels with the accelerometer data collected from the sensors attached to the cow’s
neck and legs. This process ensured precise alignment between the real-world activities of the cows and the
corresponding motion data, enabling high-quality annotations for subsequent analysis.

Table 1: Explain the behavior

Behavior Explain
Feeding Cows consume feed while in a designated feeding area.

Lying Cows are lying down with their bodies touching the ground.
Standing Cows are standing still, balanced on all fours.
Walking Cows’ movements consist of a sequence of at least three consecutive limb movements

maintained for one second or longer.

Energy consumption is a critical aspect of the system design. To evaluate power consumption, several
parameters were analyzed, including available bandwidth and the power requirements of the ADXL345,
ATmega328, and other devices. With an available bandwidth ranging from 100 to 500 kHz, the estimated
battery life of the wearable devices on the cows was approximately 400 h (about 16 days). Table 2 presents
the energy consumption of the system in different operating modes.

Table 2: The energy consumption of the system in different operating modes

Mode Devices active Power consumption (%) Battery life estimate
Idle ATmega328 (sleep mode) 10%–15% ~450–500 h

Active sensing ADXL345, ATmega328 25%–30% ~350–400 h
Data transmission LoRa module, ATmega328 50%–55% ~300–350 h

Typical use ADXL345, ATmega328, LoRa module ~100% ~400 h
High activity ADXL345, ATmega328, LoRa module ~110% ~300–350 h
Low activity ADXL345, ATmega328, LoRa module ~90% ~450–500 h

The primary factors affecting battery life in the proposed system are the power demands of active com-
ponents, operational modes, and environmental conditions. The LoRa module contributes significantly to
energy consumption, accounting for 50%–55% during data transmission, while the ADXL345 accelerometer
and ATmega328 microcontroller collectively consume 25%–30% during sensing and processing. Operational
modes, such as high-activity states, increase power usage due to frequent sensing and data transmission,
reducing battery life to 300–350 h. Conversely, low-activity states and optimized transmission intervals
extend battery life to 450–500 h.

Extreme weather conditions can further impact device performance and energy consumption. High
temperatures may accelerate battery degradation, reducing capacity by 5%–10% for every 10○C above 25○C.
Battery capacity may decrease by 5%–10% for every 10○C rise above 25○C, potentially reducing the expected
lifespan from 400 h to approximately 360–370 h in regions where daily temperatures regularly exceed 35○C.
Low temperatures slow chemical reactions, potentially decreasing capacity by 10%–15% when temperatures
fall below 0○C. High humidity and heavy rainfall can cause sensor drift and corrosion, leading to 3%–5%
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accuracy loss after 48 h of exposure to humidity levels exceeding 90%. Additionally, strong winds and rain
may disrupt data transmission when bandwidth usage reaches the 500 kHz limit.

2.2 Data Collection
Seven cows in our experiment were assigned seven corresponding ID (ID1, ID2, ID3, ID4, ID5, ID6

and ID7). The ADXL345 accelerometer sensor on the wearable device attached to a cow’s leg measures
leg movements during various behaviors. The movement data is sampled at a rate of ten samples per axis
per second. With data captured along three-axis (x, y, z), the sensor collects 30 samples per second. This
data is transmitted to the Atmega328 microcontroller. Subsequently, the ten samples collected for each axis
are averaged to produce one sample per second. This averaging method ensures that one final sample per
second is obtained, even if a few of the ten previous samples are lost. This design balances data reliability
and power efficiency, as the averaging reduces noise while minimizing computational demand on the
microcontroller. Additionally, this approach ensures the system’s robustness in real-world environments,
where brief transmission failures or sensor fluctuations may occur. The Atmega328 microcontroller frames
these averaged values for each axis and transmits the data frames to the device on the cow’s neck via an RF
module. The RF module enables wireless data transmission between the leg and neck devices, maintaining
a stable connection within a 50-m range in typical pasture conditions.

The Atmega328 microcontroller on the neck-worn device receives the transmitted data from the leg-
worn device. Similarly to the leg device, the neck device also includes a second ADXL345 sensor to measure
movement data. The number of samples and the data processing methods for the neck device are the same
as those for the leg device. After processing, the Atmega328 microcontroller on the neck device frames the
data, including GPS information, accelerometer data, battery percentage, and timestamps. GPS information
is updated at one-second intervals to synchronize with the accelerometer data, enabling spatial analysis of
behaviors. The inclusion of battery percentage in the data frames facilitates monitoring of device performance
during extended field deployments, ensuring timely maintenance and minimizing data loss due to power
depletion. Timestamping across devices ensures that the synchronized datasets can be precisely analyzed for
temporal relationships between leg and neck movements.

An example of data collected from accelerometers worn on the legs and necks of seven cows in the study
is shown in Table 3. During data collection, the potential impact of the wearable devices on cow behavior was
carefully considered. Observations of cows wearing the devices and those without devices were conducted. It
was found that behavioral differences between individuals with and without wearables were negligible. This
finding is supported by another study on cow wearables [34].

Table 3: 15 Walking data samples were synchronized from the accelerometers worn on the cows’ necks and legs

Walking

Leg Neck

x-axis (mg) y-axis (mg) z-axis (mg) x-axis (mg) y-axis (mg) z-axis (mg)
−881.9 −73 −262 573.5 −165 −778.3
−936.556 −195.778 −58.2222 603.8 −156.9 −755.5
−932.7 −63.1 −99.5 572.6667 −162.556 −799.111
−774.1 −91.7 −232.4 607.2 −169.1 −717.3
−868.4 −136 42.4 633.3 −93.3 −762.9

(Continued)
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Table 3 (continued)

Walking

Leg Neck

x-axis (mg) y-axis (mg) z-axis (mg) x-axis (mg) y-axis (mg) z-axis (mg)
−867 12.55556 −342 591.4 −178.8 −752.2
−829.2 −182.9 239.2 592.1111 −188.333 −786.111
−1063.3 5.3 −296.9 599.9 −99 −656.5
−968.4 −148.9 380.8 496.6 −414.8 −667
−859.4 293.8 −131.9 618.5 −291.4 −684.8
−958.667 51.77778 −187.444 656.7778 −204.889 −703.556
−876 −43.7 40.9 604.5 −207.8 −720.7
−1003.4 −42.3 145.2 653.9 −215.7 −716.1
−974.9 −65.4 160 636 −216.6 −770.8
−784.111 −18.6667 −178.556 561.9 −276.6 −723.7

The accelerometer data from the neck and leg devices were synchronized to construct datasets. Datasets
with window lengths of 3, 6, 9, 12, and 15 s were generated. Tables 4 and 5 respectively show the number
of behavior observations for each cow with a 3-s data window size in the Training dataset and the
Testing dataset.

Table 4: Number of behavior observations (3 s dataset) on Training dataset

ID Behavior Total

Feeding Lying Standing Walking
ID1 1012 829 1597 895 4333
ID2 676 642 1789 481 3588
ID3 896 161 1320 407 2784
ID4 877 745 1576 809 4007
ID5 963 1029 914 625 3531
ID6 1005 849 1578 900 4332
ID7 885 914 1568 833 4199

All cows 6314 5169 10,342 4950 26,774

Table 5: Number of behavior observations (3 s dataset) on Testing dataset

ID Behavior Total

Feeding Lying Standing Walking
ID1 674 552 1064 596 2886
ID2 450 428 1193 321 2392
ID3 597 107 880 271 1855
ID4 584 496 1050 539 2669

(Continued)
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Table 5 (continued)

ID Behavior Total

Feeding Lying Standing Walking
ID5 642 686 609 417 2354
ID6 670 566 1052 600 2888
ID7 590 609 1045 555 2799

All cows 4207 3444 6893 3299 17,843

It can be observed that the number of walking behavior samples is lower compared to other behaviors.
The study measured this behavior for an average duration of about 10 min per cow. Walking is highly
repetitive and stable, with no significant complex changes over time. Therefore, a short period of time is
sufficient to collect representative data samples, including acceleration fluctuations on the x, y, and z-axis [5].
However, Walking is also very important as it is one of the main behaviors used to assess the condition of
cattle. In future studies, it is necessary to increase the data collection time for Walking.

2.3 Feature Extraction
Feature extraction is a critical step in classification problems [24], especially when working with

sensor data. It helps reduce data dimensionality, improve model accuracy, and optimize computational
performance. Mean is a simple yet effective feature that reflects the average activity level of cattle over a
period. This value allows for clear distinctions between behaviors such as Walking, Standing still, or Resting.

In this study, two accelerometers attached to the neck and leg are applied with the Mean feature on each
axis. The formula for Mean is presented as follows:

a−l e g
i = 1

N

N
∑
k=1

al e g
i ,k (1)

and

a−neck
i = 1

N

N
∑
k=1

aneck
i ,k (2)

where:

– a−l e g
i is the mean value for the i-th axis (x, y, or z) from the leg accelerometer.

– a−neck
i is the mean value for the i-th axis from the neck accelerometer.

– al e g
i ,k is the k-th sample from the leg accelerometer for the i-th axis.

– aneck
i ,k is the k-th sample from the neck accelerometer for the i-th axis.

– N is the total number of samples in the time window.

However, to achieve higher classification performance, the Mean should be combined with other
features to capture more complex behavioral changes. To better capture complex behaviors, the Mean can be
combined with VeDBA. VeDBA is a feature that measures the level of kinetic energy expenditure, reflecting
the intensity of an animal’s activity [12]. This combination improves classification performance and enhances
the identification of states with rapid activity changes, such as transitioning from Walking to Running or
from movement to Standing still. In this study, VeDBA is calculated as follows:
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First, the Dynamic Body Acceleration (DBA) is required:

Sl e g
i = ∣al e g

i ,k − a−l e g
i ∣ (3)

and

Sneck
i = ∣aneck

i ,k − a−neck
i ∣ (4)

Once the DBA is obtained, VeDBA can be calculated as follows:

VeDBAl e g =
√
(Sl e g

x )
2
+ (Sl e g

y )
2
+ (Sl e g

z )
2

(5)

and

VeDBAneck =
√
(Sneck

x )2 + (Sneck
y )2 + (Sneck

z )2 (6)

In these equations:

– Sl e g
x , Sl e g

y , Sl e g
z are the dynamic body accelerations along the x, y, and z-axis for the leg accelerometer.

– Sneck
x , Sneck

y , Sneck
z are the dynamic body accelerations along the x, y, and z-axis for the neck accelerom-

eter.
– VeDBAl e g is the VeDBA for the leg accelerometer.
– VeDBAneck is the VeDBA for the neck accelerometer.

Additionally, to measure the degree of variation (dispersion) of the acceleration data and to assess the
sharpness or flatness of the acceleration data distribution, Variance and Kurtosis are used. The Variance of
the accelerometer data along each axis is calculated as:

Varl e g
i = 1

N

N
∑
K−1
(al e g

i ,k − a(−l e g)
i )

2
(7)

and

Varneck
i = 1

N

N
∑
K−1
(aneck

i ,k − a(−neck)
i )

2
(8)

where:

– Varl e g
i is the variance for the i-th axis (x, y, or z) from the leg accelerometer.

– Varneck
i is the variance for the i-th axis from the neck accelerometer.

– al e g
i ,k and aneck

i ,k are the k-th samples from the leg and neck accelerometers for the i-th axis, respectively.
– a(−l e g)

i and a(−neck)
i are the mean values for the i-th axis for the leg and neck accelerometers, respectively.

– N is the total number of samples in the time window.

The Kurtosis of the accelerometer data along each axis is calculated as:

Kurtl e g
i =

1
N ∑

N
k=1 (a

l e g
i ,k − a(−l e g)

i )
4

( 1
N ∑

N
k=1 (a

l e g
i ,k − a(−l e g)

i )
2
)

2 (9)
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and

Kurtneck
i =

1
N ∑

N
k=1 (aneck

i ,k − a(−neck)
i )

4

( 1
N ∑

N
k=1 (aneck

i ,k − a(−neck)
i )

2
)

2 (10)

where:

– Kurtl e g
i is the kurtosis for the i-th axis (x, y, or z) from the leg accelerometer.

– Kurtneck
i is the kurtosis for the i-th axis from the neck accelerometer.

– al e g
i ,k and aneck

i ,k are the k-th samples from the leg and neck accelerometers for the i-th axis, respectively.
– a(−l e g)

i and a(−neck)
i are the mean values for the i-th axis for the leg and neck accelerometers, respectively.

– N is the total number of samples in the time window.

The features Mean, Variance, VeDBA, and Kurtosis are used to identify cattle behaviors, including
Feeding, Lying, Standing, and Walking Mean reflect the average value of acceleration data and helps
distinguish static behaviors like Lying and Standing. Static behaviors, like Lying and Standing, exhibit
consistently low mean values due to minimal movement. In contrast, dynamic behaviors, such as Feeding
and Walking, have higher mean values because of more active motion patterns. Variance, which measures the
degree of dispersion in the acceleration data, is particularly useful for differentiating behaviors with varying
movement intensity. For instance, Walking displays high variance due to the alternating gait pattern, while
Feeding has moderate variance owing to head movements during eating. In contrast, Lying and Standing
show low variance due to their stationary nature. VeDBA captures the overall movement intensity and
effectively differentiates Walking—which exhibits high VeDBA due to continuous, rhythmic motion—from
Feeding, which shows moderate VeDBA due to periodic head movements. Finally, Kurtosis measures the
peakedness of the data distribution, making it a key feature for identifying behaviors with sudden, irregular
movements like Feeding, where abrupt changes in acceleration occur as cows reach or chew food. In contrast,
Lying and Standing demonstrate lower kurtosis due to their more uniform motion patterns. The combination
of these features provides a comprehensive perspective on cattle behavior, where Mean and Variance are
essential for differentiating static and dynamic behaviors, VeDBA serves as a reliable indicator of movement
intensity, and Kurtosis helps capture behaviors with abrupt changes. Fig. 4 illustrates the importance of
features using acceleration data on the y-axis.

2.4 Deflection Sensor Modeling
When accelerometers are used to monitor cow behavior, their orientation is crucial for accurate data

collection. In the standard configuration, the sensor mounted on the neck collar assumes an initial alignment
where the z-axis points downward toward the ground, the y-axis aligns with the forward-backward motion
of the cow, and the x-axis aligns with the lateral movement. This setup ensures that the recorded acceleration
values correspond directly to the physical movements of the animal.

In this study, the x-axis of the sensor, representing lateral movement, was excluded from the misalign-
ment experiment due to its negligible impact on distinguishing the behaviors of Feeding, Lying, Standing,
and Walking. Specifically, the Feeding behavior is primarily identified through vertical oscillations (z-axis)
and movement in and out of the feed trough (y-axis), while the x-axis does not exhibit distinct characteristics.
For the Lying behavior, cattle exhibit almost no lateral movement once they are lying down, meaning the x-
axis does not provide additional distinguishing information compared to the data from the z-axis. Similarly,
the standing behavior is determined by the stability of the z-axis without requiring data from the x-axis,
as the cow remains stationary without lateral movement. Even in the case of Walking, although the x-axis
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captures some lateral movement when the cow moves, the characteristic patterns of this behavior are already
fully represented by the y-axis (forward/backward motion) and the z-axis (vertical oscillations). Practical
experiments indicate that including the x-axis does not significantly improve classification accuracy while
increasing computational costs. Therefore, the x-axis was excluded to optimize processing efficiency while
ensuring the system’s accuracy remains unaffected.

When the cow rotates its head or if the sensor is not properly attached, the accelerometer’s orientation
can shift. Such misalignment causes the sensor-axis to deviate from their original reference positions. Fig. 5
illustrates the rotation angles of the accelerometer axes in cases of no deviation and with deviation. For
instance, during a head turn, the sensor rotates around the z-axis, leading to significant changes in the x-axis
and y-axis readings, even if the cow is stationary. This misalignment results in data distortion, complicating
the differentiation of behaviors, especially those involving subtle movements.

Figure 4: Feature importance on y-axis

Figure 5: Simulation of the deviation of the sensor worn on the cow’s neck along the x, y, and z-axis
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The impact of this misalignment becomes particularly evident in dynamic behaviors like Walking
or Feeding, where acceleration patterns are complex. Without accounting for these changes, classifica-
tion models may misinterpret the behavior or overestimate movement intensity, reducing the system’s
overall accuracy.

This indicates that when the z-axis of the accelerometer is rotated by an angle φ, the x-axis and y-axis
are also rotated by the same angle φ. Here, φ represents the rotation about the z-axis, and x′, y′, z′ denote
the new directions of the x, y, z-axis after the rotation about the z-axis. The new coordinates x′, y′, z′ can be
calculated from the original coordinates x, y, z using the following transformation:

⎡⎢⎢⎢⎢⎢⎣

x′
y′
z′

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
.
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
(11)

When the y′-axis of the accelerometer is further rotated by an angle θ, the x′-axis and z′-axis are also
rotated by the same angle θ. This rotation is performed about the y′-axis, represented by the rotation matrix
Ry’, and the new coordinates x′′, y′′, z′′ can be calculated from x′, y′, z′ as follows:

⎡⎢⎢⎢⎢⎢⎣

x′′
y′′
z′′

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎦
.
⎡⎢⎢⎢⎢⎢⎣

x′
y′
z′

⎤⎥⎥⎥⎥⎥⎦
(12)

These transformations allow us to compute the sensor readings in the new orientation after consecutive
rotations around the z-axis and the y′-axis, ensuring that the accelerometer data remains consistent despite
changes in the sensor’s position.

The selection of the deviation angles of φ = 2○, φ = 10○, and φ = 20○ in the sensor deviation
experiment is based on practical tests, analysis of cattle movement characteristics, and the need to represent
common deviations in the experimental environment. Through real-world testing, sensors attached to cattle
movement measurement devices are often displaced due to behaviors such as head lowering, vigorous
movements, or collisions during movement, with observed deviations primarily ranging from φ = 0○ to
φ = 20○. Based on this, the deviation angles were categorized into three levels: φ = 2○, φ = 10○, and φ =
20○, corresponding to small, medium, and large deviations, respectively. The φ = 2○ angle simulates minor
deviations that frequently occur when cattle engage in normal behaviors like chewing or lowering their heads
while eating. The φ = 10○ angle represents more common deviations, which happen when cattle rub their
necks or when collars shift naturally during movement. Meanwhile, the φ = 20○ angle was chosen to evaluate
the impact of large deviations, typically occurring when the collar becomes loose, or the sensor experiences
strong impacts.

Simulation tests indicated that the system maintained high accuracy with deviations of φ = 2○ and
φ = 10○, while accuracy significantly decreased with a φ = 20○ deviation, particularly for behaviors involving
minimal movement, such as lying and standing. However, the results remained within acceptable limits.
Angles greater than φ = 20○ were not selected because tests showed that such deviations rarely occur in
practice and do not provide additional useful information while increasing computational costs.

2.5 Classification of Cow Behavior Using Decision Tree Algorithm
Fig. 6 illustrates the process of cow behavior recognition in the proposed system. Accelerometer data

attached to the legs and neck of the cattle are synchronized and used to extract features for data record
windows through VeDBA, Mean, Variance, and Kurtosis. For data where sensor misalignment occurs,
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recalculations and simulations are performed under various scenarios. Similar to regular data, simulated data
also uses VeDBA, Mean, Variance, and Kurtosis features to form feature vectors for the data record windows.
The behaviors labeled in this study include Feeding, Standing, Lying, and Walking.

Figure 6: The process of cow behavior recognition in the proposed system

The dataset collected in this study is divided into two sets: Train and Test. With a ratio of 60% Train data
and 40% Test data, the split ensures effective behavior classification [5,21,22]. For example, in the case of the
3 s dataset, 26,774 samples were used for training while the next 17,843 were used for testing (Tables 4 and 5).
Based on VeDBA, Mean, Variance, and Kurtosis features with Train data (labeled data) combined with ML
algorithms, the model is trained to automatically label new data. The automatically labeled data is verified
based on real-world observations and recorded images from cameras to ensure accuracy.

The DT algorithm, a supervised ML technique, is often used for classification and regression problems.
In this study, DT is suitable for behavior classification due to its intuitiveness, ability to handle nonlinear
data, and ease of result interpretation.
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DT divides data based on attributes (features) to reduce impurity or increase purity at nodes. Each node
in the tree represents an attribute, and branches represent the values or ranges of the attribute. The tree
construction process ends when a stopping condition is met (e.g., no more attributes to split or achieving a
certain level of purity).

Basic terminology in DT:

– Root Node: The starting point of the tree, representing the entire dataset.
– Internal Node: Represents an attribute selected to split the data.
– Leaf Node: The final nodes in the tree, representing specific classification classes.
– Branch: Indicates the outcome of a condition check on the attribute at the node.

For behavior classification, several ML algorithms can perform well [2–5]. In this study, behavior
classification needs to be both accurate and suitable for real-time applications. DT has been proven to be an
appropriate algorithm, as its energy consumption per behavior is highly efficient [29].

Energy consumption was measured by monitoring the power usage of the classification system during
operation. The total energy used was recorded over a fixed time period while the system processed a
large batch of behavior classifications. The per-classification energy consumption was then calculated by
dividing the total energy consumed by the number of classifications performed. This approach ensures a fair
comparison of computational efficiency among different algorithms. Lower values indicate higher energy
efficiency, which is particularly important for battery-powered behavior monitoring systems.

The study compared the execution time and energy consumption of DT with GBDT, Support Vector
Machines (SVM), RF, and K-Nearest Neighbors (KNN). DT achieved an execution time of approximately
0.005 s per activity and an energy consumption of about 0.0025 J per activity, which were lower than those
of GBDT (0.0072 s, 0.00383 J), SVM (0.053 s, 0.02819 J), RF (0.03 s, 0.01595 J), and KNN (0.019 s, 0.0101 J).

DT demonstrated a 65% lower energy consumption compared to RF and 34.7% lower compared to
GBDT, highlighting its efficiency in energy-limited environments. The significantly higher energy con-
sumption of SVM and KNN indicates that these algorithms may not be optimal for real-time deployment
on battery-powered or resource-constrained devices. Additionally, DT outperformed RF and GBDT in
execution time, reducing processing latency by approximately 83.3% compared to SVM, 73.3% compared to
RF, and 30.6% compared to GBDT.

These results confirm that DT aligns well with the research objective of achieving fast execution and
low energy consumption, making it a particularly advantageous choice for real-time applications where
computational efficiency is critical. Furthermore, DT works and adapts well with numerical data [17,19].

Python 3.5 was used for the tasks in this study.

2.6 Behavior Recognition
To evaluate the classification performance of the model, the classification results are presented in the

form of a confusion matrix, which demonstrates the accuracy of behavior classification, with the following
possibilities:

– True Positive (TP): The system correctly predicts the behavior that the cow is performing.
– False Positive (FP): The system incorrectly predicts that a behavior is occurring when it is not.
– False Negative (FN): The system fails to recognize a behavior that is occurring and predicts it as a

different behavior.
– True Negative (TN): The system correctly does not predict a behavior that is not occurring.
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The metrics Accuracy (Acc), Sensitivity (Sen), Positive Predictive Value (PPV) and F1-Score (F1) are
calculated using the following formulas:

Acc = TP + TN
TP + FP + TN + FN

(13)

Sen = TP
TP + FN

(14)

PPV = TP
TP + FP

(15)

F1 = 2 × Sen × PPV
Sen + PPV

(16)

3 Results and Discussions

3.1 Performance over Short Windows
The study evaluated the classification performance of cattle behavior classification using short window

sizes and the DT algorithm. Based on data collected from sensors worn by cattle, the VeDBA, Mean, Variance,
and Kurtosis features were applied along with time windows of 3, 6, 9, 12, and 15 s. The behaviors of interest
were Feeding, Lying, Standing, and Walking. The evaluation metrics used were Acc, Sen, PPV and F1
(Formulas (13)–(16)).

Fig. 7a–d illustrates the classification Acc of the behaviors based on window sizes of 3, 6, 9, 12, and 15 s
using the DT algorithm with the VeDBA, Mean, Variance, and Kurtosis features. The cows in the study were
assigned unique IDs from 1 to 7 (ID1–7).

Figure 7: (Continued)
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Figure 7: Classification accuracy for behaviors with data window lengths of 3, 6, 9, 12, and 15 s

For ID1, the Acc in classifying Feeding behavior shows slight variations across different time window
sizes. With a 3-s window, Acc reaches 0.96, as the short sampling period is insufficient to fully capture the
Feeding behavior, resulting in fragmented or unstable signals. With 6 and 9-s windows, Acc increases to 0.97,
as enough data is accumulated in each segment, enabling the model to better identify the behavior. When
the window size is extended to 12 s, Acc peaks at 0.98, as the Feeding signal becomes clearer and less noisy,
providing comprehensive information for precise classification. However, with a 15-s window, Acc slightly
decreases to 0.97, potentially due to the inclusion of multiple behaviors within the longer timeframe, making
it harder for the model to classify accurately.

For the remaining IDs (ID2–ID7), the trend across window sizes is similar. Acc improves as the window
increases from 3 to 12 s, with the best results often achieved at the 12-s window (e.g., ID2, ID4, and ID6
reaching 0.94–0.97). Some IDs, such as ID5 and ID7, maintain stable high Acc (0.94–0.95) even with larger
windows, whereas ID3 shows lower Acc compared to the others, ranging from 0.86 to 0.89, but still exhibits
gradual improvement with increasing window size. Overall, most IDs indicate that windows between 9 and
12 s are optimal for balancing stability and Acc in identifying Feeding behavior. For other behaviors, a similar
trend is observed. Notably, Lying and Walking behaviors, due to their distinct accelerometer data patterns,
achieve near-perfect Acc across all window sizes.

Fig. 8a–d compares the classification performance of behaviors across the seven datasets collected from
ID1 to ID7. The classification performance across the seven datasets (ID1–ID7) with window sizes of 3, 6, 9,
12, and 15 s shows significant improvement as the window duration increases, particularly for the behaviors
Feeding and Standing. Acc for Feeding improved from 0.925 at a 3-s window to 0.950 at 12 and 15-s windows,
while Standing improved from 0.917 (3 s) to a peak of 0.940 at 12 s before slightly decreasing to 0.934 at
15 s. Lying maintained perfect Acc (1.000) across most windows starting from 6 s, demonstrating that this
behavior is the easiest to recognize regardless of window size. Similarly, Walking achieved its highest Acc
(0.990) at 6 and 9-s windows, with a slight decline at longer windows (12 s: 0.980, 15 s: 0.978). In terms of Sen,
Feeding and Standing showed steady improvement with longer windows, while Walking reached its highest
Sen (0.970) at a 15-s window. The PPV for Feeding behavior ranges from 0.811 at a 3-s window to 0.820 at a
15-s window, reflecting an improvement in prediction Acc as the window size increases. Standing shows
a steady increase in PPV, improving from 0.937 (3 s) to 0.960 (15 s), demonstrating better precision in
identifying this behavior with longer windows. In contrast, Walking maintains consistently high PPV values
(0.939–0.943) across all window sizes, indicating stable and reliable precision regardless of the window
duration. These results suggest that longer windows generally enhance prediction Acc for Feeding and
Standing, while Walking remains robustly predictable even with shorter windows. However, the F1 for all
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behaviors indicate that the differences across window sizes are not very large, with stable performance even
for shorter windows.

Figure 8: Classification performance of behaviors across seven datasets with data window lengths of 3, 6, 9, 12,
and 15 s

Notably, using a 3-s window, although slightly lower in Acc and Sen compared to longer windows, does
not significantly compromise overall classification performance. This shorter window size strikes a balance
between processing speed and Acc, making it suitable for real-time applications where rapid data analysis
is critical.

Balancing the size of the data window and classification performance is a common challenge in behavior
classification problems [5]. It is essential to ensure that the information provided by the data window is
sufficient to achieve high classification performance. Fortunately, using the DT algorithm with the VeDBA,
Mean, Variance, and Kurtosis features produced strong classification results, even with a short 3-s window.
Therefore, the proposed system selects a 3-s data window for further study.

3.2 Deflection Sensor
After selecting a 3-s data window for the classification task of cattle behavior, focusing on four behaviors

of interest—Feeding, Lying, Standing, and Walking—the study conducted experiments using simulated data
for scenarios with sensor misalignment in real-world conditions. The datasets used include:

– DT01: Original dataset (no sensor misalignment).
– DT02: Dataset with a 2-degree sensor misalignment, comprising 10% misaligned data.
– DT03: Dataset with a 2-degree sensor misalignment, comprising 50% misaligned data.
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– DT04: Dataset with a 10-degree sensor misalignment, comprising 10% misaligned data.
– DT05: Dataset with a 10-degree sensor misalignment, comprising 50% misaligned data.
– DT06: Dataset with a 20-degree sensor misalignment, comprising 50% misaligned data.

The datasets were evaluated using the same method, and the changes in classification performance for
each dataset were compared.

Figs. 9 and 10 depict the confusion matrices when using the DT algorithm with VeDBA, Mean, Variance,
and Kurtosis features on the datasets with the most significant differences in results, DT01 and DT05.
For other datasets, the study also calculated and collected results; however, these results showed negligible
differences and are not visually presented in this study. All detailed results were obtained using a window
size of 3 s.

The confusion matrices from datasets DT01 and DT05 highlight some changes in behavior classification
performance, particularly between Feeding and Standing, due to sensor misalignment. Despite specific
instances of increased misclassification, the overall classification performance remains robust. For instance,
in ID3, misclassification from Feeding to Standing increased from 97 (DT01) to 165 (DT05), and in ID5, it
rose from 3 to 39. However, the correct classifications for Feeding remained high, as seen in ID1, where the
count only slightly decreased from 656 (DT01) to 642 (DT05). This indicates that the machine learning model
effectively leverages stable features in the data that are less affected by sensor misalignment, maintaining
strong classification performance.

Similarly, standing behavior experienced some changes due to misalignment. For example, in ID2,
correct classifications increased from 1016 (DT01) to 1032 (DT05), but misclassifications with Walking rose
from 23 to 33. This may be attributed to sensor misalignment causing Standing signals to overlap with the
subtle movements of Walking. However, in IDs like ID6, the correct classifications for Standing remained
nearly unchanged, increasing only slightly from 973 (DT01) to 976 (DT05). Walking behavior demonstrated
resilience to sensor misalignment, as the number of correct classifications remained stable across most IDs.
For instance, in ID6, the correct classifications stayed consistent at 585 in both datasets. This highlights the
distinct and dynamic features of Walking that allow it to be reliably identified even with misalignment. Lying
behavior proved to be the least affected by sensor misalignment. For example, in IDs like ID4 and ID6,
correct classifications remained constant at 496 and 557, respectively, across both datasets. This is because
the static nature of Lying minimizes the impact of sensor misalignment, resulting in highly stable and easily
identifiable signals.

Overall, while sensor misalignment led to increased misclassifications between similar behaviors,
particularly between Feeding and Standing, the overall classification performance was not significantly
impacted. The number of correct classifications across all behaviors and IDs remained consistently high,
demonstrating the system’s resilience to sensor misalignment. This underscores the model’s ability to utilize
robust and distinctive features, ensuring reliable performance under real-world conditions.
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Figure 9: Confusion matrix of the DT algorithm on the DT01 dataset
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Figure 10: Confusion matrix of the DT algorithm on the DT05 dataset
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To further clarify the comparison across datasets, Table 6 presents the classification performance for all
individuals (ID1 to ID7) using datasets DT01 and DT05. For all behaviors examined in this study, the results
show negligible differences in performance across the different datasets.

Table 6: The classification performance for all individuals (ID1 to ID7) using datasets DT01 and DT05

COW ID Behavior DT01 DT05

Acc Sen PPV F1 Acc Sen PPV F1

ID1

Feeding 0.96 0.97 0.87 0.92 0.97 0.95 0.93 0.94
Lying 0.99 0.97 1.00 0.99 0.99 0.97 1.00 0.99

Standing 0.96 0.92 0.96 0.94 0.96 0.94 0.94 0.94
Walking 0.98 0.93 0.97 0.95 0.98 0.95 0.96 0.96

ID2

Feeding 0.90 0.83 0.71 0.76 0.91 0.80 0.74 0.77
Lying 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Standing 0.89 0.85 0.91 0.88 0.89 0.87 0.92 0.89
Walking 0.98 0.94 0.92 0.93 0.98 0.98 0.89 0.94

ID3

Feeding 0.87 0.81 0.81 0.81 0.85 0.70 0.81 0.75
Lying 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Standing 0.87 0.85 0.87 0.86 0.84 0.87 0.81 0.84
Walking 0.97 0.96 0.89 0.92 0.98 0.96 0.91 0.93

ID4

Feeding 0.93 0.96 0.78 0.86 0.93 0.91 0.82 0.86
Lying 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Standing 0.93 0.85 0.97 0.91 0.93 0.87 0.95 0.91
Walking 0.98 0.95 0.95 0.95 0.98 0.97 0.94 0.95

ID5

Feeding 0.92 1.00 0.78 0.87 0.92 0.92 0.80 0.86
Lying 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Standing 0.92 0.70 0.99 0.82 0.90 0.73 0.88 0.80
Walking 1.00 1.00 1.00 1.00 0.98 0.95 0.92 0.94

ID6

Feeding 0.95 0.84 0.94 0.89 0.96 0.86 0.95 0.91
Lying 1.00 0.98 1.00 0.99 1.00 0.98 1.00 0.99

Standing 0.93 0.92 0.88 0.90 0.93 0.93 0.90 0.91
Walking 0.98 0.97 0.93 0.95 0.98 0.97 0.92 0.95

ID7

Feeding 0.94 0.96 0.79 0.87 0.93 0.91 0.82 0.86
Lying 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Standing 0.93 0.83 0.98 0.90 0.93 0.87 0.95 0.91
Walking 0.97 0.97 0.91 0.94 0.98 0.97 0.94 0.95

All

Feeding 0.93 0.91 0.81 0.85 0.93 0.87 0.84 0.85
Lying 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00

Standing 0.92 0.85 0.94 0.89 0.91 0.87 0.90 0.88
Walking 0.98 0.96 0.94 0.95 0.98 0.95 0.93 0.94

The results show that, despite some minor differences, the overall classification performance is not
significantly impacted by sensor misalignment, especially when considering metrics such as Acc, Sen, PPV,
and F1. For Feeding, the overall performance remains stable, with Acc maintained at 0.93 across both datasets,
despite slight decreases in Sen (from 0.91 in DT01 to 0.87 in DT05) and PPV (from 0.81 to 0.84). For
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individuals such as ID3, Sen dropped from 0.81 to 0.70, reflecting the impact of sensor misalignment, but
overall performance remained high (F1 decreased only from 0.81 to 0.75). Lying is the most stable behavior,
with all metrics (Acc, Sen, PPV, F1) maintained at 1.00 or very close to 1.00 across all IDs in both datasets.
This is due to the static and clearly distinguishable nature of Lying, which is minimally affected by sensor
misalignment. For Standing, slight differences were observed between the two datasets. In DT01, the overall
performance reached an Acc of 0.92 and an F1 of 0.89, while in DT05, these metrics slightly decreased to
0.91 and 0.88, respectively. Some individuals, such as ID5 and ID3, were more affected, with Sen decreasing
from 0.70 to 0.73 for ID5 and from 0.85 to 0.87 for ID3, but PPV and F1 values remained stable. Walking
also exhibited similar stability, with overall Acc remaining at 0.98 across both datasets, and the F1 showing
only a minor drop from 0.95 to 0.94. Certain IDs, such as ID6 and ID7, showed no changes or even slight
improvements in some metrics, such as the Sen of ID2, which increased from 0.94 to 0.98. This indicates that
sensor misalignment has little impact on behaviors with strong kinematic characteristics, such as Walking.

Evaluating the overall performance of the model should be conducted using two main approaches:
macro-average and micro-average. Macro-average calculates the unweighted average of performance metrics
Acc, Sen, PPV, and F1 across each class. This approach provides a fair assessment of the model for all
behaviors, including rare ones. It is particularly crucial for imbalanced datasets, as classes with less data are
given equal consideration as those with more data. Micro-average, on the other hand, computes metrics
based on the total number of true and false predictions across all classes. This approach focuses on the
overall performance of the model on the entire dataset, making it especially suitable for scenarios where class
distributions are uneven. By combining these two approaches, a comprehensive evaluation of the model’s
performance can be achieved.

Tables 7 and 8 show that the model achieves high performance across all six datasets, with the macro-
average always being greater than the micro-average for all metrics.

Table 7: The model’s performance using micro-average and macro-average evaluation methods on datasets DT01 to
DT03

Average evaluation DT01 DT02 DT03

Acc Sen PPV F1 Acc Sen PPV F1 Acc Sen PPV F1
Macro 0.96 0.93 0.92 0.92 0.95 0.91 0.91 0.91 0.95 0.91 0.91 0.91
Micro 0.94 0.91 0.92 0.91 0.93 0.90 0.90 0.90 0.93 0.89 0.90 0.90

Table 8: The model’s performance using micro-average and macro-average evaluation methods on datasets DT04 to
DT06

Average evaluation DT04 DT05 DT06

Acc Sen PPV F1 Acc Sen PPV F1 Acc Sen PPV F1
Macro 0.95 0.91 0.91 0.91 0.95 0.92 0.92 0.92 0.94 0.89 0.90 0.89
Micro 0.93 0.90 0.90 0.90 0.94 0.91 0.91 0.91 0.92 0.88 0.88 0.88

The results in the two tables demonstrate that the model’s performance across datasets DT01 to DT06
remains stable, with a gradual decline as the level of sensor misalignment and the proportion of misaligned
data increase, but without significantly impacting overall performance. In DT01, the model achieves its
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highest performance with an Acc of 0.96, Sen of 0.93, PPV of 0.92, and F1 of 0.92 in macro evaluation. When
moving to DT02, the metrics slightly decrease to an Acc of 0.95 and Sen of 0.91, while in DT03, Acc and Sen
remain consistent at 0.95 and 0.91, respectively, indicating that minor misalignment does not significantly
affect the model’s performance. For DT04 and DT05, performance remains stable. In DT04, the model
achieves an Acc of 0.95 and Sen of 0.91, while in DT05, there is a slight improvement, with an Acc of 0.95
and Sen of 0.92. However, in DT06, performance decreases noticeably, with Acc dropping to 0.94 and Sen
declining to 0.89, reflecting the impact of greater misalignment and a higher proportion of misaligned data.

Despite this decline, the model maintains an Acc above 0.92 across all datasets, and the F1 does not
drop significantly, demonstrating the model’s strong generalization ability and stability when faced with
sensor misalignment.

4 Discussions
In this study, a real-time cattle behavior classification system was designed, focusing on four behaviors:

Feeding, Lying, Standing, and Walking. These basic behaviors can provide insights into cattle health.
Behavioral data were collected using accelerometer sensors mounted on the neck and legs. The DT algorithm
was applied, and the features VeDBA, Mean, Variance, and Kurtosis were found to be effective with a short
time window. Using a 3-s time window, the classification performance remained consistent even when the
sensors were misaligned due to cattle movement. The study demonstrated that the proposed system operates
effectively when deployed in real-world scenarios.

The system achieved an Acc ranging from 0.93 to 0.96 and an F1 ranging from 0.88 to 0.92 for the four
behaviors across all datasets (DT01 to DT06), with Sen varying between 0.88 and 0.93 and PPV ranging
from 0.88 to 0.92, demonstrating stable performance even under various levels of sensor misalignment.
The results indicate that combining neck- and leg-mounted accelerometers provides better classification
performance compared to using a single sensor [21–23]. During data collection, if only the leg-mounted
sensor is used, the behaviors “Feeding” and “Standing” are the most challenging to distinguish due to their
similar acceleration patterns [5,21]. Similarly, using only the neck-mounted sensor leads to misclassification
between “Standing” and “Lying” for the behaviors in this study [5,21]. Based on the obtained results and
corroborating research [5], the combination of two sensors yields significantly improved classification
performance. However, a limitation of the study is that the data collection period for certain behaviors was
not long enough to fully capture behavioral patterns. For Walking, the study results indicate relatively stable
assessments, but short data collection periods may reduce the ability to detect changes in behavior. Extending
the data collection period would provide more detailed insights into behavioral movements. Therefore, future
studies should extend the data collection period.

The choice of algorithms and features plays a significant role in the classification performance of the
system. Classification algorithms must ensure high Acc while being optimized for processing time and
deployment on resource-constrained hardware [5,21,22]. The study by Mekruksavanich et al. [35] employed a
ResNeXt deep residual network, achieving an Acc of approximately 0.95 and an F1 of 0.92 for cattle behavior
classification. Similarly, Balasso et al. [36] utilized CNNs, reaching an Acc of 0.89 and an F1 of 0.82. While
both studies demonstrated strong classification performance, their reliance on complex deep learning models
significantly increases computational demands and extends deployment time.

The features extracted from the data must have high discriminatory power, be computationally efficient,
and align with the nature of the activity data. Wang et al. [21,22] employed AdaBoost for behavior
classification, while Phung et al. [23] used GBDT, with both studies achieving classification accuracies above
0.9 for all behaviors. Additionally, RF has also been utilized for classification in other studies [5,37]. These
algorithms are well-suited for behavior classification tasks similar to those in this study.
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However, maintaining real-time operation over extended periods is critical, and the algorithms are
less feasible due to their higher computational complexity and energy consumption. The DT algorithm,
with its proven low energy consumption per behavior, emerges as a suitable choice. Combined with the
VeDBA, Mean, Variance, and Kurtosis features, the proposed system demonstrates effective classification
performance with a short 3-s window size.

The length of the data window is a crucial factor that directly impacts classification performance [23].
A window that is too short may fail to capture the distinctive features of an activity, resulting in poor
classification Acc. Conversely, a window that is too long increases computational complexity and reduces the
system’s real-time responsiveness [5,26]. Arcidiacono et al. [3] used a 5-s window to classify standing and
Feeding behaviors in cattle, achieving 0.93 Acc. Other studies [2,21,22] employed even larger window sizes
to provide sufficient information for classification models. Martono et al. [37] utilized collar-mounted tri-
axial accelerometers and machine learning algorithms such as RF and DT, to classify feeding and ruminating
behaviors in cattle. While they achieved high Sen and specificity for feeding behavior, their reliance on longer
data (10, 30, 60, and 180 s) segmentation intervals reduced the system’s real-time applicability.

This study aimed to further optimize window size by adopting a 3-s data window. This shorter window
size significantly reduces the likelihood of capturing multiple activities within a single window. Additionally,
it lowers computational demands and energy consumption. However, the challenge lies in the limited
behavioral data within such a short window. The study addresses this challenge by combining neck- and leg-
mounted sensors. With a 3-s window, the classification performance was found to be comparable to that of
larger window sizes, demonstrating the system’s efficiency and effectiveness.

The parameters and behavior of individual cows can influence the classification performance of the sys-
tem [12]. Variations may stem from biological characteristics, activity patterns, or environmental conditions,
leading to non-uniform sensor data. Larger or heavier cattle may produce less variable acceleration signals
during movement compared to smaller or lighter ones, which can affect feature extraction. Some cattle
exhibit more active behaviors (e.g., Frequent walking or Vigorous movements), while others tend to be less
active. Behaviors such as Running, sudden movements, or Strong shaking can cause sensor misalignment,
resulting in misclassification [4]. Versluijs et al. [38] achieved high classification Acc for free-ranging cattle
behaviors using 10 Hz accelerometer data but did not address sensor misalignment challenges. Our study
simulated various misalignment scenarios and demonstrated consistent performance, maintaining Acc of
0.93 to 0.96 even with 50% misaligned data. This strengthens the conclusion that the proposed classification
system, utilizing the DT algorithm with VeDBA, Mean, Variance, and Kurtosis features and a short 3-s
window, performs effectively in real-world conditions.

The system uses ADXL345 accelerometers and an Atmega328 microcontroller, which operates within
a wide temperature range of −40○C to +85○C, ensuring functionality under diverse conditions. The device
has a lifespan of approximately 400 h, making it suitable for practical remote monitoring applications. While
data transmission frequency can be adjusted, it directly impacts battery life, which plays a crucial role in
system deployment. Optimizing device components, choosing appropriate signal transmission methods, and
efficient classification algorithms can further enhance battery performance.

With adjustable parameters, the proposed system is adaptable to various livestock species and scalable
for use in large farms. It can simultaneously collect data and classify behaviors from multiple animals. Future
studies should incorporate data from a broader range of livestock to validate this capability. The current study
focuses on four basic behaviors, sufficient for assessing cattle health and providing early alerts to farmers.
Based on the promising results, it is anticipated that the system’s accuracy will remain consistent or improve
when additional behaviors are included. Subsequent research should address this expansion.
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The motion data of the proposed system is further supported by images from surveillance cameras to
accurate label behaviors. Motion data from two ADXL345 accelerometers is transmitted to an ATmega328
microcontroller, leveraging its advanced RISC architecture for efficient local processing. This design allows
each individual cow to function as a network node and enables easy monitoring at the group level. By
integrating multiple groups of cows, the system’s operational scale can be rapidly expanded, making it suitable
for large farms. The system minimizes the server’s workload by offloading initial data processing to the
microcontroller and offers a cost-effective solution using readily available components.

The available bandwidth during operation ranged from 100 to 500 kHz. This adaptive bandwidth usage
ensures efficient communication between devices without excessive power consumption. The bandwidth
capacity was determined based on the transmission requirements of the LoRa module, which communicates
motion data from the neck- and leg-mounted sensors to the central processing unit. During periods of low
activity, such as when cattle are resting, bandwidth utilization remained at the lower end of the spectrum
(100–150 kHz). However, during peak periods when multiple animals were actively feeding or walking,
bandwidth usage increased toward 500 kHz to handle the higher volume of data packets.

Latency measurements indicated an average processing delay of 120 ms, with peak delays reaching up to
200 ms during periods of high data traffic, such as when multiple animals were active simultaneously. Despite
these peaks, latency remained below the 250-ms threshold necessary for real-time behavior monitoring,
ensuring timely and accurate health assessments. The energy consumption associated with these parameters
was also assessed, revealing that the LoRa module, which handles data transmission, consumes 50%–
55% of system power during high-bandwidth operation. This increase in power consumption shortens
battery life to approximately 300–350 h under continuous high-activity conditions, compared to 450–500 h
during low-activity periods when bandwidth usage and transmission frequency decrease. The efficient
management of these parameters, together with the adaptive performance of the ADXL345 accelerometer,
ATmega328 microcontroller and LoRa module, makes it possible to apply the system at large scale in real
farm environments.

However, scalability challenges may arise in large-scale implementations. Simultaneous data transmis-
sion from multiple devices can cause network congestion, particularly in scenarios involving hundreds of
cows. The centralized server’s capacity to process aggregated data at scale requires careful evaluation to
prevent system delays. Deployment costs can also increase significantly due to the need for extensive network
infrastructure, additional microcontrollers, and monitoring systems. Furthermore, practical challenges such
as ensuring the durability of accelerometers in harsh farm environments, maintaining adequate power supply
for the devices, and synchronizing motion data with video footage across vast areas must be addressed. Issues
related to processing latency on the devices should also be carefully assessed when expanding the system’s
coverage. Future studies should focus on these issues to enhance the system’s effectiveness.

Based on the climatic conditions of the study area, characterized by hot and humid summers and cold,
dry winters, with temperatures ranging from 28○C to 35○C in summer and 10○C to 15○C in winter, the system
maintenance cost during the 3-month trial period is estimated to account for approximately 5%–7% of the
total equipment value. This includes cleaning, inspection, and replacement of components affected by high
humidity, harsh temperatures, or dust in the grazing environment.

Additionally, the proposed system has not yet been tested in regions with extreme weather conditions
such as snow, ice, or high temperatures. In cold climates, livestock may reduce movement, focus on
maintaining body temperature, and require increased energy intake, whereas high temperatures cause
livestock to reduce food consumption, increase water intake, and experience decreased productivity. With
changing climatic conditions, livestock behavior data is likely to vary accordingly. Future studies could
expand to include changing climatic conditions.
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5 Conclusions
This study proposed an IoT system for classifying cattle behavior. Data for four basic behaviors—

Feeding, Lying, Standing, and Walking—were collected using neck-mounted and leg-mounted
accelerometer sensors. The features VeDBA, Mean, Variance, and Kurtosis, combined with the DT
algorithm, proved highly suitable for classifying these four behaviors. The system offers advantages such as
non-intrusive behavior classification, ease of parameter setup, low energy consumption, and affordability.

Extensive experiments and comparisons of different scenarios were conducted to determine the
most optimal parameters for real-time cattle behavior classification. The study used various data window
durations—3, 6, 9, 12, and 15 s—and demonstrated that the system performed effectively with a 3-s window.
Notably, there was no data overlap across windows. Sensor misalignment during classification was also
considered, using datasets that simulated various degrees and percentages of misalignment. The findings
showed that with the DT algorithm, VeDBA, Mean, Variance, and Kurtosis features, and a short 3-s window,
the results remained robust even with significant sensor misalignment, where up to 50% of the data was
affected. The system achieved an Acc of 0.93 to 0.96 for all four behaviors across all datasets (including the
original and misaligned datasets), with Sen and PPV approximately 0.9, and F1 consistently ranging from
0.88 to 0.92.

The proposed system is expected to expand to cover various livestock types and additional behaviors.
Energy efficiency will be prioritized to extend device usage time. Ultimately, this system is well-suited for
large-scale farms and can provide early health alerts for farmers regarding cattle conditions.
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